JP3781243B2 - Exhaust gas purification device - Google Patents

Exhaust gas purification device Download PDF

Info

Publication number
JP3781243B2
JP3781243B2 JP30893298A JP30893298A JP3781243B2 JP 3781243 B2 JP3781243 B2 JP 3781243B2 JP 30893298 A JP30893298 A JP 30893298A JP 30893298 A JP30893298 A JP 30893298A JP 3781243 B2 JP3781243 B2 JP 3781243B2
Authority
JP
Japan
Prior art keywords
exhaust gas
adsorbent
way catalyst
amount
desorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30893298A
Other languages
Japanese (ja)
Other versions
JP2000126555A (en
Inventor
孝明 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP30893298A priority Critical patent/JP3781243B2/en
Publication of JP2000126555A publication Critical patent/JP2000126555A/en
Application granted granted Critical
Publication of JP3781243B2 publication Critical patent/JP3781243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、吸着材と三元触媒を用いた排ガス浄化装置に関し、排ガス中の炭化水素(HC)と窒素酸化物(NOx )を一層効率よく浄化できる排ガス浄化装置に関する。
【0002】
【従来の技術】
従来より自動車の排ガス浄化用触媒として、理論空燃比において排ガス中のCO及びHCの酸化とNOx の還元とを同時に行って排ガスを浄化する三元触媒が用いられている。このような三元触媒としては、例えばコーディエライトなどからなる耐熱性基材にγ−アルミナからなる多孔質担体層を形成し、その多孔質担体層に白金(Pt)、ロジウム(Rh)などの貴金属を担持させたものが広く知られている。
【0003】
この三元触媒は、理論空燃比で燃焼されたストイキ雰囲気の排ガスを効率よく浄化するように設計されている。しかし市街地走行時や急加速あるいは急減速の場合などには、空燃比がストイキを中心にして変動するため、その排ガス雰囲気はHCリッチ雰囲気からHCリーン雰囲気まで広く変動し、三元触媒による浄化が不充分となる場合がある。
【0004】
さらに、始動時あるいは冷間時には排ガスの温度が低く、排ガス温度が触媒の活性温度以上となるまではHCは浄化されないという不具合がある。
そこで例えば特開平6-154538号公報などに開示されているように、ゼオライトなどのHC吸着材を三元触媒の上流側に配置した排ガス浄化装置が開発されている。この排ガス浄化装置では、排ガス中のHCを低温時にHC吸着材に吸着させ、吸着されたHCは昇温時に脱離して三元触媒により酸化浄化される。したがってこのような排ガス浄化装置によれば、冷間時や始動時などに排ガス中に含まれるHCはHC吸着材に吸着されるため排出が抑制され、高温時には三元触媒で酸化浄化されるため、低温から高温までHCの排出を抑制することができる。
【0005】
また排ガス中には一酸化窒素(NO)が含まれ、このNOが酸化されてNOx となる。そしてNOはNOx となることによりN2への還元浄化が可能となる。しかし低温時にはNOの酸化も生じにくく、始動時あるいは冷間時にはNOは未浄化となる。したがってHCの場合と同様に、三元触媒の上流側にNO吸着材を配置すれば、冷間時や始動時などに排ガス中に含まれるNOはNO吸着材に吸着されるため排出が抑制され、高温時には三元触媒で還元浄化されるため、低温から高温までNOx の排出を抑制することができる。
【0006】
【発明が解決しようとする課題】
ところが、三元触媒の上流側にHC吸着材を配置した排ガス浄化装置においては、昇温時にHC吸着材から脱離したHCによって三元触媒を通過する排ガスはHCリッチの還元性雰囲気となる。そのためストイキ雰囲気で最も活性が高くなるように設計された三元触媒の活性が不充分となり、HC及びNOx の浄化率が低くなってしまう。
【0007】
また三元触媒の上流側にNO吸着材を配置した排ガス浄化装置においては、昇温時にNO吸着材から放出されたNOによって三元触媒を通過する排ガスはNOリッチの酸化性雰囲気となる。そのためストイキ雰囲気で最も活性が高くなるように設計された三元触媒の活性が不充分となり、HC及びNOx の浄化率が低くなってしまう。
【0008】
本発明はこのような事情に鑑みてなされたものであり、三元触媒の上流側にHC吸着材とNO吸着材の両方を配置し、三元触媒を通過する排ガス雰囲気を常にストイキ雰囲気として三元触媒の浄化活性を向上させることを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決する請求項1に記載の排ガス浄化装置の特徴は、排ガス流路に配置された三元触媒と、三元触媒の上流側の排ガス流路に配置され排ガス中の炭化水素を吸着するHC吸着材と、三元触媒の上流側の排ガス流路に配置され排ガス中の一酸化窒素を吸着するNO吸着材と、よりなる排ガス浄化装置であって、HC吸着材から脱離する炭化水素量とNO吸着材から脱離する一酸化窒素量を化学量論的にほぼ同量とすることにより三元触媒に流入する排ガス雰囲気をストイキ雰囲気とすることにある。
【0010】
また請求項2に記載の排ガス浄化装置の特徴は、請求項1に記載の排ガス浄化装置において、HC吸着材とNO吸着材は排ガス流路に沿って直列に配置されているとにある。
請求項3に記載の排ガス浄化装置の特徴は、請求項1に記載の排ガス浄化装置において、HC吸着材とNO吸着材は混合されて排ガス流路内に配置されていることにある。
【0011】
そして請求項4に記載の排ガス浄化装置の特徴は、請求項3に記載の排ガス浄化装置において、HC吸着材とNO吸着材との混合比は、HC吸着材に吸着する炭化水素量とNO吸着材に吸着する一酸化窒素量が化学量論的にほぼ同量となる比率とされていることにある。
【0012】
【発明の実施の形態】
請求項1に記載の排ガス浄化装置では、三元触媒の上流側にHC吸着材とNO吸着材が配置され、HC吸着材から脱離するHCとNO吸着材から脱離するNOにより三元触媒に流入する排ガス雰囲気がストイキ雰囲気とされている。
この排ガス浄化装置では、低温時にはHCはHC吸着材に吸着されNOはNO吸着材に吸着されるため、HC及びNOx の排出が抑制される。そして昇温時には、両吸着材から脱離したHCとNOによって、三元触媒を通過する排ガスはストイキ雰囲気となる。したがって三元触媒の活性が高く維持されるので、HCは効率よく酸化浄化されNOx は効率よく還元浄化されて、清浄となった排ガスが排出される。
【0013】
HC吸着材とNO吸着材とは、請求項2に記載したように排ガス流路に沿って直列に配置してもよいし、請求項3に記載したように両者を混合して排ガス流路内に配置することもできる。
脱離したHCとNOによって三元触媒を通過する排ガス雰囲気をストイキ雰囲気とするには、 HC 吸着材から脱離するHC量とNO吸着材から脱離するNO量を化学量論的にほぼ同量とする。この場合、HC吸着材とNO吸着材を直列に配置していれば、それぞれの吸着材のHC吸着量とNO吸着量を化学量論的にほぼ同量とすればよい。またHC吸着材とNO吸着材を混合して配置していれば、請求項4にいうように、HC吸着材とNO吸着材との混合比をHC吸着材に吸着するHC量とNO吸着材に吸着するNO量が化学量論的にほぼ同量となる比率とすればよい。
【0014】
三元触媒としては、多孔質担体と、多孔質担体に担持された貴金属とからなる従来と同様の三元触媒を用いることができる。多孔質担体としては、アルミナ、シリカ、シリカ−アルミナ、ジルコニア、チタニアなどから選択して用いることができる。中でも吸着特性及び耐熱性に優れたγ−アルミナが特に好ましい。
また上記多孔質担体には、セリア、セリア−ジルコニアなどの酸素吸蔵放出材を担持あるいは混合することが好ましい。この酸素吸蔵放出材により排ガス中の酸素濃度を安定化することができ、排ガスを一層安定してストイキ雰囲気とすることができるので、三元触媒の浄化活性が一層向上する。
【0015】
上記多孔質担体に担持される貴金属としては、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)などから一種あるいは複数種を選択して用いることができる。この貴金属の担持量は、多孔質担体1リットルに対して 0.1〜10gとすることが好ましい。これより少ないと浄化活性が不足し、これより多く担持しても効果が飽和するとともに高価となる。
【0016】
三元触媒は、ペレット形状あるいはハニカム形状として用いることができる。ハニカム形状とする場合には、コーディエライトあるいは金属箔から形成されたハニカム担体基材に多孔質担体からコート層を形成し、そのコート層に貴金属を担持させることで製造することができる。あるいは多孔質担体粉末に予め貴金属を担持し、その貴金属担持担体粉末からコート層を形成して製造してもよい。
【0017】
HC吸着材としては、フェリエライト、ZSM-5、モルデナイト、Y型ゼオライトなどのゼオライトを用いることができる。またゼオライトにPdやAgなどの貴金属を担持したものをHC吸着材とすることも好ましい。このように貴金属を担持することで、低分子量のHCの吸着性が一層向上する。
またNO吸着材としては、Cu、Co、Ni、Feなどの遷移金属の酸化物を用いることができる。中でも比表面積が20m2/g以上の高比表面積酸化物を用いることが好ましい。これによりNOの吸着性が一層向上する。
【0018】
HC吸着材及びNO吸着材は、それぞれ粉末状態で容器に充填して用いてもよいし、ペレット形状に成形して用いたり、ハニカム担体基材にコートして用いることもできる。
HC吸着材とNO吸着材とは、三元触媒の上流側にそれぞれ直列に配置してもよいが、請求項3にいうように両者を混合して用いることが好ましい。これにより設置スペースを小さくすることができ、通気抵抗も低減することができる。
【0019】
なお化学量論的にほぼ同量とは、脱離したNO量に相当する酸化能(酸化当量)と脱離したHC量に相当する還元能(還元当量)とがほぼ同一であることをいう。例えばHCがプロピレン(C3H6)であるなら、プロピレンとNOとの反応式は[化1]式のようになる。
【0020】
【化1】
9NO+C3H6 → 9/2N2+3CO2 +3H2
したがってNOが9モルに対してC3H6の1モルが化学量論的にほぼ同量となり、単位時間当たりにHC吸着材から脱離するC3H6量とNO吸着材から脱離するNO量がモル比でC3H6/NO=1/9となるように、HC吸着材とNO吸着材の組成及び量を決定すればよい。なお実際の排ガス中のHC種は複雑であるので、HC吸着材とNO吸着材の組成及び量などは実験的に決定する必要がある。
【0021】
またHC吸着材とNO吸着材から脱離するHC量及びNO量は、それぞれHC吸着材とNO吸着材に吸着するHC量及びNO量と相関性が高い場合が多い。したがって請求項4に記載したように、HC吸着材とNO吸着材との比率はHCとNOの吸着量が化学量論的にほぼ同量となる比率となるようにすることができる。
【0022】
【実施例】
以下、試験例及び実施例により本発明を具体的に説明する。
(試験例1)
比表面積64m2/gの Fe2O3粉末6重量部と、ZSM-5(SiO2/Al2O3モル比=2000)粉末1重量部とを混合し、ペレット化して試験例1の吸着材を調製した。
【0023】
この吸着材を評価装置に配置し、窒素ガス気流中にて 400℃で30分加熱する前処理を行い、40℃以下まで冷却した後、表1に示すモデルガスを入りガス温度約20℃(室温)、空間速度100,000h-1の条件で流通させ30分間吸着させた。その後モデルガスの供給を停止し、室温〜 400℃まで20℃/分の速度で昇温した時に脱離するC3H6量とNO量を測定した。結果を図2に示す。
【0024】
【表1】

Figure 0003781243
(試験例2)
比表面積82m2/gの NiO粉末18重量部と、Agを4重量%担持したZSM-5(SiO2/Al2O3モル比=40)粉末1重量部とを混合し、ペレット化して試験例2の吸着材を調製した。
【0025】
そして試験例1と同様にして脱離するC3H6量とNO量を測定し、結果を図2に示す。
<評価>
図2から明らかなように、試験例1及び試験例2の吸蔵材から脱離するC3H6量とNO量はモル比でC3H6/NO≒1/10であり、[化1]式を参酌すると、試験例1及び試験例2の吸蔵材はともに化学量論的にほぼ同量のHCとNOを吸着・脱離している。
【0026】
そこで以下の実施例1には、上記試験例1と同一組成の吸着材を用いている。
(実施例1)
図1に本実施例の排ガス浄化装置を示す。この排ガス浄化装置は、排ガス流路に配置された三元触媒1と、三元触媒1の上流側の排ガス流路に配置されたHC吸着材とNO吸着材の混合物からなる吸着材2とから構成されている。
【0027】
三元触媒1は、コーディエライト製のハニカム担体基材(容積 1.3リットル)と、担体基材表面に形成されたγ−アルミナからなるコート層と、コート層に担持されたPt及びRhとから構成されている。コート層は担体基材1リットル当たり 120g形成され、Ptは担体基材1リットル当たり 1.5g担持され、Rhは担体基材1リットル当たり 0.3g担持されている。
【0028】
また吸着材2は、比表面積64m2/gの Fe2O3粉末と、ZSM-5(SiO2/Al2O3モル比=2000)粉末との混合粉末からなり、重量比で Fe2O3/ZSM-5=6/1となるように混合されている。この例では、上記混合粉末を容積1リットルのコーディエライト製ハニカム担体基材にコートして用いている。混合粉末のコート量は、担体基材1リットル当たり 350gであり、 Fe2O3粉末が 300gとZSM-5粉末が50gとから構成されている。
【0029】
この排ガス浄化装置を用い、三元触媒1から排出される排ガスをエンジン始動直後から1分間分析し、HCとNOの浄化率をそれぞれ測定した。結果を図3に示す。
(比較例1)
吸着材2をZSM-5(SiO2/Al2O3モル比=2000)粉末のみから構成したこと以外は実施例1と同様にして排ガス浄化装置を形成した。そして実施例1と同様にしてHCとNOの浄化率をそれぞれ測定し、結果を図3に示す。
【0030】
(比較例2)
吸着材2を用いず三元触媒1のみから構成したこと以外は実施例1と同様にして排ガス浄化装置を形成した。そして実施例1と同様にしてHCとNOの浄化率をそれぞれ測定し、結果を図3に示す。
<評価>
図3より、比較例1の排ガス浄化装置は比較例2の排ガス浄化装置に比べて高いHC浄化性能を示し、HC吸着材を三元触媒の上流に配置した効果が現れている。しかし実施例1の排ガス浄化装置は、比較例1の排ガス浄化装置よりさらに高いHC浄化率を示し、これはNO吸着材を混合した効果であることが明らかである。さらに実施例1の排ガス浄化装置では、NOも効率よく浄化されていることがわかる。
【0031】
(実用例)
図4に本発明の排ガス浄化装置の実用例を示す。この排ガス浄化装置は、排ガス流路に配置された三元触媒1と、HC吸着材とNO吸着材の混合物からなり三元触媒1の上流側の排ガス流路に配置された容器3内に収納された吸着材2とから構成されている。容器3は、中心通路30と、中心通路30の外周に形成された外周通路31とをもち、吸着材2は外周通路31に配置されている。そして中心通路30には、中心通路30を開閉する弁32が配置されている。
【0032】
この排ガス浄化装置では、始動時あるいは冷間時などの低温時には、弁32が中心通路30を閉じている。したがって排ガスは外周通路31を通って吸着材2を通過し、次いで三元触媒1を通過する。このとき排ガス中のHC及びNOは吸着材2に吸着され、三元触媒1へは清浄な排ガスが供給される。そのため三元触媒1を通過する排ガスの温度が触媒の活性温度より低くても、有害物質が排出されるのが抑制される。
【0033】
そして排ガス温度が所定温度以上となると、弁32が中心通路30を開く。したがって排ガスは中心通路30と外周通路31を通過し、主として抵抗の小さい中心通路30を通過して三元触媒1へ供給される。排ガスが三元触媒1を通過する際には、既に触媒活性温度以上となっているので、有害物質は三元触媒1で浄化される。ここで、昇温時には吸着材2から吸着されていたHCとNOが脱離し、中心通路30を通過した排ガスと混合されて三元触媒1へ供給される。しかし吸着材2では、HC吸着材から脱離するHC量とNO吸着材から脱離するNO量が化学量論的にほぼ同量となるように構成されている。したがって三元触媒1へ供給される排ガスは常にストイキ近傍となるので、三元触媒1の活性は常に最大に発現され、高い浄化性能を示す。
【0034】
【発明の効果】
すなわち本発明の排ガス浄化装置によれば、低温時から高温時まで効率よくHCとNOを浄化することができ、浄化性能に優れている。また三元触媒に供給される排ガスが常にストイキ雰囲気となるので、三元触媒の触媒活性が向上しHC浄化率及びNOx 浄化率が向上する。
【図面の簡単な説明】
【図1】本発明の一実施例の排ガス浄化装置の構成を示す説明図である。
【図2】本発明の試験例で製造した吸着材のNO吸蔵・脱離量とHC吸蔵・脱離量を示すグラフである。
【図3】本発明の実施例及び比較例の排ガス浄化装置のHC浄化率とNO浄化率を示すグラフである。
【図4】本発明の排ガス浄化装置の実用例の構成を示す説明図である。
【符号の説明】
1:三元触媒 2:吸着材 3:容器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus using an adsorbent and a three-way catalyst, and relates to an exhaust gas purification apparatus that can more efficiently purify hydrocarbons (HC) and nitrogen oxides (NO x ) in exhaust gas.
[0002]
[Prior art]
Conventionally, a three-way catalyst for purifying exhaust gas by simultaneously oxidizing CO and HC in exhaust gas and reducing NO x at a stoichiometric air-fuel ratio has been used as an exhaust gas purification catalyst for automobiles. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh) or the like is formed on the porous carrier layer. Those carrying a noble metal are widely known.
[0003]
This three-way catalyst is designed to efficiently purify exhaust gas in a stoichiometric atmosphere burned at a stoichiometric air-fuel ratio. However, when driving in urban areas, sudden acceleration or deceleration, the air-fuel ratio fluctuates around the stoichiometry, so the exhaust gas atmosphere varies widely from the HC rich atmosphere to the HC lean atmosphere. It may be insufficient.
[0004]
Further, there is a problem that the temperature of the exhaust gas is low at the time of starting or cold, and HC is not purified until the exhaust gas temperature becomes equal to or higher than the activation temperature of the catalyst.
Therefore, as disclosed in, for example, Japanese Patent Application Laid-Open No. 6-1553838, an exhaust gas purification apparatus has been developed in which an HC adsorbent such as zeolite is arranged on the upstream side of the three-way catalyst. In this exhaust gas purification device, HC in the exhaust gas is adsorbed by the HC adsorbent at a low temperature, and the adsorbed HC is desorbed at a temperature rise and is oxidized and purified by the three-way catalyst. Therefore, according to such an exhaust gas purification device, HC contained in the exhaust gas is adsorbed by the HC adsorbent during cold operation or startup, etc., so that emission is suppressed and oxidation is purified by the three-way catalyst at high temperatures. , HC emissions can be suppressed from low to high temperatures.
[0005]
Further, the exhaust gas contains nitric oxide (NO), and this NO is oxidized to NO x . NO can be reduced to N 2 by being converted to NO x . However, NO oxidation hardly occurs at low temperatures, and NO is unpurified at start-up or cold. Therefore, as in the case of HC, if an NO adsorbent is placed upstream of the three-way catalyst, NO contained in the exhaust gas is adsorbed by the NO adsorbent during cold operation or startup, etc., so that emission is suppressed. Since it is reduced and purified by a three-way catalyst at high temperatures, NO x emissions can be suppressed from low to high temperatures.
[0006]
[Problems to be solved by the invention]
However, in the exhaust gas purification apparatus in which the HC adsorbent is arranged on the upstream side of the three-way catalyst, the exhaust gas that passes through the three-way catalyst due to HC desorbed from the HC adsorbent when the temperature rises becomes an HC-rich reducing atmosphere. Therefore, the activity of the three-way catalyst designed to have the highest activity in the stoichiometric atmosphere becomes insufficient, and the purification rate of HC and NO x becomes low.
[0007]
Further, in the exhaust gas purification apparatus in which the NO adsorbent is arranged upstream of the three-way catalyst, the exhaust gas that passes through the three-way catalyst due to NO released from the NO adsorbent when the temperature rises becomes an NO-rich oxidizing atmosphere. Therefore, the activity of the three-way catalyst designed to have the highest activity in the stoichiometric atmosphere becomes insufficient, and the purification rate of HC and NO x becomes low.
[0008]
The present invention has been made in view of such circumstances. Both the HC adsorbent and the NO adsorbent are arranged upstream of the three-way catalyst, and the exhaust gas atmosphere passing through the three-way catalyst is always set as a stoichiometric atmosphere. The purpose is to improve the purification activity of the original catalyst.
[0009]
[Means for Solving the Problems]
The exhaust gas purifying apparatus according to claim 1, which solves the above problem, is characterized in that a three-way catalyst disposed in an exhaust gas passage and a hydrocarbon in the exhaust gas disposed in an exhaust gas passage upstream of the three-way catalyst are adsorbed. An exhaust gas purification device comprising an HC adsorbing material, an NO adsorbing material that is disposed in an exhaust gas flow channel upstream of the three-way catalyst, and adsorbs nitrogen monoxide in the exhaust gas, and is carbonized to desorb from the HC adsorbing material The exhaust gas atmosphere flowing into the three-way catalyst is made a stoichiometric atmosphere by making the amount of hydrogen and the amount of nitric oxide desorbed from the NO adsorbent substantially the same stoichiometrically.
[0010]
The exhaust gas purifying apparatus according to claim 2 is characterized in that, in the exhaust gas purifying apparatus according to claim 1, the HC adsorbent and the NO adsorbent are arranged in series along the exhaust gas flow path.
The exhaust gas purifying apparatus according to claim 3 is characterized in that, in the exhaust gas purifying apparatus according to claim 1, the HC adsorbent and the NO adsorbent are mixed and disposed in the exhaust gas flow path.
[0011]
The exhaust gas purifying apparatus according to claim 4 is characterized in that in the exhaust gas purifying apparatus according to claim 3, the mixing ratio of the HC adsorbent and the NO adsorbent is such that the amount of hydrocarbon adsorbed on the HC adsorbent and the NO adsorption The amount of nitric oxide adsorbed on the material is such that the stoichiometric amount is approximately the same.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the exhaust gas purification apparatus according to claim 1, the HC adsorbent and the NO adsorbent are disposed upstream of the three-way catalyst, and the three-way catalyst is formed by HC desorbed from the HC adsorbent and NO desorbed from the NO adsorbent. The exhaust gas atmosphere flowing into the exhaust gas is a stoichiometric atmosphere.
In this exhaust gas purifying apparatus, at low temperatures HC is NO adsorbed to the HC adsorbent to be adsorbed on the NO adsorbent, the discharge of HC and NO x is suppressed. When the temperature rises, the exhaust gas passing through the three-way catalyst becomes a stoichiometric atmosphere due to HC and NO desorbed from both adsorbents. Therefore, since the activity of the three-way catalyst is maintained high, HC is efficiently oxidized and purified, NO x is efficiently reduced and purified, and the cleaned exhaust gas is discharged.
[0013]
The HC adsorbent and the NO adsorbent may be arranged in series along the exhaust gas flow path as described in claim 2, or both are mixed in the exhaust gas flow path as described in claim 3. It can also be arranged.
To make the exhaust gas atmosphere that passes through the three-way catalyst by desorbed HC and NO a stoichiometric atmosphere , the amount of HC desorbed from the HC adsorbent and the amount of NO desorbed from the NO adsorbent are almost the same stoichiometrically. Amount. In this case, if the HC adsorbing material and the NO adsorbing material are arranged in series, the HC adsorbing amount and the NO adsorbing amount of each adsorbing material may be made substantially the same stoichiometrically. Further, if the HC adsorbent and the NO adsorbent are mixed and arranged, as described in claim 4, the HC amount adsorbed on the HC adsorbent and the NO adsorbent are mixed with the HC adsorbent and the NO adsorbent. The amount of NO adsorbed on the catalyst may be set to a ratio at which the stoichiometric amount is substantially the same.
[0014]
As the three-way catalyst, a conventional three-way catalyst comprising a porous carrier and a noble metal supported on the porous carrier can be used. The porous carrier can be selected from alumina, silica, silica-alumina, zirconia, titania and the like. Among them, γ-alumina excellent in adsorption characteristics and heat resistance is particularly preferable.
The porous carrier preferably supports or mixes an oxygen storage / release material such as ceria or ceria-zirconia. With this oxygen storage / release material, the oxygen concentration in the exhaust gas can be stabilized, and the exhaust gas can be more stably in a stoichiometric atmosphere, so that the purification activity of the three-way catalyst is further improved.
[0015]
As the noble metal supported on the porous carrier, one or more kinds selected from platinum (Pt), rhodium (Rh), palladium (Pd), iridium (Ir) and the like can be selected and used. The amount of the noble metal supported is preferably 0.1 to 10 g with respect to 1 liter of the porous carrier. If it is less than this, the purification activity will be insufficient, and even if it is supported more than this, the effect will be saturated and it will be expensive.
[0016]
The three-way catalyst can be used as a pellet shape or a honeycomb shape. In the case of a honeycomb shape, it can be produced by forming a coat layer from a porous carrier on a honeycomb carrier substrate formed of cordierite or metal foil and supporting the noble metal on the coat layer. Alternatively, the porous carrier powder may be preliminarily supported with a noble metal, and a coat layer may be formed from the noble metal-supported carrier powder.
[0017]
As the HC adsorbent, zeolite such as ferrierite, ZSM-5, mordenite, and Y-type zeolite can be used. In addition, it is also preferable to use HC adsorbent in which a noble metal such as Pd or Ag is supported on zeolite. By supporting the noble metal in this way, the adsorptivity of low molecular weight HC is further improved.
As the NO adsorbent, oxides of transition metals such as Cu, Co, Ni, and Fe can be used. Among them, it is preferable to use a high specific surface area oxide having a specific surface area of 20 m 2 / g or more. Thereby, the adsorptivity of NO is further improved.
[0018]
Each of the HC adsorbent and the NO adsorbent may be filled in a container in a powder state, used after being formed into a pellet shape, or coated on a honeycomb carrier substrate.
Although the HC adsorbent and the NO adsorbent may be arranged in series on the upstream side of the three-way catalyst, it is preferable to use a mixture of both as described in claim 3. Thereby, an installation space can be made small and ventilation resistance can also be reduced.
[0019]
The stoichiometrically the same amount means that the oxidation ability (oxidation equivalent) corresponding to the desorbed NO amount and the reduction ability (reduction equivalent) corresponding to the desorbed HC amount are substantially the same. . For example, when HC is propylene (C 3 H 6 ), the reaction formula of propylene and NO is as shown in [Chemical Formula 1].
[0020]
[Chemical 1]
9NO + C 3 H 6 → 9 / 2N 2 + 3CO 2 + 3H 2
Therefore, 1 mole of C 3 H 6 is stoichiometrically equivalent to 9 moles of NO, and the amount of C 3 H 6 desorbed from the HC adsorbent per unit time is desorbed from the NO adsorbent. The composition and amount of the HC adsorbent and the NO adsorbent may be determined so that the NO amount is C 3 H 6 / NO = 1/9 in terms of molar ratio. Since the actual HC species in the exhaust gas are complicated, it is necessary to experimentally determine the composition and amount of the HC adsorbent and the NO adsorbent.
[0021]
The HC amount and NO amount desorbed from the HC adsorbent and NO adsorbent are often highly correlated with the HC amount and NO amount adsorbed on the HC adsorbent and NO adsorbent, respectively. Therefore, as described in claim 4 , the ratio between the HC adsorbent and the NO adsorbent can be such that the adsorbed amount of HC and NO is substantially the same stoichiometrically.
[0022]
【Example】
Hereinafter, the present invention will be specifically described with reference to test examples and examples.
(Test Example 1)
6 parts by weight of Fe 2 O 3 powder having a specific surface area of 64 m 2 / g and 1 part by weight of ZSM-5 (SiO 2 / Al 2 O 3 molar ratio = 2000) powder are mixed, pelletized, and adsorbed in Test Example 1. A material was prepared.
[0023]
This adsorbent is placed in an evaluation device, pretreated by heating at 400 ° C for 30 minutes in a nitrogen gas stream, cooled to 40 ° C or less, and then filled with the model gas shown in Table 1 at a gas temperature of about 20 ° C ( At room temperature) and a space velocity of 100,000 h −1 for 30 minutes. Thereafter, the supply of the model gas was stopped, and the amounts of C 3 H 6 and NO desorbed when the temperature was raised from room temperature to 400 ° C. at a rate of 20 ° C./min were measured. The results are shown in FIG.
[0024]
[Table 1]
Figure 0003781243
(Test Example 2)
Test by mixing 18 parts by weight of NiO powder with a specific surface area of 82 m 2 / g and 1 part by weight of ZSM-5 (SiO 2 / Al 2 O 3 molar ratio = 40) powder supporting 4% by weight of Ag. The adsorbent of Example 2 was prepared.
[0025]
Then, the amount of C 3 H 6 desorbed and the amount of NO were measured in the same manner as in Test Example 1, and the results are shown in FIG.
<Evaluation>
As is apparent from FIG. 2, the amount of C 3 H 6 and NO desorbed from the storage materials in Test Example 1 and Test Example 2 are C 3 H 6 / NO≈1 / 10 in molar ratio, ], The storage materials in Test Example 1 and Test Example 2 adsorb and desorb almost the same amount of HC and NO stoichiometrically.
[0026]
Therefore, in the following Example 1, an adsorbent having the same composition as in Test Example 1 is used.
Example 1
FIG. 1 shows an exhaust gas purification apparatus of this embodiment. This exhaust gas purification apparatus includes a three-way catalyst 1 disposed in an exhaust gas passage and an adsorbent 2 made of a mixture of an HC adsorbent and a NO adsorbent disposed in an exhaust gas passage upstream of the three-way catalyst 1. It is configured.
[0027]
The three-way catalyst 1 is composed of a cordierite honeycomb carrier base (volume 1.3 liters), a coating layer made of γ-alumina formed on the surface of the carrier base, and Pt and Rh supported on the coating layer. It is configured. The coating layer is formed in an amount of 120 g per liter of the carrier substrate, 1.5 g of Pt is carried per liter of the carrier substrate, and Rh is carried 0.3 g per liter of the carrier substrate.
[0028]
Adsorbent 2 is composed of a mixed powder of Fe 2 O 3 powder having a specific surface area of 64 m 2 / g and ZSM-5 (SiO 2 / Al 2 O 3 molar ratio = 2000), and Fe 2 O in weight ratio. 3 / ZSM-5 = 6/1. In this example, the above mixed powder is used by coating a honeycomb carrier substrate made of cordierite having a volume of 1 liter. The coating amount of the mixed powder is 350 g per liter of the carrier substrate, and is composed of 300 g of Fe 2 O 3 powder and 50 g of ZSM-5 powder.
[0029]
Using this exhaust gas purification device, the exhaust gas discharged from the three-way catalyst 1 was analyzed for 1 minute immediately after the engine was started, and the purification rates of HC and NO were measured respectively. The results are shown in FIG.
(Comparative Example 1)
An exhaust gas purification apparatus was formed in the same manner as in Example 1 except that the adsorbent 2 was composed only of ZSM-5 (SiO 2 / Al 2 O 3 molar ratio = 2000) powder. Then, the purification rates of HC and NO were measured in the same manner as in Example 1, and the results are shown in FIG.
[0030]
(Comparative Example 2)
An exhaust gas purification apparatus was formed in the same manner as in Example 1 except that the adsorbent 2 was not used and only the three-way catalyst 1 was used. Then, the purification rates of HC and NO were measured in the same manner as in Example 1, and the results are shown in FIG.
<Evaluation>
From FIG. 3, the exhaust gas purification apparatus of Comparative Example 1 shows higher HC purification performance than the exhaust gas purification apparatus of Comparative Example 2, and the effect of arranging the HC adsorbent upstream of the three-way catalyst appears. However, the exhaust gas purification apparatus of Example 1 shows a higher HC purification rate than the exhaust gas purification apparatus of Comparative Example 1, and this is clearly an effect of mixing NO adsorbent. Furthermore, in the exhaust gas purification apparatus of Example 1, it turns out that NO is also efficiently purified.
[0031]
(Practical example)
FIG. 4 shows a practical example of the exhaust gas purifying apparatus of the present invention. This exhaust gas purifying apparatus is housed in a container 3 which is made of a mixture of a three-way catalyst 1 arranged in an exhaust gas passage and a mixture of HC adsorbent and NO adsorbent and arranged in an exhaust gas passage upstream of the three-way catalyst 1. It is comprised from the adsorbent 2 made. The container 3 has a central passage 30 and an outer peripheral passage 31 formed on the outer periphery of the central passage 30, and the adsorbent 2 is disposed in the outer peripheral passage 31. A valve 32 that opens and closes the central passage 30 is disposed in the central passage 30.
[0032]
In this exhaust gas purifying device, the valve 32 closes the central passage 30 at a low temperature such as at the start or during cold. Therefore, the exhaust gas passes through the adsorbent 2 through the outer peripheral passage 31 and then passes through the three-way catalyst 1. At this time, HC and NO in the exhaust gas are adsorbed by the adsorbent 2, and clean exhaust gas is supplied to the three-way catalyst 1. Therefore, even if the temperature of the exhaust gas that passes through the three-way catalyst 1 is lower than the activation temperature of the catalyst, the discharge of harmful substances is suppressed.
[0033]
When the exhaust gas temperature becomes equal to or higher than a predetermined temperature, the valve 32 opens the central passage 30. Accordingly, the exhaust gas passes through the central passage 30 and the outer peripheral passage 31 and is supplied to the three-way catalyst 1 mainly through the central passage 30 having a small resistance. When the exhaust gas passes through the three-way catalyst 1, the harmful substance is purified by the three-way catalyst 1 because the temperature is already higher than the catalyst activation temperature. Here, when the temperature is raised, HC and NO adsorbed from the adsorbent 2 are desorbed, mixed with the exhaust gas that has passed through the central passage 30, and supplied to the three-way catalyst 1. However, the adsorbent 2 is configured such that the amount of HC desorbed from the HC adsorbent and the amount of NO desorbed from the NO adsorbent are approximately the same stoichiometrically. Accordingly, since the exhaust gas supplied to the three-way catalyst 1 is always near the stoichiometric state, the activity of the three-way catalyst 1 is always expressed to the maximum and shows high purification performance.
[0034]
【The invention's effect】
That is, according to the exhaust gas purification apparatus of the present invention, HC and NO can be efficiently purified from a low temperature to a high temperature, and the purification performance is excellent. Further, since the exhaust gas supplied to the three-way catalyst always has a stoichiometric atmosphere, the catalytic activity of the three-way catalyst is improved, and the HC purification rate and the NO x purification rate are improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of an exhaust gas purifying apparatus according to an embodiment of the present invention.
FIG. 2 is a graph showing NO occlusion / desorption amounts and HC occlusion / desorption amounts of adsorbents produced in test examples of the present invention.
FIG. 3 is a graph showing the HC purification rate and the NO purification rate of the exhaust gas purification apparatuses of Examples and Comparative Examples of the present invention.
FIG. 4 is an explanatory view showing a configuration of a practical example of the exhaust gas purifying apparatus of the present invention.
[Explanation of symbols]
1: Three-way catalyst 2: Adsorbent 3: Container

Claims (4)

排ガス流路に配置された三元触媒と、該三元触媒の上流側の該排ガス流路に配置され排ガス中の炭化水素を吸着するHC吸着材と、該三元触媒の上流側の該排ガス流路に配置され排ガス中の一酸化窒素を吸着するNO吸着材と、よりなる排ガス浄化装置であって、
該HC吸着材から脱離する炭化水素量と該NO吸着材から脱離する一酸化窒素量を化学量論的にほぼ同量とすることにより該三元触媒に流入する排ガス雰囲気をストイキ雰囲気とすることを特徴とする排ガス浄化装置。
A three-way catalyst disposed in the exhaust gas passage, an HC adsorbent disposed in the exhaust gas passage upstream of the three-way catalyst and adsorbing hydrocarbons in the exhaust gas, and the exhaust gas upstream of the three-way catalyst An exhaust gas purification device comprising a NO adsorbent disposed in a flow path and adsorbing nitric oxide in exhaust gas, and
By making the amount of hydrocarbon desorbed from the HC adsorbent and the amount of nitric oxide desorbed from the NO adsorbent stoichiometrically the same, the exhaust gas atmosphere flowing into the three-way catalyst is defined as a stoichiometric atmosphere. An exhaust gas purifying apparatus characterized by:
前記HC吸着材と前記NO吸着材は排ガス流路に沿って直列に配置されていることを特徴とする請求項1に記載の排ガス浄化装置。  The exhaust gas purification apparatus according to claim 1, wherein the HC adsorbent and the NO adsorbent are arranged in series along an exhaust gas flow path. 前記HC吸着材と前記NO吸着材は混合されて排ガス流路内に配置されていることを特徴とする請求項1に記載の排ガス浄化装置。  The exhaust gas purification apparatus according to claim 1, wherein the HC adsorbent and the NO adsorbent are mixed and arranged in the exhaust gas flow path. 前記HC吸着材と前記NO吸着材との混合比は、前記HC吸着材に吸着する炭化水素量と前記NO吸着材に吸着する一酸化窒素量が化学量論的にほぼ同量となる比率とされていることを特徴とする請求項3に記載の排ガス浄化装置。  The mixing ratio of the HC adsorbent and the NO adsorbent is such that the amount of hydrocarbon adsorbed on the HC adsorbent and the amount of nitric oxide adsorbed on the NO adsorbent are stoichiometrically approximately the same. The exhaust gas purifying apparatus according to claim 3, wherein the exhaust gas purifying apparatus is provided.
JP30893298A 1998-10-29 1998-10-29 Exhaust gas purification device Expired - Fee Related JP3781243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30893298A JP3781243B2 (en) 1998-10-29 1998-10-29 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30893298A JP3781243B2 (en) 1998-10-29 1998-10-29 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2000126555A JP2000126555A (en) 2000-05-09
JP3781243B2 true JP3781243B2 (en) 2006-05-31

Family

ID=17987016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30893298A Expired - Fee Related JP3781243B2 (en) 1998-10-29 1998-10-29 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP3781243B2 (en)

Also Published As

Publication number Publication date
JP2000126555A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
JP5826285B2 (en) NOx absorption catalyst
JP4130247B2 (en) Exhaust gas purification catalyst and use thereof
JP2001527189A (en) Catalytic converter for internal combustion engine powered vehicles
JP2000157870A (en) Catalyst for purifying exhaust gas from diesel engine
JP2002045701A (en) Catalyst for purifying exhaust gas
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
US20030039597A1 (en) Close coupled catalyst with a SOx trap and methods of making and using the same
JPH08224449A (en) Combined catalyst and hydrocarbon trap for preventing air pollution from occurring
JP3586890B2 (en) Exhaust gas purification device
JP2001289035A (en) Exhaust emission control method and system
JPH07213910A (en) Adsorbing catalyst for purifying exhaust gas
JP2009208045A (en) Exhaust gas cleaning catalyst
JP2006167540A (en) Hydrocarbon adsorption/combustion catalyst
JP2009167844A (en) Exhaust emission control catalyst device
JP3781243B2 (en) Exhaust gas purification device
JP4097362B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JPH07241471A (en) Production of adsorptive catalyst for purification of exhaust gas
JP2004176589A (en) Emission control device
KR20090031896A (en) Adsorbent for exhaust gas
JP3431507B2 (en) Exhaust gas purification catalyst
JP2002282697A (en) Catalyst for cleaning exhaust gas
JP3551364B2 (en) Nitrogen oxide adsorbent
JP2004322022A (en) Catalyst for cleaning exhaust gas
JPH11138002A (en) Catalyst for exhaust gas purification

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees