JP3781694B2 - Method for producing trivalent ruthenium chloride - Google Patents

Method for producing trivalent ruthenium chloride Download PDF

Info

Publication number
JP3781694B2
JP3781694B2 JP2002077252A JP2002077252A JP3781694B2 JP 3781694 B2 JP3781694 B2 JP 3781694B2 JP 2002077252 A JP2002077252 A JP 2002077252A JP 2002077252 A JP2002077252 A JP 2002077252A JP 3781694 B2 JP3781694 B2 JP 3781694B2
Authority
JP
Japan
Prior art keywords
ruthenium
trivalent
ruthenium chloride
ions
tetravalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002077252A
Other languages
Japanese (ja)
Other versions
JP2003239092A (en
Inventor
謙一 高橋
智 本田
薫 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojima Chemicals Co Ltd
Original Assignee
Kojima Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojima Chemicals Co Ltd filed Critical Kojima Chemicals Co Ltd
Priority to JP2002077252A priority Critical patent/JP3781694B2/en
Publication of JP2003239092A publication Critical patent/JP2003239092A/en
Application granted granted Critical
Publication of JP3781694B2 publication Critical patent/JP3781694B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、3価ルテニウムイオンと4価ルテニウムイオンが混在する塩化ルテニウム酸水溶液を電解還元することを特徴とする3価塩化ルテニウムの製造方法に関する。
【0002】
【従来の技術】
ルテニウムは、金属、酸化物及び錯体等として優れた触媒活性作用を示すため各種合成反応触媒に用いられている。また、二酸化ルテニウムは、抵抗材料、各種センサー材料、キャパシタ電極材料及び電磁波遮蔽材料などに有効とされることから自動車や電子部品分野で注目されている。上記の触媒や二酸化ルテニウムの原料として一般に製造されている塩化ルテニウム塩(RuCl・nHO)或いは塩化ルテニウム酸水溶液(HRuCl)は、その製造工程上、3価ルテニウムイオン60〜70%、4価ルテニウムイオン30〜40%の混合物の状態で存在する。
この3価ルテニウムイオンと4価ルテニウムイオンが混在する塩化ルテニウムを触媒材料、電子部品材料に使用すると触媒特性、電気特性、電磁波遮蔽効果等にバラツキが生じる原因となった。
また、塩化ルテニウムから有機錯体を合成する際にも3価ルテニウムイオンと4価ルテニウムイオンが混在する塩化ルテニウムを使用すると反応生成物の歩留まりも悪いことが判明した。
【0003】
上記の4価ルテニウムイオンを還元剤、例えば、ヒドラジン、SBH、SO及び蓚酸等によって3価ルテニウムイオンに還元する方法も試みられているが、還元剤投入後に生成する残留塩が不純物として塩化ルテニウム塩中に残留するため、塩化ルテニウム塩の純度が低下する欠陥があった。
【0004】
【発明が解決しようとする課題】
本発明は、この様な事情に着目してなされたものであって、その目的は、3価ルテニウムイオンと4価ルテニウムイオンが混在する塩化ルテニウム酸水溶液を電解法により水素イオンで4価ルテニウムイオンを3価ルテニウムイオンに還元し、還元剤などによる不純物混入を回避し、3価ルテニウムイオンのみに純化した3価塩化ルテニウムの製造方法を提供することをその課題とする。
【0005】
【課題を解決するための手段】
上記の課題を解決するために本発明は、
3価ルテニウムイオンと4価ルテニウムイオンが混在する塩化ルテニウム酸水溶液を、フッ素系樹脂陽イオン交換膜を介して塩酸溶液と接触させ、前記塩化ルテニウム酸水溶液中には陰極を、また、前記塩酸溶液中には陽極を挿入し、電極間に直流電流を流すことにより、陰極側において4価ルテニウムイオンを3価ルテニウムイオンに還元し、得られた3価塩化ルテニウムの還元電流を、ボルタンメトリー測定法により測定し、電位+0.3 〜+0.8の範囲において電位差が殆ど生じなくなるまで還元することを特徴とする3価塩化ルテニウムの製造方法を提供するものである。
【0006】
【発明の実施の形態】
本発明を実施するに当たっては、3価ルテニウムイオンと4価ルテニウムイオンが混在する塩化ルテニウム塩(RuCl・nHO)を水に溶解して塩化ルテニウム酸水溶液を準備する。或いは金属ルテニウムから製造される塩化ルテニウム酸水溶液を準備する。図1に示すような電解還元槽1を用いて4価ルテニウムイオンを3価ルテニウムイオンに還元して3価ルテニウムイオンに純化した3価塩化ルテニウムを製造する。即ち、図1において電解還元槽1は陽イオン交換膜6で2室に仕切られており、一方の室に前記3価ルテニウムイオンと4価ルテニウムイオンが混在する塩化ルテニウム酸水溶液5を入れ、他方の室には1〜3Mの希塩酸を入れる。上記の陽イオン交換膜6としては例えば、フッ素樹脂系陽イオン交換膜、スチレン−ビニルベンゼン系陽イオン交換膜等が使用される。そして上記塩化ルテニウム酸水溶液5には白金めっきしたチタン製の陰極を挿入し、他方の希塩酸溶液中には白金めっきしたチタン製の陽極を挿入し、陰極と陽極の間に11〜14mA/cmの直流電流を流して電解を行なう。
電流密度が11mA/cm以下では電解時間が長くなるので好ましくない。また、14mA/cm以上になると電解効率が上がらず陽イオン交換膜に負荷がかかるので好ましくない。
電解による4価ルテニウムイオンから3価ルテニウムイオンへの還元率はボルタンメトリー法により還元電流の発生状況及び溶液の色調(3価ルテニウムイオンと4価ルテニウムイオンが混在する塩化ルテニウム酸水溶液は茶褐色をしているが、3価ルテニウムイオンに純化されると青黒色になるので、それにより評価した。
【0007】
【実施例】
次に実施例により本発明を具体的に説明する。本発明は以下に述べる実施例に何ら限定されるものではない。
【0008】
【実施例1】
3価ルテニウムイオンと4価ルテニウムイオンが混在する粗製塩化ルテニウム塩(RuCl・nHO)を水に溶解して40g/lの塩化ルテニウム酸水溶液を調製した。次いで、図1に示す電解還元槽1を用い、フッ素樹脂系陽イオン交換膜6で仕切られた一方の陰極側室へ上記の塩化ルテニウム酸水溶液20g/lを入れ、他方の陽極側室へ2M塩酸4を、陰極側室の塩化ルテニウム酸水溶液の液面と同じようになるように入れる。次いで、塩化ルテニウム酸水溶液5中に白金めっきしたチタン製の陰極板3を入れ、白金めっきしたチタン製陽極板2を2M塩酸へ挿入して整流器により電極間に2〜3V、12Aの電流を流した。
撹拌のため循環ポンプを作動させる。23時間経過後、整流器を停止し、陰極側室の塩化ルテニウム酸水溶液を取り出し、濾過して不溶性の未反応物やゴミ等を除去した後、上記塩化ルテニウム酸水溶液5をロータリーエバポレ−ターに投入し、105℃に加熱して蒸発乾固して3価塩化ルテニウム結晶を得た。
【0009】
得られた3価塩化ルテニウム結晶と、原料として用いた粗製塩化ルテニウム塩(RuCl・nHO)を各々ボルタンメトリー測定器にかけて還元電流の発生状況を測定した。その結果を図2及び図3に示す。
【0010】
図2からも明らかなように、本発明の製造方法によって得た3価塩化ルテニウムは、電位+0.3〜+0.8の範囲で電位差は殆どゼロに近くになっており、4価ルテニウムイオンは3価ルテニウムイオンに特価され高純度の3価塩化ルテニウム結晶になっていることが解る。一方、原料として用いた粗製塩化ルテニウム塩は、図3からも明らかなように、電位+0.3〜+0.8の範囲で約+300の電位差が生じている。これは3価ルテニウムイオンと4価ルテニウムイオンが混在しているためである。
【0011】
【発明の効果】
本発明は上記のように構成されており、4価ルテニウムイオンと3価ルテニウムイオンが混在する粗製塩化ルテニウム塩(RuCl・nHO)を電解還元することによって、上記粗製塩化ルテニウム塩中に含まれる4価ルテニウムイオンを効率よく3価ルテニウムイオンに転化させることができ、3価ルテニウムイオンのみに純化した高純度の3価塩化ルテニウム結晶を容易に製造できる。
【図面の簡単な説明】
【図1】 本発明の製造に用いられる電解還元槽の構成図。
【図2】 本発明の実施例1で得た3価塩化ルテニウム結晶の還元率をボルタンメトリー測定法によって測定した結果を示す図。
【図3】 粗製塩化ルテニウム結晶をボルタンメトリー測定法によって測定した結果を示す図。
【符号の説明】
1 電解還元槽
2 陽極板
3 陰極板
4 希塩酸
5 塩化ルテニウム酸水溶液
6 陽イオン交換膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing trivalent ruthenium chloride, characterized by electrolytic reduction of a ruthenium chloride aqueous solution in which trivalent ruthenium ions and tetravalent ruthenium ions are mixed.
[0002]
[Prior art]
Ruthenium is used in various synthetic reaction catalysts because it exhibits an excellent catalytic activity as a metal, oxide, complex or the like. Further, ruthenium dioxide is attracting attention in the fields of automobiles and electronic components because it is effective as a resistance material, various sensor materials, capacitor electrode materials, electromagnetic wave shielding materials, and the like. The ruthenium chloride salt (RuCl 3 · nH 2 O) or the aqueous ruthenium chloride solution (H 3 RuCl 6 ), which are generally produced as the above-mentioned catalyst and ruthenium dioxide raw material, have trivalent ruthenium ions 60 to 70 in the production process. %, Tetravalent ruthenium ions in a mixture of 30 to 40%.
When ruthenium chloride in which trivalent ruthenium ions and tetravalent ruthenium ions are mixed is used as a catalyst material or an electronic component material, it causes variations in catalyst characteristics, electrical characteristics, electromagnetic wave shielding effects, and the like.
It was also found that the yield of reaction products was poor when ruthenium chloride containing trivalent and tetravalent ruthenium ions was used in synthesizing an organic complex from ruthenium chloride.
[0003]
A method of reducing the above tetravalent ruthenium ion to a trivalent ruthenium ion with a reducing agent such as hydrazine, SBH, SO 2 and oxalic acid has also been tried. However, residual salts produced after charging the reducing agent are ruthenium chloride as impurities. Since it remained in the salt, there was a defect that the purity of the ruthenium chloride salt was lowered.
[0004]
[Problems to be solved by the invention]
The present invention has been made paying attention to such a situation, and its purpose is to form tetravalent ruthenium ions with hydrogen ions by electrolysis of an aqueous solution of ruthenium chloride mixed with trivalent ruthenium ions and tetravalent ruthenium ions. It is an object of the present invention to provide a method for producing trivalent ruthenium chloride which is reduced to trivalent ruthenium ions, avoids contamination by impurities such as a reducing agent, and is purified only to trivalent ruthenium ions.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention
A ruthenium chloride aqueous solution in which trivalent ruthenium ions and tetravalent ruthenium ions are mixed is brought into contact with a hydrochloric acid solution through a fluororesin cation exchange membrane, a cathode is placed in the ruthenium chloride aqueous solution, and the hydrochloric acid solution The anode is inserted and a direct current is passed between the electrodes to reduce the tetravalent ruthenium ion to the trivalent ruthenium ion on the cathode side, and the reduction current of the obtained trivalent ruthenium chloride is obtained by a voltammetric measurement method. The present invention provides a method for producing trivalent ruthenium chloride, characterized in that reduction is carried out until almost no potential difference occurs in the potential range of +0.3 to +0.8 .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In practicing the present invention, a ruthenium chloride aqueous solution is prepared by dissolving a ruthenium chloride salt (RuCl 3 .nH 2 O) containing trivalent ruthenium ions and tetravalent ruthenium ions in water. Alternatively, a ruthenium chloride aqueous solution produced from metal ruthenium is prepared. Trivalent ruthenium chloride purified by reducing tetravalent ruthenium ions to trivalent ruthenium ions by using an electrolytic reduction tank 1 as shown in FIG. 1 is produced. That is, in FIG. 1, the electrolytic reduction tank 1 is divided into two chambers by a cation exchange membrane 6, the ruthenium chloride aqueous solution 5 in which the trivalent ruthenium ion and the tetravalent ruthenium ion are mixed is put in one chamber, and the other 1 to 3M dilute hydrochloric acid is placed in the chamber. Examples of the cation exchange membrane 6 include a fluororesin cation exchange membrane and a styrene-vinylbenzene cation exchange membrane. Then, a platinum-plated titanium cathode is inserted into the ruthenium chloride aqueous solution 5, and a platinum-plated titanium anode is inserted into the other dilute hydrochloric acid solution, and 11 to 14 mA / cm 2 between the cathode and the anode. Electrolysis is carried out by flowing a direct current.
When the current density is 11 mA / cm 2 or less, the electrolysis time becomes long, which is not preferable. On the other hand, if it is 14 mA / cm 2 or more, the electrolysis efficiency does not increase, and a load is applied to the cation exchange membrane.
The reduction rate from tetravalent ruthenium ions to trivalent ruthenium ions by electrolysis is determined by the voltammetric method of the generation of reduction current and the color of the solution (the ruthenium chlorate aqueous solution in which trivalent ruthenium ions and tetravalent ruthenium ions are mixed is brownish brown) However, when it was purified to trivalent ruthenium ions, it turned blue-black, and thus it was evaluated.
[0007]
【Example】
Next, the present invention will be described specifically by way of examples. The present invention is not limited to the examples described below.
[0008]
[Example 1]
A crude ruthenium chloride salt (RuCl 3 · nH 2 O) containing trivalent ruthenium ions and tetravalent ruthenium ions was dissolved in water to prepare a 40 g / l aqueous ruthenium chloride solution. Next, using the electrolytic reduction tank 1 shown in FIG. 1, 20 g / l of the above-mentioned aqueous ruthenium chloride solution is put into one cathode side chamber partitioned by the fluororesin cation exchange membrane 6, and 2M hydrochloric acid 4 is put into the other anode side chamber. Is placed in the same manner as the liquid level of the aqueous ruthenium chloride solution in the cathode side chamber. Next, a platinum-plated titanium cathode plate 3 is placed in an aqueous ruthenium chloride solution 5, the platinum-plated titanium anode plate 2 is inserted into 2M hydrochloric acid, and a current of 2-3V and 12A is passed between the electrodes by a rectifier. did.
Activate the circulation pump for agitation. After 23 hours, the rectifier was stopped, the aqueous ruthenium chloride solution in the cathode side chamber was taken out, filtered to remove insoluble unreacted substances and dust, and the aqueous ruthenic acid chloride solution 5 was charged into the rotary evaporator. The mixture was heated to 105 ° C. and evaporated to dryness to obtain trivalent ruthenium chloride crystals .
[0009]
The resulting trivalent ruthenium chloride crystal and the crude ruthenium chloride salt (RuCl 3 · nH 2 O) used as raw materials were each applied to a voltammetric measuring instrument to measure the state of reduction current generation. The results are shown in FIGS.
[0010]
As is apparent from FIG. 2, the trivalent ruthenium chloride obtained by the production method of the present invention has a potential difference of almost zero in the potential range of +0.3 to +0.8, and the tetravalent ruthenium ion is It can be seen that the trivalent ruthenium ion is a specially priced trivalent ruthenium chloride crystal that is specially sold. On the other hand, as is apparent from FIG. 3, the crude ruthenium chloride salt used as a raw material has a potential difference of about +300 in the range of potential +0.3 to +0.8. This is because trivalent ruthenium ions and tetravalent ruthenium ions are mixed.
[0011]
【The invention's effect】
The present invention is configured as described above. By electrolytic reduction of a crude ruthenium chloride salt (RuCl 3 .nH 2 O) in which tetravalent ruthenium ions and trivalent ruthenium ions are mixed, the crude ruthenium chloride salt is incorporated into the crude ruthenium chloride salt. Tetravalent ruthenium ions contained therein can be efficiently converted into trivalent ruthenium ions, and high-purity trivalent ruthenium chloride crystals purified only to trivalent ruthenium ions can be easily produced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an electrolytic reduction tank used for production of the present invention.
FIG. 2 is a graph showing the results of measuring the reduction rate of the trivalent ruthenium chloride crystal obtained in Example 1 of the present invention by a voltammetric measurement method.
FIG. 3 is a graph showing the results of measuring a ruthenium chloride crystal by a voltammetric measurement method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolytic reduction tank 2 Anode plate 3 Cathode plate 4 Dilute hydrochloric acid 5 Chlorine ruthenium acid aqueous solution 6 Cation exchange membrane

Claims (1)

3価ルテニウムイオンと4価ルテニウムイオンが混在する塩化ルテニウム酸水溶液を、フッ素系樹脂陽イオン交換膜を介して塩酸溶液と接触させ、前記塩化ルテニウム酸水溶液中には陰極を、また、前記塩酸溶液中には陽極を挿入し、電極間に直流電流を流すことにより、陰極側において4価ルテニウムイオンを3価ルテニウムイオンに還元し、得られた3価塩化ルテニウムの還元電流を、ボルタンメトリー測定法により測定し、電位+0.3〜+0.8の範囲において電位差が殆ど生じなくなるまで還元することを特徴とする3価塩化ルテニウムの製造方法。A ruthenium chloride aqueous solution in which trivalent ruthenium ions and tetravalent ruthenium ions are mixed is brought into contact with a hydrochloric acid solution through a fluororesin cation exchange membrane, a cathode is placed in the ruthenium chloride aqueous solution, and the hydrochloric acid solution The anode is inserted and a direct current is passed between the electrodes to reduce the tetravalent ruthenium ion to the trivalent ruthenium ion on the cathode side, and the reduction current of the obtained trivalent ruthenium chloride is obtained by a voltammetric measurement method. A method for producing trivalent ruthenium chloride, characterized in that the reduction is carried out until almost no potential difference occurs in the range of potential +0.3 to +0.8.
JP2002077252A 2002-02-14 2002-02-14 Method for producing trivalent ruthenium chloride Expired - Lifetime JP3781694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002077252A JP3781694B2 (en) 2002-02-14 2002-02-14 Method for producing trivalent ruthenium chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002077252A JP3781694B2 (en) 2002-02-14 2002-02-14 Method for producing trivalent ruthenium chloride

Publications (2)

Publication Number Publication Date
JP2003239092A JP2003239092A (en) 2003-08-27
JP3781694B2 true JP3781694B2 (en) 2006-05-31

Family

ID=27785234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077252A Expired - Lifetime JP3781694B2 (en) 2002-02-14 2002-02-14 Method for producing trivalent ruthenium chloride

Country Status (1)

Country Link
JP (1) JP3781694B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521862B2 (en) * 2004-08-25 2010-08-11 日本カーリット株式会社 Electrode for electrochemical capacitor and electrochemical capacitor
KR100873955B1 (en) 2007-12-17 2008-12-12 희성금속 주식회사 A manufacturing method of high purity ruthenium complex using extraction
JP2017526606A (en) * 2014-09-03 2017-09-14 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Process for the preparation and / or purification of ruthenium (III) chloride
EP2998275B1 (en) * 2014-09-19 2016-11-02 Heraeus Deutschland GmbH & Co. KG Process for the preparation and/or purification of ruthenium(III) chloride

Also Published As

Publication number Publication date
JP2003239092A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
EP3222753B1 (en) Ammonia synthesis apparatus
JPS59107087A (en) Electrolytic cell and method for manufacturing organic compounds
TWI736732B (en) Manufacturing method of ammonium persulfate
ZA200403819B (en) Electrochemical process for producing ionic liquids.
JPH0336914B2 (en)
EA029800B1 (en) Electrolytic cell equipped with concentric electrode pairs
EA030848B1 (en) Electrolytic cell equipped with concentric electrode pairs
JPS60131986A (en) Manufacture of quaternary ammonium hydroxide of high purity
JP7163841B2 (en) Method for producing ammonium persulfate
JP3781694B2 (en) Method for producing trivalent ruthenium chloride
JPS60131985A (en) Manufacture of quaternary ammonium hydroxide of high purity
JPS5927385B2 (en) Production method of basic aluminum chloride
US3240687A (en) Process for the manufacture of watersoluble basic aluminum compounds
JPS63190187A (en) Point of sodium permanent anode
KR19990021990A (en) Basic cobalt carbonate (II), preparation method thereof and use thereof
FI82078B (en) ELEKTROKEMISKT AVLAEGSNANDE AV HYPOKLORITER UR KLORATCELLOESNINGAR.
JPS60243293A (en) Manufacture of m-hydroxybenzyl alcohol
JPS5983785A (en) Preparation of highly concentrated aqueous cobalt sulfate solution
JP2585325B2 (en) Gold dissolution method
CN110724968A (en) Industrial production method of hydroiodic acid
CN116657162B (en) Preparation method of high-purity ammonium persulfate
JP3478893B2 (en) Method for producing high-purity choline
JPS5845316B2 (en) Waste liquid treatment method
JPH01184293A (en) Production of iodine and iodate
JP3455942B2 (en) Method for producing metal alkoxide by electrolytic method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7