JP3779612B2 - Electrical measuring device - Google Patents

Electrical measuring device Download PDF

Info

Publication number
JP3779612B2
JP3779612B2 JP2001393465A JP2001393465A JP3779612B2 JP 3779612 B2 JP3779612 B2 JP 3779612B2 JP 2001393465 A JP2001393465 A JP 2001393465A JP 2001393465 A JP2001393465 A JP 2001393465A JP 3779612 B2 JP3779612 B2 JP 3779612B2
Authority
JP
Japan
Prior art keywords
resistor
sample
voltage
circuit
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001393465A
Other languages
Japanese (ja)
Other versions
JP2003194867A (en
Inventor
良信 樽谷
喜康 石丸
裕紀 若菜
圭一 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
Fujitsu Ltd
Hitachi Ltd
Original Assignee
International Superconductivity Technology Center
Fujitsu Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, Fujitsu Ltd, Hitachi Ltd filed Critical International Superconductivity Technology Center
Priority to JP2001393465A priority Critical patent/JP3779612B2/en
Publication of JP2003194867A publication Critical patent/JP2003194867A/en
Application granted granted Critical
Publication of JP3779612B2 publication Critical patent/JP3779612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、広く一般に電気計測の分野に関わり、外界からの雑音によって特性が影響を受けやすい超電導素子や超電導回路等の被測定試料に対して、雑音の影響を排除して、試料の電気特性を正確に計測するための電気測定装置に関する。
【0002】
【従来の技術】
従来の電気回路素子の基本特性、すなわち電流−電圧特性を測定するための構成を図2に示した。電気回路素子としての試料24に対して直列に抵抗21を接続し、この抵抗と付加的に直列に設けた抵抗22を介して電源23から試料24に電流を流入させる。この抵抗21の両端に接続した第1の電圧プローブ25から試料24に流れる電流を計測し、試料24の両端に接続した第2の電圧プローブ26から試料24で発生する電圧を計測する。
【0003】
通常、これらの電圧プローブには増幅器が用いられる。アナログ測定の場合は、増幅された電圧信号をオシロスコープ等で表示する。デジタル測定の場合は、増幅された電圧信号をアナログーデジタル変換器に通してデジタルデータに変換し、計算機に取り込んでデータ処理を施した上で、試料24の電流−電圧特性等を得る。
【0004】
試料24が超電導回路素子あるいは超電導回路の場合の測定も同様であり、超電導回路素子あるいは超電導回路の出力端子に接続した電圧プローブによって出力信号電圧を計測する。通常、超電導回路素子あるいは超電導回路の場合の測定でも電圧プローブには増幅器が用いられる。アナログ測定の場合は、増幅された電圧信号をオシロスコープ等で表示する。デジタル測定の場合は、増幅された電圧信号をアナログーデジタル変換器にとおしてデジタルデータに変換し、計算機に取り込んでデータ処理を施した上で、回路素子あるいは回路の動作特性等を得る。
【0005】
【発明が解決しようとする課題】
従来の超電導回路素子あるいは超電導回路等の計測方法でデジタルデータを得ようとする場合、以下に述べる問題を有し、超電導回路素子あるいは超電導回路等の本来の特性を得ることが困難であった。例えば、図2に示される構成で、試料24を複数の超電導接合を直列に接続したものとして、この試料24のデジタルデータを採取した場合、本来の電流−電圧特性とならない。
【0006】
このような電流−電圧特性の例を図3(A)に示した。このデータの得られた試料24をアナログ測定により増幅された電圧信号をオシロスコープで表示した例を図3(B)に示した。図3(B)のデータの横軸、縦軸の範囲は図3(A)のそれよりは小さいが、対応する範囲で両者を対比して明らかなように、図3(A)では零電圧電流が低下し、戻り電流が増大していて、本来の臨界電流分布より分布幅が増大していることがわかる。すなわち、図3(A)では低電圧側での電流ステップが低めになっている。また個別の超電導接合の電流−電圧特性に対応したヒステリシス、すなわち電圧を上昇するときの電流値と減少するときの電流値に差が生じる現象がほとんど表れていない。
【0007】
この理由はアナログ測定器と比較してデジタルデータ処理系の雑音レベルが高く、この雑音が電圧検出プローブを介して試料に加わるためである。超電導素子の超電導電流はレベルが非常に低いので、雑音に敏感であり、零電圧電流は低下し、戻り電流は増大する。とくに素子の臨界電流が低いほど超電導電流の変化が顕著になる。
【0008】
デジタルデータ処理系の雑音は回路駆動クロック信号周波数等高い周波数で顕著になる。一方、超電導素子特性等の計測はこれより十分低い周波数で実行される。したがって、電圧検出プローブとアナログーデジタル変換器の間にローパスフィルタを挿入すれば、デジタルデータ処理系から電圧検出プローブを介して試料に戻る雑音は低減できるが、雑音の低周波成分の影響は残る。
【0009】
超電導回路の場合もデジタル測定を実施した場合、雑音の影響によって、本来動作可能な回路が動作不能になったり、動作可能であっても、動作可能な回路パラメータ領域が低下する等の問題を生じる。この理由はデジタルデータ処理系の雑音が回路に混入されることによって、回路を構成する超電導接合の実効的な超電導電流が変化するからである。このために動作可能なバイアス領域が狭められる。場合によっては雑音によって回路の特定のループに磁束がトラップされる。このために、超電導回路は本来の動作を実行できなくなる場合が起こり得る。
【0010】
一方、測定データをデジタルデータに変換して取り込むことは、データの保存、処理、集計等の点でアナログデータと比較してきわめて有効であり、かつ欠くべからざる処理であるため、超電導素子あるいは超電導回路に対しても、測定データをデジタルデータに変換して取り込めるようにすることが強く望まれる。
【0011】
そこで本発明の目的は、超電導素子や超電導回路のように雑音に敏感で、かつ雑音によって本来の特性が損なわれる試料に対して、雑音の影響を十分に排除して試料本来の特性を測定し得る電気測定装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明においては被測定試料に直接電圧プローブを接続することを避けて、被測定試料に1個の抵抗を直列に接続するとともに、この直列に接続された被測定試料と抵抗よりなる回路に1個の抵抗を並列に接続し、この直並列回路に2個以上の抵抗を直列に接続して、被測定試料に必要な電流を供給するものとした。そして、被測定試料の電流信号を前記直並列回路の抵抗の1つの両端に表れる電圧から得るものとし、被測定試料の電圧信号を前記2個以上の直列抵抗の1つの両端に表れる電圧から得るものとした。
【0013】
さらに、前記直並列回路の2つの抵抗の抵抗値の大きさについてみると、両端から電圧が検出される抵抗の抵抗値の方が、他の抵抗のそれより小さいものとした。
【0014】
【発明の実施の形態】
図1は本発明の基本的な構成概念を説明する回路図である。被測定試料24は計測端子17,18の間に接続される。被測定試料24には抵抗11が直列に接続されるとともに、被測定試料24と抵抗11の直列回路に抵抗12が接続される。抵抗11には電圧プローブ26が接続される。被測定試料24と抵抗11の直列回路に抵抗12が接続された直並列回路に抵抗13,14の直列回路を介して電源23が接続される。抵抗13には電圧プローブ25が接続される。ここで、抵抗11および抵抗12の抵抗値をR11,R12とすると、R11<R12である。さらに、抵抗11の抵抗値R11は被測定試料24が抵抗を持つ場合にはこの抵抗値より小さいものとするのが良い。
【0015】
図1に示す構成の回路によれば、電圧プローブ26から試料24に対してノイズが流入しようとしても、そのノイズは、まず、抵抗11により減衰させられる。さらに、抵抗11の両端に現れるノイズ電圧は試料24と抵抗12とに分流する形で試料24に影響を与えることとなるから、試料24への影響は低減される。電圧プローブ25から試料24に対して及ぼされるノイズについて見ると、抵抗13の両端に現れるノイズ電圧は試料24と抵抗12とに分流する形で試料24に影響を与えることとなるから、試料24への影響は、やはり、低減される。勿論、計測感度は必要であるので、抵抗11の抵抗値R11は小さければ良いと言うものでないことは言うまでもない。これらの抵抗値は、試料24の特性あるいは電圧プローブの特性に対応しやすいように可変抵抗とされるのが良い。
【0016】
本発明による計測の対象の被測定試料は超電導接合自体、複数個の超電導接合が接続された試料、あるいは超電導回路を含むものであることは勿論、半導体装置のように動作電流が小さいものも対象として有効である。超電導回路を被測定試料とする場合、この超電導回路は磁束量子を信号の単位とする超電導回路とするものに対しても有効である。
【0017】
超電導素子あるいは回路の特性を計測する場合、該被測定試料を液体窒素温度、すなわち77K以下の低温環境に置くことは当然であるが、上記抵抗11−14も低温環境に置くことが望ましい。また、電圧等を検出するプローブは電圧増幅回路とし、電圧等を検出するプローブに加えて、アナログ信号をデジタル信号に変換する回路、および検出した信号から被測定試料の電気特性を導く機能を有することとする。
【0018】
(実施例1)
超電導素子の基本特性を測定する試料の例として、超電導素子を図6に示すように、超電導接合を100個余り直列に接続した構成とした。図6(A)は平面図、(B)は(A)のA−A位置での断面図、(C)は(B)の一部の拡大図、(D)は等価回路図である。超電導接合はイットリウム・バリウム銅酸化物薄膜を上部電極75および下部電極72とするランプエッジ型で、接合の障壁層74はスロープを形成した下部電極膜の端部表面に、イオンビームを照射することによって形成した表面損傷層とした。基板76および電極間の層間絶縁膜73にはそれぞれランタン・ストロンチウム・アルミニウム・タンタル酸化物の単結晶および薄膜を用いた。超電導接合の幅は5ミクロンとした。等価回路図において71で示すのが超電導接合である。
【0019】
図4は実施例1の電気測定装置の全体構成を示す図である。図1と同じ参照符号を付したものは同一物または等価なものである。試料24は、図6で説明したように、複数の超電導接合71が直列接続されたものであり、接続端子17,18間に接続される。この実施例では、電圧プローブ25および26が電圧増幅器311,ローパスフイルタ312および電圧増幅器312,ローパスフイルタ322がカスケードに設けられたものとした。各ローパスフイルタ321および322の出力はA/D変換器とバッファメモリよりなるディジタル化回路33に導入されて計算機34により必要な計算が行われる。
【0020】
図1を参照しながら説明したように、試料24に直列に第1の抵抗11が接続され、試料24と抵抗11の直列回路に並列に第2の抵抗12が接続された回路となっている。さらに、この直並列回路に直列に第3の抵抗13が接続されている。ここで、第1抵抗11の抵抗値R11と第2の抵抗12の抵抗値R12とはR12がR11の2倍となるようにした。また、抵抗値R11は超電導接合71が常伝導状態になったときの抵抗値の1/5程度とした。
【0021】
試料24に直列に接続された第1の抵抗11および第3の抵抗13の両端に、それぞれ、電圧プローブ312および311を接続した。各電圧プローブは電圧増幅器とし、ローパスフィルタ322および321を介してディジタル化回路33のアナログ・デジタル変換器に検出信号を入力した。電圧プローブ312からの電源電流の取り込みは0.2Hzとし、デジタルデータの取り込み時間は5秒とした。電圧プローブ311からのデジタルデータの取り込みも同じタイミングとした。それぞれの電圧プローブから取り込んだデジタルデータは50000点とした。取り込んだデジタルデータはバッファメモリに一時的に蓄え、計算機34に転送し、収集した。
【0022】
計算機34に収集したデジタル信号から、試料24に繋がる抵抗11,12,および13の抵抗値、超電導接合71に繋がる配線の接続抵抗等を用いて、試料24の電流−電圧特性を計算した。計算によって得られた電流−電圧特性を図5に示した。
【0023】
図5と図3(B)とを対比して明らかなように、本実施例では、アナログオシロスコープによって測定した電流−電圧特性と一致し、超電導素子を構成する各超電導接合71の臨界電流が不連続な電流ステップとして観測された。すなわち各電流ステップの頂点が個別の超電導接合の臨界電流を与えるとともに、ヒステリシス特性が十分に反映されたものとなっていることが分かる。したがって、電流ステップの最大値を個別の超電導接合の臨界電流値として、デジタルデータで定量的に読み取ることができる。
【0024】
一般に、デジタル装置ではアナログ装置と比較して雑音レベルが高く、雑音によって本来の特性が損なわれる試料には、直接接続して計測することが困難である。超電導接合の超電導電流は外部雑音に敏感であり、見かけ上の臨界電流が低下してしまう。しかしながら本発明に係わる電気測定装置によって、超電導素子の本来の電流−電圧特性が得られたのは以下の理由によるものである。
【0025】
第1に試料24に直接電圧プローブ25,26を接続しないことである。このために、デジタル回路装置から電圧プローブを介して超電導素子に流入する雑音を回避することができる。しかしながら、試料24に対して直列に接続した抵抗11に電圧プローブ26を接続した場合でも、デジタル回路装置33からの雑音は試料24にも一部流入する。
【0026】
これに対して、第2に試料24と直列に接続した抵抗11の抵抗値R11を超電導接合71が常伝導状態になったときの抵抗値より十分小さくしたことである。このために、電圧プローブ26の両端での抵抗11は、超電導接合71と抵抗12の直列回路の抵抗より小さくなる。雑音の低周波成分は抵抗値に反比例して分配されるから、電圧プローブ26に挟まれた抵抗11に流れる雑音成分に対して、試料24に流れる雑音割合は相対的に十分小さくなる。
【0027】
このことを、もう少し具体的に見ると以下のようである。図4における抵抗11、抵抗12、抵抗13、抵抗14および試料24の抵抗値をそれぞれR11、R12、R13、R14およびRJJ(V)とし、抵抗11の両端に表れる電圧を読み取る電圧増幅器312から流入する雑音電流をdI1、抵抗13の両端に表れる電圧を読み取る電圧増幅器311から流入する雑音電流をdI2とする。ここで、超電導接合71の抵抗値は電圧に依存するので、試料24の抵抗値はRJJ(V)と表記した。
【0028】
電圧増幅器312から流入する雑音電流によって試料24に流れる量dI1JJは
dI1JJ=dI1×R11/{R11+R12+RJJ(V)}
となる。ここでは、抵抗13、抵抗14および電源23を経由して流入する電流は無視した。すなわち、本実施例では、電圧増幅器312から流入する雑音電流がR11/{R11+R12+RJJ(V)}の割合で低減されて試料24に流れる。
【0029】
また、電圧増幅器311から流入する雑音電流によって試料24に流れる量dI2JJは、R13がR12より十分小さければ、
dI2JJ=dI2×R13/{R11+R13+RJJ(V)}
となる。ここでも、抵抗14および電源23を経由して流入する電流は無視した。すなわち、本実施例では、電圧増幅器311から流入する雑音電流がR13/{R11+R13+RJJ(V)}の割合で低減できる。
【0030】
(実施例2)
図7は本発明の電気測定回路を用いて超電導量子干渉素子の特性を測定した実施例を示す。図1、図4と同じ参照符号を付したものは同一物または等価な機能を果たすものである。本実施例では、試料24は超電導量子干渉素子80である。超電導量子干渉素子80は2個の超電導接合81が2個のインダクタ82を介して並列に接続されて閉ループを構成する。インダクタ82には電流注入線85が結合しており、電流注入線85から、制御電流がループに注入される。2個のインダクタ82の接続点86にバイアス電流源83が接続されている。超電導量子干渉素子80の特性を評価するために、電圧出力端となる接続点86と接地端87を電気測定装置の計測端子17,18の間に接続した。本実施例では、超電導磁束干渉素子80だけでなく、2点鎖線100で囲って示す領域にある電気測定装置の抵抗11,12,13も低温用器内に入れ、液体ヘリウム温度、すなわち4.2Kに冷却した。超電導接合81の臨界電流は1マイクロアンペア程度とした。
【0031】
超電導磁束干渉素子80に対して一定のバイアス電流をバイアス電流源83から供給し、電流注入線85から、ループに注入される制御電流に対して電圧端子86から発生する電圧変化が素子としての特性である。測定結果を図9に示す。図8の実線で示す出力電圧−制御電流特性91が本発明による計測装置の測定結果である。図8には、比較のために、超電導磁束干渉素子80に直接電圧プローブを接続して計測した結果を破線92で示した。両者を比較して分かるように、実線91で示す出力電圧−制御電流特性が、破線92のそれより高い電圧振幅を示した。
【0032】
本実施例でも、実施例1と同様に、電圧プローブからの雑音の影響を受けにくい構成となっているから、電圧プローブからの雑音の影響を回避することができる。
【0033】
(実施例3)
図1、図4に示される構成を基礎に多数の被測定試料を一度に計測する実施例を図9に示す。図1、図4と同じ参照符号を付したものは同一物または等価な機能を果たすものである。ここでは、試料24は、図6で説明したような超電導接合71を100個余り直列に接続したものを9個並列に接続したものである。また、これら超電導接合列は一端を共通電極とした。なお、図では、9個並列を表示できないので、3個で代表させて示した。
【0034】
各試料24の超電導接合列の基本特性を同時に測定し、複数個のアナログーデジタル変換器からデジタルデータとして採取し、計算機34に取り込んだ。これらのデジタルデータから得られた電流−電圧特性は入力雑音レベルの十分低いオシロスコープで測定した電流−電圧特性と一致することがわかった。
【0035】
(実施例4)
本実施例は、磁束量子回路の出力電圧特性を測定する例である。本実施例により特性が評価される磁束量子回路と、この回路の測定を行う測定装置を図10に示した。110,111および112よりなる回路は測定対象となる磁束量子回路である。110は信号源30の信号を磁束量子へ変換する変換器、111は変換器110から加えられた磁束量子信号が伝播するとともに、入力信号を2回に1回出力側に通し、周波数を1/2に低減するトグルフリップフロップよりなる伝送回路、112は伝送回路111から加えられた磁束量子信号を電圧信号へ変換する変換回路よりなる出力回路112である。これらの回路は、113で代表して示す超電導接合、114で代表して示すインダクタおよび115で代表して示す定電流バイアス源を主要な構成要素とする。
【0036】
図10の回路110−112からなる磁束量子回路は、信号源30の信号を一旦磁束量子信号へ変換した後、この磁束量子信号を再び電圧信号として出力する回路である。これらの回路におけるは超電導接合はニオブを電極として作製した。
【0037】
図10に示す回路の電圧出力端となる接続点117と接地点とに本発明にかかわる計測装置の計測端子17,18を接続した。抵抗および電圧プローブの構成は図1に示すそれと同じであるが、この例では、電源23に代えて超電導接合に対する定電流源120を接続した。抵抗11の値は磁束量子回路の出力端抵抗の数分の1の値とした。
【0038】
磁束量子回路の出力を本発明に係る電気測定回路に接続して、電圧プローブからの信号をアナログーデジタル変換器でデジタル化し、計算機に入力して回路の直流バイアス電流に対する安定なバイアス範囲を測定した。この結果によれば、最適なバイアス電流に対するコンフルエンス・バッファとしての動作可能なバイアス電流範囲はプラス・マイナス25%であった。この値は磁束量子回路の出力端子に直接電圧プローブを接続した場合の、動作可能なバイアス電流範囲であるプラス・マイナス18%に比較して、十分広い値であった。
【0039】
(実施例5)
図11に本実施例の構成を示す。図1と対比して容易に分かるように、本実施例は電圧プローブ26の接続位置を試料に直列の抵抗から、この直列回路に並列の抵抗に電圧プローブ26を接続した。ここで、抵抗11および12の参照符号を取り替えて付してあるように、電圧プローブ26が接続される抵抗11は、抵抗12より小さいものとされる。
【0040】
(その他)
以上述べたごとく超電導素子、超電導回路のみに有効であるのみでなく、本発明に係る電気測定回路は単一電子素子等微小電流で動作する素子に対しても広く一般に適用できる。
【0041】
【発明の効果】
測定装置からの雑音が被測定試料に流入するのを防止でき、被測定試料本来のデータを得ることができる。したがって、被測定試料の測定値をデジタルデータとして取り込む場合でも、試料本来のデータを得ることができ、測定データの処理、任意の表示を容易にできる。
【図面の簡単な説明】
【図1】本発明の基本的な構成概念を説明する回路図。
【図2】従来用いられている電気測定回路の構成図。
【図3】(A)は従来用いられている電気測定回路を用いて超電導接合列の電流−電圧特性をデジタル測定した結果を示し、(B)は同じ試料でアナログ測定により増幅された電圧信号をオシロスコープで表示した例を示す図。
【図4】実施例1に係る超電導接合列をデジタル計測する電気測定回路の全体構成を示す図。
【図5】図4の構成で収集したデジタル信号から導出した超電導接合列の電流−電圧特性測定結果を示す図。
【図6】(A)は基本特性を測定する試料の例としての超電導素子の平面図、(B)は(A)のA−A位置での断面図、(C)は(B)の一部の拡大図、(D)は等価回路図。
【図7】本発明の電気測定回路を用いて超電導量子干渉素子の特性を測定した実施例の全体構成を示す図。
【図8】図7に示した計測装置の測定結果と従来装置の測定結果とを対比して示す図。
【図9】多数の被測定試料を一度に計測する実施例を示す図。
【図10】磁束量子回路の出力電圧特性を測定する実施例例の全体構成を示す図。
【図11】図1に示す基本的な構成概念の変形例を説明する回路図。
【符号の説明】
11,12,13,14:抵抗、17,18:端子、23:電源、24:試料、25,26:電圧プローブ、30:信号源、311,312:電圧増幅器、321,322:ローパスフイルタ、33:デジタル化回路、34:計算機、71:超電導接合、72:下部電極、73:層間絶縁膜、74:障壁層、75:上部電極、76:基板、80:超電導磁束量子干渉素子、81:超電導接合、82:インダクタ、83:バイアス電流源、85:電流注入線、86:電圧端子、87:接地点、91:本発明に係る電気測定回路による超電導磁束量子干渉素子の出力電圧−注入電流特性、92:従来方式の電気測定回路による超電導磁束量子干渉素子の出力電圧−注入電流特性、100:低温用器、110:電圧信号から磁束量子への変換器、111:トグルフリップフロップを含む伝送回路、112:磁束量子から電圧信号への変換回路よりなる出力回路、113:超電導接合、114:インダクタ、115:定電流バイアス源。
[0001]
BACKGROUND OF THE INVENTION
The present invention generally relates to the field of electrical measurement, and eliminates the influence of noise on a sample to be measured such as a superconducting element or a superconducting circuit whose characteristics are easily affected by noise from the outside world. The present invention relates to an electrical measuring device for accurately measuring the current.
[0002]
[Prior art]
FIG. 2 shows a configuration for measuring the basic characteristics of a conventional electric circuit element, that is, current-voltage characteristics. A resistor 21 is connected in series to the sample 24 as an electric circuit element, and a current is caused to flow from the power source 23 to the sample 24 via a resistor 22 additionally provided in series with the resistor. The current flowing from the first voltage probe 25 connected to both ends of the resistor 21 to the sample 24 is measured, and the voltage generated in the sample 24 from the second voltage probe 26 connected to both ends of the sample 24 is measured.
[0003]
Usually, amplifiers are used for these voltage probes. In the case of analog measurement, the amplified voltage signal is displayed on an oscilloscope or the like. In the case of digital measurement, the amplified voltage signal is converted into digital data through an analog-to-digital converter, taken into a computer, subjected to data processing, and the current-voltage characteristics of the sample 24 are obtained.
[0004]
The measurement is the same when the sample 24 is a superconducting circuit element or a superconducting circuit, and the output signal voltage is measured by a voltage probe connected to the output terminal of the superconducting circuit element or superconducting circuit. Usually, an amplifier is used as a voltage probe for measurement in the case of a superconducting circuit element or a superconducting circuit. In the case of analog measurement, the amplified voltage signal is displayed on an oscilloscope or the like. In the case of digital measurement, the amplified voltage signal is converted into digital data through an analog-to-digital converter, taken into a computer and subjected to data processing, and circuit element or circuit operating characteristics are obtained.
[0005]
[Problems to be solved by the invention]
When trying to obtain digital data by a conventional measuring method such as a superconducting circuit element or a superconducting circuit, it has the following problems and it is difficult to obtain the original characteristics of the superconducting circuit element or the superconducting circuit. For example, in the configuration shown in FIG. 2, when the sample 24 is obtained by connecting a plurality of superconducting junctions in series and digital data of the sample 24 is collected, the original current-voltage characteristics are not obtained.
[0006]
An example of such current-voltage characteristics is shown in FIG. FIG. 3B shows an example in which a voltage signal obtained by analog measurement of the sample 24 from which this data is obtained is displayed on an oscilloscope. The range of the horizontal axis and the vertical axis of the data in FIG. 3B is smaller than that in FIG. 3A, but as shown in FIG. It can be seen that the current decreases, the return current increases, and the distribution width increases from the original critical current distribution. That is, in FIG. 3A, the current step on the low voltage side is lower. In addition, hysteresis corresponding to the current-voltage characteristics of individual superconducting junctions, that is, a phenomenon in which there is almost no difference between the current value when the voltage is increased and the current value when the voltage is decreased, does not appear.
[0007]
This is because the noise level of the digital data processing system is higher than that of the analog measuring instrument, and this noise is applied to the sample via the voltage detection probe. Since the superconducting current of the superconducting element is very low, it is sensitive to noise, the zero voltage current decreases and the return current increases. In particular, the lower the critical current of the device, the more significant the change in the superconducting current.
[0008]
Noise in the digital data processing system becomes noticeable at high frequencies such as the circuit drive clock signal frequency. On the other hand, the measurement of the superconducting element characteristics and the like is performed at a frequency sufficiently lower than this. Therefore, if a low-pass filter is inserted between the voltage detection probe and the analog-digital converter, noise returning from the digital data processing system to the sample via the voltage detection probe can be reduced, but the influence of the low frequency component of the noise remains. .
[0009]
Even in the case of a superconducting circuit, when digital measurement is performed, problems such as the inability to operate an originally operable circuit or a decrease in the operable circuit parameter area due to the influence of noise occur. . This is because the effective superconducting current of the superconducting junction constituting the circuit changes due to the noise of the digital data processing system being mixed into the circuit. For this reason, the operable bias region is narrowed. In some cases, noise traps magnetic flux in specific loops of the circuit. For this reason, the superconducting circuit may fail to perform its original operation.
[0010]
On the other hand, converting measured data into digital data is extremely effective compared to analog data in terms of data storage, processing, aggregation, etc., and is an indispensable process. It is highly desirable for circuits to convert measurement data into digital data so that it can be captured.
[0011]
Accordingly, the object of the present invention is to measure the original characteristics of a sample by sufficiently eliminating the influence of noise on a sample that is sensitive to noise and whose original characteristics are damaged by noise, such as a superconducting element or a superconducting circuit. It is to provide an electrical measuring device to obtain.
[0012]
[Means for Solving the Problems]
In the present invention, avoiding connecting a voltage probe directly to the sample to be measured, one resistor is connected in series to the sample to be measured, and one circuit is connected to the sample to be measured and the resistor connected in series. Two resistors were connected in parallel, and two or more resistors were connected in series to this series-parallel circuit to supply the necessary current to the sample to be measured. Then, the current signal of the sample to be measured is obtained from the voltage appearing at one end of the resistor of the series-parallel circuit, and the voltage signal of the sample to be measured is obtained from the voltage appearing at one end of the two or more series resistors. It was supposed to be.
[0013]
Further, regarding the magnitudes of the resistance values of the two resistors of the series-parallel circuit, the resistance value of the resistor whose voltage is detected from both ends is assumed to be smaller than that of the other resistors.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a circuit diagram illustrating the basic configuration concept of the present invention. The sample 24 to be measured is connected between the measurement terminals 17 and 18. A resistor 11 is connected in series to the sample 24 to be measured, and a resistor 12 is connected to a series circuit of the sample 24 to be measured and the resistor 11. A voltage probe 26 is connected to the resistor 11. A power source 23 is connected to a series-parallel circuit in which a resistor 12 is connected to a series circuit of a sample 24 to be measured and a resistor 11 via a series circuit of resistors 13 and 14. A voltage probe 25 is connected to the resistor 13. Here, when the resistance values of the resistor 11 and the resistor 12 are R11 and R12, R11 <R12. Furthermore, the resistance value R11 of the resistor 11 is preferably smaller than this resistance value when the sample 24 to be measured has a resistance.
[0015]
According to the circuit having the configuration shown in FIG. 1, even if noise tries to flow into the sample 24 from the voltage probe 26, the noise is first attenuated by the resistor 11. Furthermore, since the noise voltage appearing at both ends of the resistor 11 affects the sample 24 in a form of being shunted to the sample 24 and the resistor 12, the influence on the sample 24 is reduced. Looking at the noise applied to the sample 24 from the voltage probe 25, the noise voltage appearing at both ends of the resistor 13 affects the sample 24 in a form of being shunted between the sample 24 and the resistor 12. The effect of is still reduced. Of course, since measurement sensitivity is required, it goes without saying that the resistance value R11 of the resistor 11 is not necessarily small. These resistance values are preferably variable resistors so as to easily correspond to the characteristics of the sample 24 or the characteristics of the voltage probe.
[0016]
The sample to be measured according to the present invention is effective for a superconducting junction itself, a sample to which a plurality of superconducting junctions are connected, or a superconducting circuit, as well as a semiconductor device having a small operating current. It is. When a superconducting circuit is used as a sample to be measured, this superconducting circuit is also effective for a superconducting circuit having magnetic flux quanta as a signal unit.
[0017]
When measuring the characteristics of a superconducting element or circuit, the sample to be measured is naturally placed in a liquid nitrogen temperature, that is, in a low temperature environment of 77 K or less, but the resistor 11-14 is also preferably placed in a low temperature environment. The probe for detecting voltage and the like is a voltage amplification circuit, and in addition to the probe for detecting voltage and the like, it has a circuit for converting an analog signal into a digital signal and a function for deriving the electrical characteristics of the sample to be measured from the detected signal. I will do it.
[0018]
Example 1
As an example of a sample for measuring the basic characteristics of the superconducting element, as shown in FIG. 6, a superconducting element was connected in series with about 100 superconducting junctions. 6A is a plan view, FIG. 6B is a cross-sectional view taken along the line AA of FIG. 6A, FIG. 6C is an enlarged view of a part of FIG. 6D, and FIG. The superconducting junction is a lamp edge type in which the yttrium barium copper oxide thin film is the upper electrode 75 and the lower electrode 72, and the barrier layer 74 of the junction irradiates the end surface of the lower electrode film on which the slope is formed with an ion beam. The surface damage layer formed by A single crystal and a thin film of lanthanum, strontium, aluminum, and tantalum oxide were used for the substrate 76 and the interlayer insulating film 73 between the electrodes, respectively. The width of the superconducting junction was 5 microns. In the equivalent circuit diagram, reference numeral 71 denotes a superconducting junction.
[0019]
FIG. 4 is a diagram illustrating an overall configuration of the electricity measuring apparatus according to the first embodiment. Those given the same reference numerals as in FIG. 1 are the same or equivalent. As described with reference to FIG. 6, the sample 24 includes a plurality of superconducting junctions 71 connected in series, and is connected between the connection terminals 17 and 18. In this embodiment, the voltage probes 25 and 26 are provided with a voltage amplifier 311, a low-pass filter 312, a voltage amplifier 312 and a low-pass filter 322 in a cascade. The outputs of the low-pass filters 321 and 322 are introduced into a digitizing circuit 33 comprising an A / D converter and a buffer memory, and necessary calculations are performed by a computer 34.
[0020]
As described with reference to FIG. 1, the first resistor 11 is connected in series to the sample 24, and the second resistor 12 is connected in parallel to the series circuit of the sample 24 and the resistor 11. . Further, a third resistor 13 is connected in series with this series-parallel circuit. Here, the resistance value R11 of the first resistor 11 and the resistance value R12 of the second resistor 12 are set such that R12 is twice R11. Further, the resistance value R11 is set to about 1/5 of the resistance value when the superconducting junction 71 is in a normal conduction state.
[0021]
Voltage probes 312 and 311 were connected to both ends of the first resistor 11 and the third resistor 13 connected in series to the sample 24, respectively. Each voltage probe is a voltage amplifier, and a detection signal is input to the analog / digital converter of the digitizing circuit 33 through low-pass filters 322 and 321. The supply of power source current from the voltage probe 312 was 0.2 Hz, and the acquisition time of digital data was 5 seconds. Acquisition of digital data from the voltage probe 311 was also performed at the same timing. The number of digital data acquired from each voltage probe was 50,000. The acquired digital data was temporarily stored in the buffer memory, transferred to the computer 34, and collected.
[0022]
The current-voltage characteristics of the sample 24 were calculated from the digital signals collected by the computer 34 using the resistance values of the resistors 11, 12, and 13 connected to the sample 24, the connection resistance of the wiring connected to the superconducting junction 71, and the like. The current-voltage characteristics obtained by the calculation are shown in FIG.
[0023]
As is clear by comparing FIG. 5 and FIG. 3 (B), in this embodiment, the critical current of each superconducting junction 71 constituting the superconducting element is inconsistent with the current-voltage characteristic measured by an analog oscilloscope. Observed as a continuous current step. That is, it can be seen that the apex of each current step gives the critical current of the individual superconducting junction and the hysteresis characteristics are sufficiently reflected. Therefore, the maximum value of the current step can be quantitatively read with digital data as the critical current value of the individual superconducting junction.
[0024]
Generally, a digital device has a higher noise level than an analog device, and it is difficult to directly connect and measure a sample whose original characteristics are impaired by noise. The superconducting current in the superconducting junction is sensitive to external noise, which reduces the apparent critical current. However, the original current-voltage characteristic of the superconducting element was obtained by the electrical measuring apparatus according to the present invention for the following reason.
[0025]
First, the voltage probes 25 and 26 are not directly connected to the sample 24. For this reason, noise flowing into the superconducting element from the digital circuit device via the voltage probe can be avoided. However, even when the voltage probe 26 is connected to the resistor 11 connected in series to the sample 24, noise from the digital circuit device 33 partially flows into the sample 24.
[0026]
On the other hand, secondly, the resistance value R11 of the resistor 11 connected in series with the sample 24 is made sufficiently smaller than the resistance value when the superconducting junction 71 is in a normal conduction state. For this reason, the resistance 11 at both ends of the voltage probe 26 is smaller than the resistance of the series circuit of the superconducting junction 71 and the resistor 12. Since the low frequency component of the noise is distributed in inverse proportion to the resistance value, the ratio of the noise flowing through the sample 24 is relatively small with respect to the noise component flowing through the resistor 11 sandwiched between the voltage probes 26.
[0027]
This can be seen in more detail as follows. The resistance values of the resistor 11, resistor 12, resistor 13, resistor 14 and sample 24 in FIG. 4 are R11, R12, R13, R14 and RJJ (V), respectively, and flows from the voltage amplifier 312 which reads the voltage appearing at both ends of the resistor 11. Let dI1 be the noise current to be generated, and let dI2 be the noise current flowing from the voltage amplifier 311 that reads the voltage appearing across the resistor 13. Here, since the resistance value of the superconducting junction 71 depends on the voltage, the resistance value of the sample 24 is expressed as RJJ (V).
[0028]
The amount dI1JJ flowing to the sample 24 due to the noise current flowing from the voltage amplifier 312 is dI1JJ = dI1 × R11 / {R11 + R12 + RJJ (V)}
It becomes. Here, the current flowing through the resistor 13, the resistor 14 and the power source 23 is ignored. That is, in this embodiment, the noise current flowing from the voltage amplifier 312 is reduced at a ratio of R11 / {R11 + R12 + RJJ (V)} and flows to the sample 24.
[0029]
Also, if the amount dI2JJ flowing through the sample 24 due to the noise current flowing from the voltage amplifier 311 is sufficiently smaller than R12,
dI2JJ = dI2 × R13 / {R11 + R13 + RJJ (V)}
It becomes. Again, the current flowing through resistor 14 and power supply 23 was ignored. That is, in this embodiment, the noise current flowing from the voltage amplifier 311 can be reduced at a ratio of R13 / {R11 + R13 + RJJ (V)}.
[0030]
(Example 2)
FIG. 7 shows an embodiment in which the characteristics of a superconducting quantum interference device are measured using the electrical measurement circuit of the present invention. The same reference numerals as those in FIGS. 1 and 4 denote the same or equivalent functions. In this embodiment, the sample 24 is a superconducting quantum interference device 80. In the superconducting quantum interference device 80, two superconducting junctions 81 are connected in parallel via two inductors 82 to form a closed loop. A current injection line 85 is coupled to the inductor 82, and a control current is injected from the current injection line 85 into the loop. A bias current source 83 is connected to a connection point 86 of the two inductors 82. In order to evaluate the characteristics of the superconducting quantum interference device 80, a connection point 86 serving as a voltage output terminal and a ground terminal 87 were connected between the measurement terminals 17 and 18 of the electrical measuring device. In this embodiment, not only the superconducting magnetic flux interference element 80 but also the resistors 11, 12, and 13 of the electrical measuring device in the region surrounded by the two-dot chain line 100 are placed in the low-temperature vessel, and the liquid helium temperature, that is, 4. Cooled to 2K. The critical current of the superconducting junction 81 was about 1 microampere.
[0031]
A constant bias current is supplied from the bias current source 83 to the superconducting magnetic flux interference element 80, and the voltage change generated from the voltage terminal 86 with respect to the control current injected into the loop from the current injection line 85 is a characteristic of the element. It is. The measurement results are shown in FIG. An output voltage-control current characteristic 91 indicated by a solid line in FIG. 8 is a measurement result of the measuring apparatus according to the present invention. In FIG. 8, for comparison, the result of measurement by connecting a voltage probe directly to the superconducting magnetic flux interference element 80 is indicated by a broken line 92. As can be seen by comparing the two, the output voltage-control current characteristic indicated by the solid line 91 showed a voltage amplitude higher than that of the broken line 92.
[0032]
In the present embodiment, similarly to the first embodiment, since it is configured not to be affected by noise from the voltage probe, it is possible to avoid the influence of noise from the voltage probe.
[0033]
Example 3
FIG. 9 shows an embodiment in which a large number of samples to be measured are measured at a time based on the configuration shown in FIGS. The same reference numerals as those in FIGS. 1 and 4 denote the same or equivalent functions. Here, the sample 24 is a sample in which about 100 superconducting junctions 71 as described with reference to FIG. 6 are connected in series and 9 are connected in parallel. These superconducting junction rows have one end as a common electrode. In the figure, since 9 parallels cannot be displayed, 3 are shown as representatives.
[0034]
The basic characteristics of the superconducting junction array of each sample 24 were measured at the same time, collected as digital data from a plurality of analog-digital converters, and taken into the computer 34. It was found that the current-voltage characteristics obtained from these digital data coincided with the current-voltage characteristics measured with an oscilloscope having a sufficiently low input noise level.
[0035]
(Example 4)
This example is an example of measuring the output voltage characteristics of a magnetic flux quantum circuit. FIG. 10 shows a magnetic flux quantum circuit whose characteristics are evaluated according to this embodiment and a measuring apparatus for measuring this circuit. A circuit composed of 110, 111 and 112 is a magnetic flux quantum circuit to be measured. 110 is a converter that converts the signal from the signal source 30 into flux quanta, 111 is a magnetic flux quantum signal applied from the converter 110, and an input signal is passed to the output side once every two times. A transmission circuit 112 composed of a toggle flip-flop that is reduced to 2 is an output circuit 112 composed of a conversion circuit that converts a magnetic flux quantum signal applied from the transmission circuit 111 into a voltage signal. These circuits mainly include a superconducting junction represented by 113, an inductor represented by 114, and a constant current bias source represented by 115.
[0036]
The magnetic flux quantum circuit including the circuits 110 to 112 in FIG. 10 is a circuit that once converts the signal of the signal source 30 into a magnetic flux quantum signal, and then outputs the magnetic flux quantum signal again as a voltage signal. In these circuits, the superconducting junction was fabricated using niobium as an electrode.
[0037]
The measurement terminals 17 and 18 of the measurement apparatus according to the present invention were connected to a connection point 117 serving as a voltage output terminal of the circuit shown in FIG. 10 and a ground point. The configuration of the resistor and voltage probe is the same as that shown in FIG. 1, but in this example, a constant current source 120 for the superconducting junction is connected instead of the power source 23. The value of the resistor 11 was set to a fraction of the output terminal resistance of the magnetic flux quantum circuit.
[0038]
Connect the output of the flux quantum circuit to the electrical measurement circuit according to the present invention, digitize the signal from the voltage probe with an analog-to-digital converter, and input it to the computer to measure the stable bias range for the DC bias current of the circuit did. According to this result, the range of the bias current that can operate as a confluence buffer with respect to the optimum bias current is plus or minus 25%. This value was sufficiently wide compared to plus / minus 18%, which is the operable bias current range when a voltage probe is directly connected to the output terminal of the magnetic flux quantum circuit.
[0039]
(Example 5)
FIG. 11 shows the configuration of this embodiment. As can be easily seen in comparison with FIG. 1, in this embodiment, the connection position of the voltage probe 26 is connected from a resistor in series with the sample, and the voltage probe 26 is connected to a resistor in parallel with this series circuit. Here, the resistor 11 to which the voltage probe 26 is connected is assumed to be smaller than the resistor 12 as shown by replacing reference numerals of the resistors 11 and 12.
[0040]
(Other)
As described above, not only is it effective only for superconducting elements and superconducting circuits, but the electrical measuring circuit according to the present invention can be widely applied to elements operating with a small current such as single electronic elements.
[0041]
【The invention's effect】
Noise from the measuring apparatus can be prevented from flowing into the sample to be measured, and original data of the sample to be measured can be obtained. Therefore, even when the measured value of the sample to be measured is captured as digital data, the original data of the sample can be obtained, and the processing of the measurement data and arbitrary display can be facilitated.
[Brief description of the drawings]
FIG. 1 is a circuit diagram illustrating a basic configuration concept of the present invention.
FIG. 2 is a configuration diagram of a conventionally used electrical measurement circuit.
FIG. 3A shows the result of digital measurement of current-voltage characteristics of a superconducting junction array using a conventional electrical measurement circuit, and FIG. 3B shows a voltage signal amplified by analog measurement on the same sample. The figure which shows the example which displayed with the oscilloscope.
FIG. 4 is a diagram illustrating an overall configuration of an electrical measurement circuit that digitally measures a superconducting junction array according to the first embodiment.
5 is a diagram showing a measurement result of current-voltage characteristics of a superconducting junction array derived from a digital signal collected with the configuration of FIG. 4;
6A is a plan view of a superconducting element as an example of a sample for measuring basic characteristics, FIG. 6B is a cross-sectional view taken along the line AA in FIG. 6A, and FIG. (D) is an equivalent circuit diagram.
FIG. 7 is a diagram showing an overall configuration of an example in which the characteristics of a superconducting quantum interference device are measured using the electrical measurement circuit of the present invention.
FIG. 8 is a diagram showing the measurement result of the measurement device shown in FIG. 7 in comparison with the measurement result of a conventional device.
FIG. 9 is a diagram showing an example in which a large number of samples to be measured are measured at one time.
FIG. 10 is a diagram showing an overall configuration of an embodiment for measuring output voltage characteristics of a magnetic flux quantum circuit.
11 is a circuit diagram illustrating a modification of the basic configuration concept shown in FIG. 1. FIG.
[Explanation of symbols]
11, 12, 13, 14: resistance, 17, 18: terminal, 23: power supply, 24: sample, 25, 26: voltage probe, 30: signal source, 311, 312: voltage amplifier, 321 and 322: low-pass filter, 33: Digitization circuit, 34: Computer, 71: Superconducting junction, 72: Lower electrode, 73: Interlayer insulating film, 74: Barrier layer, 75: Upper electrode, 76: Substrate, 80: Superconducting magnetic flux quantum interference device, 81: Superconducting junction, 82: inductor, 83: bias current source, 85: current injection line, 86: voltage terminal, 87: grounding point, 91: output voltage-injection current of superconducting magnetic flux quantum interference element by electric measurement circuit according to the present invention Characteristics: 92: Output voltage-injection current characteristics of a superconducting magnetic flux quantum interference device by a conventional electric measurement circuit, 100: Low temperature device, 110: Converter from voltage signal to magnetic flux quantum, 1 1: transmission circuit including a toggle flip-flop, 112: output circuit composed of a conversion circuit from the flux quantum to a voltage signal, 113: superconducting junction, 114: inductor 115: constant-current bias source.

Claims (5)

被測定試料を接続すべき2端子、前記被測定試料と直列接続となるように前記2端子の1つに接続された第1の抵抗、前記第1の抵抗の他の端子と前記2端子の他の1つの間に接続された第2の抵抗および前記第1の抵抗および第2の抵抗の接続点に1端が接続された第3の抵抗を備え、これらの抵抗を通して前記被測定試料に電流を供給するとともに、前記第1および第3の抵抗の両端に電圧を検出するプローブをそれぞれ接続することを特徴とする電気測定装置。Two terminals to which the sample to be measured is connected, a first resistor connected to one of the two terminals so as to be connected in series with the sample to be measured, another terminal of the first resistor and the two terminals A second resistor connected between the other one and a third resistor having one end connected to a connection point of the first resistor and the second resistor, and passing through these resistors to the sample to be measured An electrical measuring apparatus characterized by supplying a current and connecting a probe for detecting a voltage to both ends of the first and third resistors. 前記第1および第2の抵抗の抵抗値は第1の抵抗の抵抗値が第2のの抵抗の抵抗値より小さいものとされている請求項1記載の電気測定装置。The electrical measuring device according to claim 1, wherein the resistance values of the first and second resistors are such that the resistance value of the first resistor is smaller than the resistance value of the second resistor. 前記被測定試料が超電導接合を含む回路であって、前記第1および第2の抵抗の抵抗値は第1の抵抗の抵抗値が第2のの抵抗の抵抗値より小さいものとされるとともに、第1の抵抗の抵抗値が被測定試料である超電導接合が常電導状態になった時の抵抗より小さいものとされている請求項1記載の電気測定装置。The measured sample is a circuit including a superconducting junction, and the resistance values of the first and second resistors are set such that the resistance value of the first resistor is smaller than the resistance value of the second resistor, The electrical measuring device according to claim 1, wherein the resistance value of the first resistor is smaller than the resistance when the superconducting junction as the sample to be measured is in a normal conducting state. 前記被測定試料が液体窒素温度以下の低温環境に置かれた試料であるとき、前記第1から第3の抵抗も同じ低温環境に置かれている請求項1記載の電気測定装置。The electrical measurement apparatus according to claim 1, wherein when the sample to be measured is a sample placed in a low-temperature environment having a temperature equal to or lower than a liquid nitrogen temperature, the first to third resistors are also placed in the same low-temperature environment. 前記電圧を検出するプローブが電圧増幅回路、ローパスフイルタおよびアナログ信号をデジタル信号に変換する回路を含むものである請求項1から4のいずれかに記載の電気測定装置。The electrical measuring device according to claim 1, wherein the probe for detecting the voltage includes a voltage amplification circuit, a low-pass filter, and a circuit for converting an analog signal into a digital signal.
JP2001393465A 2001-12-26 2001-12-26 Electrical measuring device Expired - Fee Related JP3779612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393465A JP3779612B2 (en) 2001-12-26 2001-12-26 Electrical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393465A JP3779612B2 (en) 2001-12-26 2001-12-26 Electrical measuring device

Publications (2)

Publication Number Publication Date
JP2003194867A JP2003194867A (en) 2003-07-09
JP3779612B2 true JP3779612B2 (en) 2006-05-31

Family

ID=27600449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393465A Expired - Fee Related JP3779612B2 (en) 2001-12-26 2001-12-26 Electrical measuring device

Country Status (1)

Country Link
JP (1) JP3779612B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018972A (en) * 2016-05-13 2016-10-12 华北电力大学 Device and method for testing AC loss of high-temperature superconducting strip in AC background magnetic field

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178340A (en) * 2005-12-28 2007-07-12 Sumitomo Electric Ind Ltd Method for measuring critical current value of superconductive wire rod
US10782258B2 (en) * 2018-09-04 2020-09-22 Northrop Grumman Systems Corporation Superconductor critical temperature measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018972A (en) * 2016-05-13 2016-10-12 华北电力大学 Device and method for testing AC loss of high-temperature superconducting strip in AC background magnetic field

Also Published As

Publication number Publication date
JP2003194867A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
Flowers-Jacobs et al. Two-volt Josephson arbitrary waveform synthesizer using Wilkinson dividers
JP3088727B2 (en) Quiescent current measuring device
US20050258840A1 (en) Sensor element for providing a sensor signal, and method for operating a sensor element
EP0660126A2 (en) Josephson signal detector
Benz et al. Multitone waveform synthesis with a quantum voltage noise source
CN113899943A (en) Current sensor, current measuring device and method based on differential measurement
Crescentini et al. The X-Hall sensor: Toward integrated broadband current sensing
Werner W7-X magnetic diagnostics: Performance of the digital integrator
Lee et al. Programmable Josephson arrays for impedance measurements
Drung Improved dc SQUID read-out electronics with low 1/f noise preamplifier
JP3779612B2 (en) Electrical measuring device
US20220091167A1 (en) Electricity meter
Dutoit et al. Bi (2223) Ag sheathed tape Ic and exponent n characterization and modelling under DC applied magnetic field
Xenikos et al. ac susceptibility apparatus for measuring the transition temperature of high‐T c crystals, sintered samples, and films
Funck et al. Fast reversed dc measurements on thermal converters using a SINIS Josephson junction array
Eben et al. Even and odd order intermodulation nonlinearity from superconductive microstrip lines
Hidaka et al. High-resolution current measurement system using a high-T/sub c/superconductor sampler
Yamada et al. Comparison of a multichip 10-V programmable Josephson voltage standard system with a superconductor–insulator–superconductor-based conventional system
Vettoliere et al. Effect of critical current spread on the noise performance of SQUID magnetometers: An experimental study
US6498507B1 (en) Circuit for testing an integrated circuit
Eriksson et al. A SQUID picovoltmeter working at 77 K
Granata et al. Low critical temperature dc-SQUIDs for high spatial resolution applications
Matlashov et al. Electronic gradiometer using HT/sub c/SQUIDs with fast feedback electronics
JP3394309B2 (en) Josephson signal detection circuit
Yang et al. High-Tc superconducting quantum interference devices: Status and perspectives

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350