JP3780611B2 - High strength and high yield ratio hot dip galvanized steel sheet and its manufacturing method - Google Patents

High strength and high yield ratio hot dip galvanized steel sheet and its manufacturing method Download PDF

Info

Publication number
JP3780611B2
JP3780611B2 JP07960797A JP7960797A JP3780611B2 JP 3780611 B2 JP3780611 B2 JP 3780611B2 JP 07960797 A JP07960797 A JP 07960797A JP 7960797 A JP7960797 A JP 7960797A JP 3780611 B2 JP3780611 B2 JP 3780611B2
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
less
hot
yield ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07960797A
Other languages
Japanese (ja)
Other versions
JPH10273754A (en
Inventor
純一 小崎
淳一 稲垣
勝 鷺山
敬士 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP07960797A priority Critical patent/JP3780611B2/en
Publication of JPH10273754A publication Critical patent/JPH10273754A/en
Application granted granted Critical
Publication of JP3780611B2 publication Critical patent/JP3780611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高強度高降伏比型溶融亜鉛めっき鋼板およびその製造方法に関する。
【0002】
【従来の技術】
従来から、自動車の車体には、燃費向上と排気ガス低減の観点から車体の軽量化が要求されてきた。また、多くの場合、耐食性も要求されることから、自動車用部材の素材として高強度溶融亜鉛めっき鋼板が使用されてきた。
【0003】
一方、近年、自動車の衝突安全性が重視されるようになった。そのため、自動車の客室部分の構造部品については、単に高強度というだけでなく、衝突時の変形が少ない材料、すなわち高速変形量の小さい材料が要求されるようになった。材料の高速変形量は降伏点と関係があり、高速変形量を小さくするためには、材料の降伏点を高めればよいことが知られている(昭和48年自動車技術会春期学術講演会論文集,p.60 )。
【0004】
しかし、従来開発された高強度溶融亜鉛めっき鋼板、特に引張強度が60kg/mm2以上の高強度溶融亜鉛めっき鋼板は、鋼板組織がフェライト相+ マルテンサイト相あるいはフェライト相+ ベイナイト相等の複合組織であった。例えば、特公昭59-5649 号公報、特開平4-236741号公報、特公昭57-61819号公報、特公昭59-43975号公報、特開平3-94018 号公報、特開平5-125485号公報、特開平5-247586号公報、特開平6-93340 号公報等に開示される前記鋼板は、いずれも降伏比の低い、いわゆる高強度低降伏比型溶融亜鉛めっき鋼板であり、これまで高強度高降伏比型溶融亜鉛めっき鋼板が開発された例はほとんどない。
【0005】
従来、開発された高強度溶融亜鉛めっき鋼板が低降伏比型である理由として、比較的少ない添加元素で高強度が得られること、および降伏点が低い方がプレス成型時の加工が容易であることなど、鋼板製造面、使用面の利点を有する点が挙げられる。
【0006】
【発明が解決しようとする課題】
高降伏比型高強度溶融亜鉛めっき鋼板を製造するためには、鋼板組織をマルテンサイト相やベイナイト相のない、フェライト相およびパーライト相から成る非複合組織(以下、単に、非複合組織という)にすればよい。しかし、鋼板を必要な強度まで強化するには、固溶強化あるいは析出強化等を目的として多量の元素を添加する必要があるが、多量の元素の添加によって鋼板の焼入性が向上し、マルテンサイト相やベイナイト相が生成されて、安定して非複合組織を得ることが困難になるという問題点がある。
【0007】
十分小さな冷却速度で冷却すれば、鋼板の成分組成によらず非複合組織が得られるが、実際の連続ラインでは、設備上の制約や生産性の問題から、冷却速度を極端に小さくすることが困難である。
【0008】
本発明は、このような事情を考慮して、実際の連続ラインで冷却速度を極端に小さくしなくても、非複合組織を安定して得ることができる引張強度が45kg/mm2以上で降伏比が80%以上の高強度高降伏比型溶融亜鉛めっき鋼板およびその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために、鋼板成分および鋼板の製造方法の両面から検討を加え、現実的な鋼板成分および製造方法により、非複合組織の高強度高降伏比型溶融亜鉛めっき鋼板を安定して得られることを見いだした。
【0010】
前記課題を解決するための構成は次のとおりである。
(1)第一発明は、組成が重量%で、C:0.07〜0.25%、Mn:1.5〜2.5 %、Nb:0.10%以下、Ti:0.3%以下、Si:0.1%以下、Cr:0.1%以下、P:0.05%以下、Sol.Al:0.010〜0.100%、S:0.01%以下、N :0.01%以下を含有し、残部がFeおよび不可避的不純物からなり、鋼板組織がフェライト相およびパーライト相からなる冷延鋼板上に、溶融亜鉛めっき皮膜または合金化溶融亜鉛めっき皮膜を形成してなる、45kg/mm2以上の引張強度と80%以上の降伏比を有することを特徴とする高強度高降伏比型溶融亜鉛めっき鋼板である。
【0011】
(2)第二発明は、前記(1)の組成の鋼を、熱間圧延、酸洗、冷間圧延した後、連続溶融亜鉛めっきラインで焼鈍後、溶融亜鉛めっきを行って溶融亜鉛めっき鋼板を製造するに際して、750℃以上880℃以下の温度範囲で30sec以上90sec以下焼鈍した後、溶融亜鉛めっきを施す前または溶融亜鉛めっきを施した後のいずれか一方あるいは両方に、515℃〜600℃の温度域で15sec以上保持する第2焼鈍を行い、鋼板組織をフェライト相およびパーライト相からなる組織とすることを特徴とする高強度高降伏比型溶融亜鉛めっき鋼板の製造方法である。
【0012】
(作用)
以下に本発明を詳細に説明する。まず、本発明の鋼板成分の限定理由について述べる。
【0013】
C :0.07〜0.25%
C は、鋼の強度を確保するために必要不可欠な成分で、高強度を得るために0.07%を下限とする。しかし、C の過剰な添加は、溶接性および耐遅れ破壊性を劣化させるとともに、鋼板の焼入性が向上して、非複合組織を安定して得ることが困難になるため、上限を0.25%とする。
【0014】
Mn:1.5 〜2.5 %
Mnは、固溶強化、結晶粒細粒化強化により、鋼板の強度と靭性を向上させるために必要な成分である。しかし反面、オーステナイト相を安定化させ、ベイナイト相、マルテンサイト相といった変態相を生成して、鋼板組織を複合組織にする作用もある。本発明では、必要な強度と靭性を得るために下限を1.5 %とし、安定して非複合組織を得るために上限を2.5 %とする。
【0015】
Nb:0.10%以下
Nbは、炭化物を形成して組織を微細化し材質を向上させるため、目的とする強度に応じて添加する。また、冷却過程におけるオーステナイト相からフェライト相への変態を促進する効果もある。0.10%を超える量を添加しても前記効果が飽和するため、0.10%以下(無添加を含む)とする。
【0016】
Ti:0.3 %以下
Tiも、Nbと同様に炭化物を形成して組織を微細化し強度を向上させる効果があるため、目的とする強度に応じて添加する。また、冷却過程におけるオーステナイト相からフェライト相への変態を促進する効果もある。0.3 %を超える量を添加しても前記効果が飽和するため、0.3 %以下(無添加を含む)とする。
【0017】
Si:0.1 %以下
Siは、従来固溶強化元素として用いられており、鋼板の強化に有効であるが、めっき性を劣化させ、めっき皮膜の合金化を著しく遅延させるという欠点がある。本発明では、めっき性の劣化とめっき皮膜の合金化の遅延を防止するために、なるべく低減することとし、上限を0.1 %(無添加を含む)とする。
【0018】
Cr:0.1 %以下
Crは、Mnと同様にオーステナイト相を安定化させ非複合組織の生成を困難にする。また、めっきのぬれ性に対しても有害である。そこで本発明では、なるべく低減することとし、上限を0.1 %(無添加を含む)とする。
【0019】
P :0.05%以下
P は、加工性、めっき密着性およびめっき皮膜の合金化の点で低い方が望ましく、上限を0.05%とする。
【0020】
Sol.Al:0.010 〜0.100 %
Alは、鋼の脱酸を目的として添加される。所望の効果を得るために下限を0.010 %とし、0.100 %を超える量を添加してもこの効果が飽和するため、上限を0.100 %とする。
【0021】
S :0.01%以下
S は、加工性の面で低い方が望ましく、上限を0.01%とする。
【0022】
N:0.01%以下
N も加工性の面で低い方が望ましく、上限を0.01%とする。
【0023】
次に、本発明の鋼板の製造条件の限定理由について述べる。
焼鈍温度:750 ℃〜880 ℃(好適範囲:800 ℃〜880 ℃)
焼鈍は、冷間圧延組織とバンド組織を完全に解消し、均質な組織にして鋼板の加工性を向上させるためと鋼板の形状を良好にするために行う。
【0024】
本発明では、引張強さを45kg/mm2以上、降伏比を80% 以上とするために、鋼板組織が微細なフェライト相+パーライト相になっている必要がある。そのためには、焼鈍中は、フェライト+オーステナイトの二相組織(以下、α+ γの二相組織)になっている必要がある。これは、焼鈍中にフェライト結晶(以下、α結晶)界面にオーステナイト結晶(以下、γ結晶)が生成することによって、その後の冷却過程で、このγ結晶がα結晶に変態し、室温での鋼板組織が微細なα結晶となるためである。750 ℃未満では、γ結晶の生成が不十分になり、前記のα結晶粒の微細化により鋼板を強化するという作用が低下するので、下限を750 ℃とする。800 ℃以上では、前記の作用がより安定するので、下限を800 ℃とすることがより好ましい。また、880 ℃を超えると、結晶が粗大化し、強度が低下するため、上限を880 ℃とする。
【0025】
焼鈍時間:30〜90sec
前記したように、鋼板組織は、焼鈍中にα+ γの二相組織になっている必要があるが、焼鈍時間が30sec 未満では、γ結晶の生成が不十分になり、α結晶粒の微細化により鋼板を強化するという作用が低下する。また、また90sec を超えて焼鈍しても、γ変態は定常状態に達しているため、それ以上、γ変態が進行しない。したがって、下限を30sec 、上限を90sec とする。
【0026】
第2焼鈍温度:515 ℃〜600 ℃
鋼板組織を安定して非複合組織にするためには、焼鈍後の冷却速度はなるべく小さい方が良く、本発明者らの検討の結果では、冷却速度はできれば2 ℃/sec以下にすることが好ましい。しかし、ラインの設備上の制約や生産性を考えると、実際にこの冷却速度を得ることは困難である。しかし、本発明者らは、請求項1に記載した組成の鋼板に関しては、焼鈍後の冷却過程で、515 ℃〜600 ℃の温度域において一定時間以上保持する第2焼鈍を行うことにより、オーステナイト相のフェライト相への変態(以下、γ→α変態)を進行させて、冷却速度が大きい場合であっても、マルテンサイト相やベイナイト相の生成を防止することができることを見出した。
【0027】
すなわち、オーステナイト相(以下、γ相)をこの第2焼鈍中に完全にフェライト相(以下、α相)に変態させ、その後の冷却においてベイナイト相、マルテンサイト相などの第二相が生成しないようにすること、あるいは、焼鈍後の冷却過程でこれらの第二相が生成しても、第2焼鈍中に、前記の第二相をα相に変態させることができる。この保持温度が、515 ℃未満ではベイナイト相が生成する。また、600 ℃を超えるとγ→α変態が十分起こらないため、その後の冷却過程でマルテンサイト相、あるいはベイナイト相が生成する可能性がある。そのため、保持温度は、下限を515 ℃、上限を600 ℃とした。
【0028】
第2焼鈍時間:15sec 以上
第2焼鈍時間が15sec 未満では所望の前記効果が得られないため、保持時間の下限を15sec とした。
【0029】
【発明の実施の形態】
本発明の鋼板は、請求項1に記載の成分範囲に溶製した鋼を、熱間圧延、酸洗、冷間圧延して得た鋼板を、連続溶融亜鉛めっきラインを用いて焼鈍と溶融亜鉛めっきを行って製造する。鋼の溶製、熱間圧延、酸洗、冷間圧延方法や、請求項2に規定する焼鈍条件および第2焼鈍条件以外の溶融亜鉛めっきの条件や合金化条件等は特に限定されず、通常行われている方法でよい。
【0030】
第2焼鈍は、材質の点からいえば、めっき工程の前に行ってもよいし、めっき工程の後に行ってもよい。
【0031】
めっき皮膜を合金化したくない場合には、めっき工程の前に第2焼鈍を行う必要がある。この場合、設備上可能であれば、焼鈍炉に付随した冷却設備を利用してもよいが、焼鈍炉とめっき浴の間に専用の設備を設けてもよい。
【0032】
また、めっき皮膜を合金化して合金化溶融亜鉛めっき皮膜を形成する場合、第2焼鈍をめっき工程の後に行えば、めっき皮膜の合金化処理を兼ねることができる。もちろん、合金化溶融亜鉛めっきを行う場合も、第2焼鈍の後にめっきを行い、その後に合金化処理を行ってもよい。
【0033】
さらに、溶融亜鉛めっきラインで一旦コイルを巻き取った後、別の設備で第2焼鈍を行う方法も本発明に含まれる。
【0034】
図1(a)は、めっき工程の前で第2焼鈍を行う場合、図1(b)は、めっき工程の後で第2焼鈍を行う場合の熱サイクルのパターンの一例を示す。ただし、本発明の熱サイクルのパターンは、これらのパターンに限定されるものではない。
【0035】
【実施例】
本発明の実施例を以下に示す。実験室で真空溶解により表1に示す鋼(発明例:a 〜f 、比較例:g 〜h )を溶製し、鋳造して得られた鋳塊を板厚2.6mmに熱間圧延した。熱間圧延は、仕上げ温度を900 ℃とし、最終圧延後、650 ℃の炉に1h保持した。次いで、冷却後酸洗し、さらに冷間圧延して板厚1.0mm の鋼板を得た。
【0036】
【表1】

Figure 0003780611
【0037】
次いで、前記で得た鋼板に、実験室で焼鈍、冷却し、めっき浴温度465 ℃で片面当たり60g/m2の溶融亜鉛めっきを施した。その際、めっき前あるいはめっき後に第2焼鈍工程を設け、焼鈍後あるいは第2焼鈍後の冷却は、全て冷却速度が5 〜10℃/secの空冷で行った。
【0038】
焼鈍条件、第2 焼鈍条件を表2に示す。表2の第2焼鈍パターンの欄の符号は図1の(a)〜(c)に示される第2焼鈍工程とめっき工程の順序、あるいは第2焼鈍工程の有無を示している。
1:図1(a)のめっき工程の前に第2焼鈍を行うパターン
2:図1(b)のめっき工程の後に第2焼鈍を行うパターン
なし:図1(c)の第2焼鈍がないパターン
【0039】
前記で得ためっき鋼板の材質(TS、El、YP)を、JIS5号引張試験片によって測定し、また、降伏比YR(=YP/TS)を求めた。得られた結果を表2に示す。なお、表2の皮膜GIは亜鉛めっき皮膜、GAは合金化溶融亜鉛めっき皮膜である。
【0040】
【表2】
Figure 0003780611
【0041】
表2の実験No.1、2 、7 〜10、12〜15は本発明例である。いずれも引張強度(TS)が45kg/mm2以上で降伏比(YR)が80%以上になっている。
【0042】
実験No.3〜6 、11、16、17は比較例である。いずれも降伏比(YR)が80%未満である。
【0043】
No.3とNo.11 は第2焼鈍を行わなかったため、冷却過程において複合組織となり、降伏比が低くなった。No.4は第2焼鈍温度が高すぎたため、γ→α変態が起こらず、残ったγ相がその後の冷却中にマルテンサイト相になり、降伏比が低くなった。No.5は逆に第2焼鈍温度が低すぎたため、生成したベイナイト相がフェライト相に変態せず、降伏比が低くなった。
【0044】
No.6も降伏比が低くなった。これは、焼鈍温度が900 ℃と高かったため、焼鈍中にγ相の体積率が多くなりすぎて、第2焼鈍を行っても、γ→α変態が完了しなかったものと推測される。
【0045】
No.16 は供試材のMn濃度が高かったため、複合組織化し降伏比が低くなった。No.17 は供試材のCr濃度が高かったため、複合組織化し降伏比が低くなった。
【0046】
【発明の効果】
以上に示したように、本発明によって、引張強度(TS)が45kg/mm2以上で降伏比が80%以上の高強度高降伏比型溶融亜鉛めっき鋼板を得ることができる。本発明の鋼板は、高速変形量が少ないので、衝突安全性の求められる自動車の客室部材等の用途に使用することができる。
【図面の簡単な説明】
【図1】実施例の焼鈍、第2焼鈍およびめっき工程の熱サイクルのパターンを示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength, high-yield ratio hot-dip galvanized steel sheet and a method for producing the same.
[0002]
[Prior art]
Conventionally, automobile bodies have been required to be lighter from the viewpoint of improving fuel consumption and reducing exhaust gas. Moreover, since corrosion resistance is also requested | required in many cases, the high intensity | strength hot-dip galvanized steel plate has been used as a raw material of the member for motor vehicles.
[0003]
On the other hand, in recent years, the impact safety of automobiles has become important. For this reason, the structural parts in the passenger compartment of automobiles are required not only to have high strength but also to have a material with little deformation at the time of collision, that is, a material with a small amount of high-speed deformation. The amount of high-speed deformation of a material is related to the yield point, and it is known that the yield point of a material should be increased to reduce the amount of high-speed deformation (Proceedings of the Spring Conference of the Society of Automotive Engineers of Japan, Showa 48) , p.60).
[0004]
However, conventionally developed high-strength hot-dip galvanized steel sheets, especially high-strength hot-dip galvanized steel sheets with a tensile strength of 60 kg / mm 2 or more, have a composite structure such as ferrite phase + martensite phase or ferrite phase + bainite phase. there were. For example, JP-B-59-5649, JP-A-4-36741, JP-B-57-61819, JP-B-59-43975, JP-A-3-94018, JP-A-5-125485, The steel sheets disclosed in JP-A-5-47586, JP-A-6-93340, etc. are so-called high-strength, low-yield ratio hot-dip galvanized steel sheets with a low yield ratio. There are few examples of yield ratio hot dip galvanized steel sheets developed.
[0005]
Conventionally developed high-strength hot-dip galvanized steel sheet has a low yield ratio. The reason is that high strength can be obtained with a relatively small amount of additive elements, and the lower the yield point, the easier the processing during press molding. The point which has the advantage of a steel plate manufacture surface and a use surface etc. is mentioned.
[0006]
[Problems to be solved by the invention]
In order to produce a high yield ratio type high strength hot dip galvanized steel sheet, the steel sheet structure is changed to a non-composite structure (hereinafter simply referred to as a non-composite structure) composed of a ferrite phase and a pearlite phase without a martensite phase or a bainite phase. do it. However, in order to strengthen the steel sheet to the required strength, it is necessary to add a large amount of elements for the purpose of solid solution strengthening or precipitation strengthening. However, the addition of a large amount of elements improves the hardenability of the steel sheet, and martens There is a problem that a site phase or a bainite phase is generated and it is difficult to stably obtain a non-composite structure.
[0007]
If it is cooled at a sufficiently low cooling rate, a non-composite structure can be obtained regardless of the composition of the steel sheet. However, in an actual continuous line, the cooling rate can be extremely reduced due to equipment limitations and productivity problems. Have difficulty.
[0008]
In consideration of such circumstances, the present invention provides a yield strength with a tensile strength of 45 kg / mm 2 or more that can stably obtain a non-composite structure without extremely reducing the cooling rate in an actual continuous line. An object is to provide a high-strength, high-yield ratio hot-dip galvanized steel sheet having a ratio of 80% or more and a method for producing the same.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have studied from both aspects of the steel plate component and the steel plate production method, and by means of a realistic steel plate component and production method, high strength and high yield ratio type melting of the non-composite structure It has been found that a galvanized steel sheet can be obtained stably.
[0010]
A configuration for solving the above-described problem is as follows.
(1) In the first invention, the composition is% by weight, C: 0.07 to 0.25%, Mn: 1.5 to 2.5%, Nb: 0.10% or less, Ti: 0.3% or less, Si: 0.1% or less, Cr: 0.1% P: 0.05% or less, Sol.Al: 0.010 to 0.100%, S: 0.01% or less, N: 0.01% or less, the balance being Fe and inevitable impurities , steel sheet structure is ferrite phase and pearlite phase A high-strength and high-strength material having a tensile strength of 45 kg / mm 2 or more and a yield ratio of 80% or more formed by forming a hot-dip galvanized film or an alloyed hot-dip galvanized film on a cold-rolled steel sheet made of It is a yield ratio hot-dip galvanized steel sheet.
[0011]
(2) The second invention is a hot dip galvanized steel sheet obtained by hot rolling, pickling, and cold rolling the steel having the composition of (1), followed by annealing in a continuous hot dip galvanizing line, followed by hot dip galvanizing. In the manufacturing process, after annealing at a temperature range of 750 ° C. to 880 ° C. for 30 seconds to 90 seconds, either before or after hot dip galvanization or after hot dip galvanization, either 515 ° C. to 600 ° C. There line a second annealing for holding at the temperature range 15sec or more, a high strength and high yield ratio-type production method of galvanized steel sheet, wherein a steel sheet structure and texture comprising ferrite phase and a pearlite phase.
[0012]
(Function)
The present invention is described in detail below. First, the reasons for limiting the steel plate components of the present invention will be described.
[0013]
C: 0.07 to 0.25%
C is an indispensable component for securing the strength of steel, and 0.07% is made the lower limit in order to obtain high strength. However, excessive addition of C deteriorates weldability and delayed fracture resistance and improves the hardenability of the steel sheet, making it difficult to stably obtain a non-composite structure. And
[0014]
Mn: 1.5-2.5%
Mn is a component necessary for improving the strength and toughness of the steel sheet by solid solution strengthening and grain refinement strengthening. However, it also has the effect of stabilizing the austenite phase and generating a transformation phase such as a bainite phase and a martensite phase to make the steel sheet structure a composite structure. In the present invention, the lower limit is set to 1.5% for obtaining the required strength and toughness, and the upper limit is set to 2.5% for obtaining a non-composite structure stably.
[0015]
Nb: 0.10% or less
Nb is added according to the intended strength in order to form carbides and refine the structure to improve the material. It also has the effect of promoting transformation from the austenite phase to the ferrite phase during the cooling process. Even if an amount exceeding 0.10% is added, the effect is saturated, so the content is made 0.10% or less (including no addition).
[0016]
Ti: 0.3% or less
Ti, like Nb, has the effect of forming carbides to refine the structure and improve the strength, so it is added according to the intended strength. It also has the effect of promoting transformation from the austenite phase to the ferrite phase during the cooling process. Even if an amount exceeding 0.3% is added, the above effect is saturated, so the content should be 0.3% or less (including no addition).
[0017]
Si: 0.1% or less
Si has been conventionally used as a solid solution strengthening element and is effective for strengthening steel sheets, but has the disadvantages that it degrades the plating properties and significantly delays the alloying of the plating film. In the present invention, in order to prevent the deterioration of the plating property and the delay of alloying of the plating film, the upper limit is made 0.1% (including no addition).
[0018]
Cr: 0.1% or less
Cr, like Mn, stabilizes the austenite phase and makes it difficult to form a non-composite structure. It is also detrimental to the wettability of the plating. Therefore, in the present invention, the amount is reduced as much as possible, and the upper limit is set to 0.1% (including no addition).
[0019]
P: 0.05% or less
P is preferably as low as possible in terms of workability, plating adhesion and alloying of the plating film, and the upper limit is made 0.05%.
[0020]
Sol.Al: 0.010 to 0.100%
Al is added for the purpose of deoxidizing steel. In order to obtain a desired effect, the lower limit is set to 0.010%, and even if an amount exceeding 0.100% is added, this effect is saturated, so the upper limit is set to 0.100%.
[0021]
S: 0.01% or less
S is desirably lower in terms of workability, and the upper limit is made 0.01%.
[0022]
N: 0.01% or less
N is also preferably low in terms of workability, and the upper limit is set to 0.01%.
[0023]
Next, the reasons for limiting the manufacturing conditions of the steel sheet of the present invention will be described.
Annealing temperature: 750 ° C to 880 ° C (preferable range: 800 ° C to 880 ° C)
Annealing is performed in order to completely eliminate the cold rolled structure and the band structure, to obtain a homogeneous structure and improve the workability of the steel sheet, and to improve the shape of the steel sheet.
[0024]
In the present invention, in order to obtain a tensile strength of 45 kg / mm 2 or more and a yield ratio of 80% or more, the steel sheet structure needs to be a fine ferrite phase + pearlite phase. For this purpose, it is necessary to have a two-phase structure of ferrite and austenite (hereinafter referred to as a two-phase structure of α + γ) during annealing. This is because the austenite crystal (hereinafter referred to as γ crystal) is formed at the interface of the ferrite crystal (hereinafter referred to as α crystal) during annealing, and this γ crystal is transformed into α crystal during the subsequent cooling process. This is because the structure becomes a fine α crystal. If the temperature is lower than 750 ° C., the formation of γ crystals becomes insufficient, and the effect of strengthening the steel sheet due to the refinement of the α crystal grains is reduced, so the lower limit is set to 750 ° C. At 800 ° C. or higher, the above action is more stable, so the lower limit is more preferably 800 ° C. On the other hand, if the temperature exceeds 880 ° C, the crystal becomes coarse and the strength decreases, so the upper limit is set to 880 ° C.
[0025]
Annealing time: 30 ~ 90sec
As described above, the steel sheet structure needs to have a two-phase structure of α + γ during annealing. However, if the annealing time is less than 30 seconds, the formation of γ crystals becomes insufficient, and the fineness of α crystal grains is reduced. The effect | action of strengthening a steel plate falls by forming. Further, even if annealing is performed for more than 90 seconds, the γ transformation has reached a steady state, and therefore the γ transformation does not proceed any further. Therefore, the lower limit is 30 sec and the upper limit is 90 sec.
[0026]
Second annealing temperature: 515 ° C-600 ° C
In order to make the steel sheet structure stable and non-composite structure, the cooling rate after annealing should be as small as possible, and as a result of our study, the cooling rate should be 2 ° C / sec or less if possible. preferable. However, it is difficult to actually obtain this cooling rate considering the restrictions on the equipment of the line and productivity. However, for the steel sheet having the composition described in claim 1, the present inventors perform a second annealing which is held for a certain time or more in a temperature range of 515 ° C. to 600 ° C. in the cooling process after annealing, thereby austenite. It was found that even when the cooling rate is high by proceeding the transformation of the phase to the ferrite phase (hereinafter referred to as γ → α transformation), the formation of martensite phase and bainite phase can be prevented.
[0027]
That is, the austenite phase (hereinafter referred to as γ phase) is completely transformed into the ferrite phase (hereinafter referred to as α phase) during the second annealing, and the subsequent phases such as bainite phase and martensite phase are not generated in the subsequent cooling. Even if these second phases are generated in the cooling process after annealing, the second phase can be transformed into an α phase during the second annealing. When this holding temperature is less than 515 ° C., a bainite phase is formed. Further, if the temperature exceeds 600 ° C., the γ → α transformation does not occur sufficiently, so that a martensite phase or a bainite phase may be formed in the subsequent cooling process. Therefore, the lower limit of the holding temperature was 515 ° C and the upper limit was 600 ° C.
[0028]
Second annealing time: 15 seconds or more. If the second annealing time is less than 15 seconds, the desired effect cannot be obtained. Therefore, the lower limit of the holding time was set to 15 seconds.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
The steel sheet of the present invention is a steel sheet obtained by hot rolling, pickling and cold rolling the steel melted in the component range according to claim 1, and annealing and hot dip zinc using a continuous hot dip galvanizing line. Manufacture by plating. Steel melting, hot rolling, pickling, cold rolling methods, hot dip galvanizing conditions and alloying conditions other than the annealing conditions and second annealing conditions defined in claim 2 are not particularly limited, and are usually The method used is acceptable.
[0030]
In terms of the material, the second annealing may be performed before the plating step or after the plating step.
[0031]
When it is not desired to alloy the plating film, it is necessary to perform the second annealing before the plating step. In this case, if it is possible in terms of equipment, cooling equipment associated with the annealing furnace may be used, but a dedicated equipment may be provided between the annealing furnace and the plating bath.
[0032]
Moreover, when forming an alloying hot-dip galvanization film by alloying a plating film, if a 2nd annealing is performed after a plating process, it can serve as the alloying process of a plating film. Of course, also when alloying hot dip galvanization is performed, plating may be performed after the second annealing, and then alloying treatment may be performed.
[0033]
Further, the present invention also includes a method in which the coil is once wound on the hot dip galvanizing line and then subjected to the second annealing with another facility.
[0034]
FIG. 1A shows an example of a thermal cycle pattern when the second annealing is performed before the plating step, and FIG. 1B shows an example of a thermal cycle pattern when the second annealing is performed after the plating step. However, the thermal cycle pattern of the present invention is not limited to these patterns.
[0035]
【Example】
Examples of the present invention are shown below. Steels shown in Table 1 (invention examples: a to f, comparative examples: g to h) were melted by vacuum melting in a laboratory, and the ingot obtained by casting was hot-rolled to a thickness of 2.6 mm. In the hot rolling, the finishing temperature was set to 900 ° C, and after the final rolling, it was held in a furnace at 650 ° C for 1 hour. Then, after cooling, pickling and cold rolling were performed to obtain a steel plate having a thickness of 1.0 mm.
[0036]
[Table 1]
Figure 0003780611
[0037]
Next, the steel sheet obtained above was annealed and cooled in a laboratory, and was subjected to hot dip galvanizing at a plating bath temperature of 465 ° C. at a rate of 60 g / m 2 per side. At that time, a second annealing step was provided before or after plating, and cooling after annealing or after the second annealing was all performed by air cooling at a cooling rate of 5 to 10 ° C./sec.
[0038]
Table 2 shows the annealing conditions and the second annealing conditions. The symbols in the column of the second annealing pattern in Table 2 indicate the order of the second annealing step and the plating step shown in FIGS. 1A to 1C, or the presence or absence of the second annealing step.
1: Pattern 2 for performing the second annealing before the plating step of FIG. 1 (a): No pattern for performing the second annealing after the plating step of FIG. 1 (b): No second annealing of FIG. 1 (c) Pattern [0039]
The material (TS, El, YP) of the plated steel sheet obtained above was measured with a JIS No. 5 tensile test piece, and the yield ratio YR (= YP / TS) was determined. The obtained results are shown in Table 2. In Table 2, the film GI is a galvanized film, and GA is an alloyed hot dip galvanized film.
[0040]
[Table 2]
Figure 0003780611
[0041]
Experiments Nos. 1, 2, 7 to 10, and 12 to 15 in Table 2 are examples of the present invention. In both cases, the tensile strength (TS) is 45 kg / mm 2 or more and the yield ratio (YR) is 80% or more.
[0042]
Experiments Nos. 3-6, 11, 16, and 17 are comparative examples. In both cases, the yield ratio (YR) is less than 80%.
[0043]
Since No. 3 and No. 11 did not perform the second annealing, they became a composite structure in the cooling process, and the yield ratio was low. In No. 4, since the second annealing temperature was too high, the γ → α transformation did not occur, and the remaining γ phase became a martensite phase during the subsequent cooling, resulting in a low yield ratio. In contrast, in No. 5, the second annealing temperature was too low, so the produced bainite phase did not transform into a ferrite phase, and the yield ratio was low.
[0044]
No. 6 also had a low yield ratio. This is presumably because the annealing temperature was as high as 900 ° C., so that the volume fraction of the γ phase increased during annealing, and the γ → α transformation was not completed even when the second annealing was performed.
[0045]
No. 16 had a high Mn concentration in the specimen, resulting in a composite structure and a low yield ratio. No. 17 had a high Cr concentration in the specimen, resulting in a composite structure and a low yield ratio.
[0046]
【The invention's effect】
As described above, according to the present invention, a high-strength, high-yield ratio hot-dip galvanized steel sheet having a tensile strength (TS) of 45 kg / mm 2 or more and a yield ratio of 80% or more can be obtained. Since the steel plate of the present invention has a small amount of high-speed deformation, it can be used for applications such as automobile cabin members that require crash safety.
[Brief description of the drawings]
FIG. 1 is a diagram showing a thermal cycle pattern of annealing, second annealing, and plating steps in an example.

Claims (2)

組成が重量%で、C:0.07〜0.25%、Mn:1.5〜2.5 %、Nb:0.10%以下、Ti:0.3%以下、Si:0.1%以下、Cr:0.1%以下、P :0.05%以下、Sol.Al:0.010〜0.100%、S :0.01%以下、N :0.01%以下を含有し、残部がFeおよび不可避的不純物からなり、鋼板組織がフェライト相およびパーライト相からなる冷延鋼板上に、溶融亜鉛めっき皮膜または合金化溶融亜鉛めっき皮膜を形成してなる、45kg/mm2以上の引張強度と80%以上の降伏比を有することを特徴とする高強度高降伏比型溶融亜鉛めっき鋼板。Composition:% by weight, C: 0.07 to 0.25%, Mn: 1.5 to 2.5%, Nb: 0.10% or less, Ti: 0.3% or less, Si: 0.1% or less, Cr: 0.1% or less, P: 0.05% or less, Sol.Al: 0.010 to 0.100%, S: 0.01% or less, N: 0.01% or less, the balance is composed of Fe and inevitable impurities, and the steel sheet structure is composed of a ferrite phase and a pearlite phase , A high-strength, high-yield ratio hot-dip galvanized steel sheet having a tensile strength of 45 kg / mm 2 or more and a yield ratio of 80% or more formed by forming a galvanized film or an alloyed galvanized film. 請求項1記載の組成の鋼を、熱間圧延、酸洗、冷間圧延した後、連続溶融亜鉛めっきラインで焼鈍後、溶融亜鉛めっきを行って溶融亜鉛めっき鋼板を製造するに際して、750℃以上880℃以下の温度範囲で30sec以上90sec以下焼鈍した後、溶融亜鉛めっきを施す前または溶融亜鉛めっきを施した後のいずれか一方あるいは両方に、515℃〜600℃の温度域で15sec以上保持する第2焼鈍を行い、鋼板組織をフェライト相およびパーライト相からなる組織とすることを特徴とする高強度高降伏比型溶融亜鉛めっき鋼板の製造方法。The steel having the composition according to claim 1 is hot rolled, pickled, cold rolled, annealed in a continuous hot dip galvanizing line, and then hot dip galvanized to produce a hot dip galvanized steel sheet. After annealing at a temperature range of 880 ° C or lower for 30 seconds or more and 90 seconds or less, hold at least 15 seconds in the temperature range of 515 ° C to 600 ° C either before or after hot-dip galvanization or after hot-dip galvanization. There line a second annealing, a high strength and high yield ratio-type production method of galvanized steel sheet, wherein a steel sheet structure and texture comprising ferrite phase and a pearlite phase.
JP07960797A 1997-03-31 1997-03-31 High strength and high yield ratio hot dip galvanized steel sheet and its manufacturing method Expired - Fee Related JP3780611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07960797A JP3780611B2 (en) 1997-03-31 1997-03-31 High strength and high yield ratio hot dip galvanized steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07960797A JP3780611B2 (en) 1997-03-31 1997-03-31 High strength and high yield ratio hot dip galvanized steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH10273754A JPH10273754A (en) 1998-10-13
JP3780611B2 true JP3780611B2 (en) 2006-05-31

Family

ID=13694716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07960797A Expired - Fee Related JP3780611B2 (en) 1997-03-31 1997-03-31 High strength and high yield ratio hot dip galvanized steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3780611B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109814B (en) * 2014-08-08 2016-05-04 鞍钢蒂森克虏伯汽车钢有限公司 One has flanging property cold-rolled galvanized duplex steel plate and manufacture method
US20190078172A1 (en) 2016-03-11 2019-03-14 Jfe Steel Corporation High-strength thin steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JPH10273754A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
JP5290245B2 (en) Composite structure steel plate and method of manufacturing the same
JP4445365B2 (en) Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
CN111433380B (en) High-strength galvanized steel sheet and method for producing same
KR101264574B1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
EP1731626B1 (en) High-rigidity high-strength thin steel sheet and method for producing same
CN111936651A (en) High-strength galvanized steel sheet, high-strength member, and method for producing same
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
JP4000943B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP2019044269A (en) High intensity cold rolled thin steel sheet
CN113316656B (en) High-strength hot-dip galvanized steel sheet and method for producing same
CN112689684B (en) Cold rolled and coated steel sheet and method for manufacturing the same
CN113840930A (en) Cold rolled and coated steel sheet and method for manufacturing the same
KR20180114920A (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP2011080126A (en) Hot-dip galvannealed steel sheet and method for manufacturing the same
CN115151673B (en) Steel sheet, member, and method for producing same
CN115210398B (en) Steel sheet, member, and method for producing same
JP3780611B2 (en) High strength and high yield ratio hot dip galvanized steel sheet and its manufacturing method
JP4826694B2 (en) Method for improving fatigue resistance of thin steel sheet
JP2004211140A (en) Hot-dip galvanized steel sheet and manufacturing method therefor
JP2001011565A (en) High strength steel sheet excellent in impact energy absorbability and its production
JP3125397B2 (en) Manufacturing method of high tensile alloyed hot-dip galvanized steel sheet with excellent stretch flangeability
EP4182488A1 (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof
JP3376590B2 (en) Method for producing high tensile alloyed hot-dip galvanized steel sheet with excellent stretch flangeability
KR100978734B1 (en) Dual Phase Steel Sheet And Method For Manufacturing The Same
JP3969351B2 (en) High-tensile cold-rolled steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees