JP3779529B2 - Crushing surface member used in crusher - Google Patents

Crushing surface member used in crusher Download PDF

Info

Publication number
JP3779529B2
JP3779529B2 JP2000172184A JP2000172184A JP3779529B2 JP 3779529 B2 JP3779529 B2 JP 3779529B2 JP 2000172184 A JP2000172184 A JP 2000172184A JP 2000172184 A JP2000172184 A JP 2000172184A JP 3779529 B2 JP3779529 B2 JP 3779529B2
Authority
JP
Japan
Prior art keywords
wear resistance
wear
resistance
metal material
resistant metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000172184A
Other languages
Japanese (ja)
Other versions
JP2001347175A (en
Inventor
肇 河津
勇治 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ING Shoji Co Ltd
Original Assignee
ING Shoji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ING Shoji Co Ltd filed Critical ING Shoji Co Ltd
Priority to JP2000172184A priority Critical patent/JP3779529B2/en
Publication of JP2001347175A publication Critical patent/JP2001347175A/en
Application granted granted Critical
Publication of JP3779529B2 publication Critical patent/JP3779529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はロール粉砕機、コーンクラッシャ、リングロールミル、竪型ローラミル、エッジランナ等の粉砕機に使用されて高面圧摩擦を受けるローラ、テーブ等の破砕面部材に関する。
【0002】
【従来の技術】
この種の破砕面部材として、本出願人は、その少なくとも表層部に耐磨耗性が異なる2種類のブロックを、破砕面上で材料が噛み込まれていく方向に交互に配列したものを先に提案した(特開昭63−143946号公報)。この破砕面部材をローラについて図5により説明する。
【0003】
ローラ1の母材部2の表面に周方向に所定間隔で設けられた溝3,3・・に、耐磨耗性金属材を肉盛溶接することにより、ローラ1の表層部に、耐磨耗性の低い部分Aと耐磨耗性の高い部分Bとが交互に形成されている。即ち、耐磨耗性金属材の肉盛溶接部が耐磨耗性の高い部分Bであり、隣接する肉盛溶接部に挟まれた母材部2の一部分が耐磨耗性の低い部分Aである。
【0004】
ローラ1の母材部2の表面に耐磨耗性の高い部分B,B・・を所定間隔で形成すると、図6(a)に示すように、耐磨耗性の低い部分A,A・・の各表面に安定的な凹みが形成され、破砕性が著しく向上する。耐磨耗性の低い部分Aに生じる凹みの深さdは0.5〜15mmが好適であり、耐磨耗性の低い部分Aの幅waは、耐磨耗性の高い部分Bの幅wbの1/10〜1/2が適当である。
【0005】
この破砕面部材とは別に、本出願人は、マンガンを主な合金成分とするマンガンオーステナイト系合金をマトリックスとして、そのマトリクス中に、別途製造された高硬度炭化物粒子を、断面積比で20〜70%占めるよう添加して分散混合させた複合材を先に開発した(特開平9−108887号公報)。
【0006】
この複合材は、高面圧下で耐磨耗性に著しく優れるので、耐磨耗性の高い部分Bを形成するための耐磨耗性肉盛材としても好適である。マトリックスとしては、重量%でC:0.2〜1.8%、Cr:25%以下、Mn:11〜25%以下、Ni:10%以下、Si:2.5%以下、Nb:0〜10%を含む、マンガンオーステナイト系合金が特に好ましい。
【0007】
【発明が解決しようとする課題】
耐磨耗性の高い部分B,B・・をこの複合材で形成すると、耐磨耗性の高い部分Bの耐磨耗性が余りにも高くなるために、耐磨耗性の低い部分Aと耐磨耗性の高い部分Bとの耐磨耗性の差異が圧倒的に異なり、その結果として、図6(b)に示すように、耐磨耗性の低い部分Aが早期磨耗するようになる。
【0008】
耐磨耗性の低い部分Aが余りに早く磨耗すると、耐磨耗性の高い部分Bの両側面が極端な磨耗に曝され、両側のエッジ部から磨耗が進行することにより、耐磨耗性の高い部分Bが尖った山形になる。その結果、耐磨耗性の高い部分Bの見掛け上の幅が極端に小さくなり、また、耐磨耗性の低い部分Aに生じる凹みの深さも極端に深くなる。その結果、騒音が大きくなるとか、耐磨耗性の高い部分Bに欠けが発生して寿命が短くなるなどの問題が発生する。
【0009】
このような耐磨耗性の低い部分Aの早期磨耗は、粒径が2〜3mm程度の細粒材料、例えば粘土、ケイ石等を粉砕する場合は、耐磨耗性の低い部分Aに生じた凹みに微粉が埋まり、一定以上の磨耗進展が防止されるため、顕著化しない。しかし、セメント工場における原料ミルローラによる粘土、ケイ石の粉砕のように粒径が50〜60mmの粗粒を粉砕する場合は、この早期磨耗が顕著化する。
【0010】
耐磨耗性の低い部分Aの耐磨耗性を高めると、この早期磨耗は防止されるが、耐磨耗性の低い部分Aの耐磨耗性を高めることは、ローラ1の母材部2の耐磨耗性を高めることを意味するので、母材部2の耐磨耗性向上に伴う機械的強度の低下を発生させる。即ち、ローラ1の母材部2としては、全体の機械的強度を確保するために、SS400、ステンレス鋼、S35C炭素鋼のような耐磨耗性の低い材料の使用が不可欠である。
【0011】
本発明の目的は、耐磨耗性の高い部分Bの耐磨耗性を顕著に引き上げた場合に問題となる耐磨耗性の低い部分Aの早期磨耗を、母材部の耐磨耗性を高めることなく防止できる破砕面部材を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明の粉砕機に使用される破砕面部材は、その破砕面部材の母材部の表面に、耐磨耗性の低い部分Aと耐磨耗性の高い部分Bを所定ピッチで交互に設けると共に、耐磨耗性の低い部分Aを、母材部より耐磨耗性が高く耐磨耗性の高い部分Bより耐磨耗性が低い耐磨耗性金属材により形成したものである。
【0013】
ここで、耐磨耗性の高い部分Bは、母材部の表面に設けられた溝に、母材部より耐磨耗性の高い耐磨耗性金属材を多層肉盛溶接することで形成される。また、耐磨耗性の低い部分Aは、隣接する溝を仕切り、耐磨耗性の高い部分Bにおける耐磨耗性金属材の肉盛高さより高さが低い仕切り壁の上に、母材部より耐磨耗性が高く耐磨耗性の高い部分Bと耐磨耗性が同じかこれより耐磨耗性が低い耐磨耗性金属材を肉盛することで形成される。耐磨耗性の高い部分Bと耐磨耗性が同じ耐磨耗性金属材を肉盛しても、意図的な溶け込みにより母材部の仕切り壁から十分な希釈を受けるので、耐磨耗性の高い部分Bより低い耐磨耗性が、耐磨耗性の低い部分Aに付与されることになる。これによると、両部分を同じ溶接で形成できるので、施工が簡単である。
【0014】
耐磨耗性の高い部分Bは、高クロム鋳鉄系合金の多層盛りにより形成することができる。また、炭化物析出型合金の多層盛りにより形成することができる。また、ニッケル基合金マトリックス又はコバルト基合金マトリックスにタングステン炭化物粒子を55〜65%分散混合させた複合材の多層盛りにより形成することができる。また、マンガンを主な合金成分とするマンガンオーステナイト系合金からなるマトリックス中に、別途製造された高硬度炭化物粒子を、断面積比で20〜70%占めるよう添加して分散混合させた複合材の多層盛りにより形成することができる。マトリックスとしてのマンガンオーステナイト系合金は、重量%でC:0.2〜1.8%、Cr:25%以下、Mn:11〜25%以下、Ni:10%以下、Si:2.5%以下、Nb:0〜10%を含むものが好ましい。複合材は耐磨耗性の高い部分Bに特に高い耐磨耗性を付与することができる。
【0015】
【発明の実施の形態】
以下に本発明の実施形態を図面に基づいて説明する。
【0016】
図1は本発明の第1実施形態を示す。本実施形態の破砕面部材では、ローラ、テーブル等の母材部10の表面に、耐磨耗性の低い部分Aと耐磨耗性の高い部分Bとが交互に形成されている。耐磨耗性の高い部分Bは、母材部10の表面に設けられた溝11に、母材部10より耐磨耗性の高い耐磨耗性金属材20を多層肉盛溶接することにより形成されている。
【0017】
ここで、隣接する溝11,11を仕切る仕切り壁12は、耐磨耗性金属材20の肉盛高さより低くされている。即ち、耐磨耗性金属材20は、仕切り壁12より高く肉盛されている。そして、仕切り壁12の上に耐磨耗性金属材20と同じ耐磨耗性金属材30を、耐磨耗性の高い部分Bと同じ高さとなるように肉盛することにより、耐磨耗性の低い部分Aは形成されている。
【0018】
即ち、仕切り壁12の上に耐磨耗性金属材20と同じ耐磨耗性金属材30を肉盛すると、母材部10の仕切り壁部12によって耐磨耗性金属材30が希釈されるため、その耐磨耗性が低下し、耐磨耗性の低い部分Aが形成されることになるのである。
【0019】
このようにして形成された耐磨耗性の低い部分Aは、耐磨耗性の高い部分Bとの耐磨耗性の差が小さいため、早期磨耗が防止される。ここにおける耐磨耗性の差は、耐磨耗性の低い部分Aの早期磨耗を防止できる差異であり、より具体的には、耐磨耗性の低い部分Aの表面に安定的に生じる凹みの深さdを0.5〜15mmとするのに必要な差異である。
【0020】
【表1】

Figure 0003779529
【0021】
耐磨耗性金属材20,30としては、表1に示すような高クロム鋳鉄系合金(No.7〜21)の使用が可能である。この合金は、重量%でC:1.0〜7.5%、Mn:0.1〜4.5%、Si:0.1〜5.0%、Cr:5〜40%を含み、残部Fe及び不可避的不純物からなる主成分に対して、炭化物形成元素としてMo、Ti、V、Nb、W、B、Zr、Ta等を添加し、その他Co、Al、Ni、Cu等を添加したものである。これらの添加量は1種で最高20%、合計でも20%以下とされる。また、炭化物析出型合金(No.1〜6)やニッケル基又はコバルト基タングステン炭化物系合金(No.22,23)の使用が可能である。
【0022】
Ni−Cr−B−Si基合金マトリックス若しくはステライトNo.6に相当するコバルト基合金マトリックスに55〜65%の微小タングステン炭化物粒子を含有させた市販タングステン炭化物系合金は、非常に高価であるが、マトリックスの硬度がHv400〜520程度と低く、高クロム炭化物系合金や炭化物析出型合金に比べ、マトリックスの靱性に優れ、耐磨耗性金属材20,30として好ましい材料である。含有される炭化物粒子の形状は球状が好ましい。その理由は、球状黒鉛を含有するダクタイル鋳鉄(FCD)が、針状黒鉛を含有するズク鋳物(FC材)より、耐衝撃性や破壊強度に優れることと同じである。タングステン炭化物はコバルトを6〜30%含有しているものでもよい。マトリックス同士を比較した場合、マンガンオーステナイト系合金より耐磨耗性が低いので、耐磨耗性金属材30として特に好適である。
【0023】
図2は本発明の第2実施形態を示す。本実施形態の破砕面部材は、仕切り壁12の上に肉盛される耐磨耗性金属材30が、耐磨耗性の高い部分Bを形成する耐磨耗性金属材20より耐磨耗性が低い点が、第1実施形態の破砕面部材と相違する。
【0024】
このようにして形成された耐磨耗性の低い部分Aも、その早期磨耗を防止できる程度に、耐磨耗性の高い部分Bとの耐磨耗性の差を小さく抑えることができる。耐磨耗性金属材20,30としては、表1に示す各種合金のなかから、適当な耐磨耗性の差をもつ2種を選択すればよい。
【0025】
図3は本発明の第3実施形態を示す。本実施形態の破砕面部材は、仕切り壁12の上に肉盛される耐磨耗性金属材30を多層盛りとした点が、第2実施形態の破砕面部材と相違する。
【0026】
表1に示された高クロム鋳鉄系合金及び炭化物析出型合金では、炭素含有量が炭化物の析出量を支配しており、炭素含有量が多くなるほど、肉盛溶着金属に割れが発生しやすくなり、粉砕操業中に粉砕原料により剥離、脱落が発生しやすくなる。このため、炭素含有量が多くなるほど肉盛厚さが制限される。
【0027】
この観点から、耐磨耗性金属材30の肉盛厚さは、炭素含有量が1.2%以上2.1%未満の場合で20mm以下、2.1%以上4.5%未満の場合で10mm以下、4.5%以上6%以下の場合で6mm以下にそれぞれ制限される。また、ニッケル基又はコバルト基タングステン炭化物系合金の場合には、10mm以下に制限される。
【0028】
この制限内であれば、耐磨耗性金属材30を多層盛りとすることが可能である。
【0029】
(削除)
【0030】
(削除)
【0031】
なお、仕切り壁12は、必ずしも母材部10と一体化する必要はなく、溶接で形成することも可能である。その場合、母材部10と必ずしも同じ材質である必要はない。例えば、母材部10の上に軟鋼クラッドバー材や、ステンレス鋼フラットバー材、14%マンガン鋼等を溶接により取り付けてもよく、同材質の溶接材料で肉盛により形成してもよい。
【0032】
図4は本発明の第4実施形態を示す。本実施形態の破砕面部材は、耐磨耗性金属材20,30として、マトリックス中に別途製造された高硬度炭化物粒子を、断面積比で20〜70%占めるよう添加して分散混合させた複合肉盛材を用いた点が、第1実施形態の破砕面部材と相違する。
【0033】
即ち、耐磨耗性の高い部分Bを形成する耐磨耗性金属材20として、高硬度炭化物粒子を断面積比で例えば40〜60%含む複合肉盛材を用い、仕切り壁12の上に肉盛されて耐磨耗性の低い部分Aを形成する耐磨耗性金属材20として、高硬度炭化物粒子を断面積比で例えば30%含む複合肉盛材を用いている。
【0034】
このように、本実施形態の破砕面部材では、耐磨耗性金属材20,30として高硬度炭化物粒子を含む複合肉盛材を用い、耐磨耗性金属材20における粒子含有量を耐磨耗性金属材30における粒子含有量より多くすることで、耐磨耗性が低い部分Aと耐磨耗性が高い部分Bとの間の耐磨耗性の差を小さく抑制している。このようにして形成された耐磨耗性の低い部分Aも、その早期磨耗を防止できる程度に、耐磨耗性の高い部分Bとの耐磨耗性の差を小さく抑えることができる。また、耐磨耗性が低い部分Aと耐磨耗性が高い部分Bとの間の耐磨耗性の差が、粒子量の変更により簡単に調節される。
【0035】
マトリックスは、重量%でC:0.2〜1.8%、Cr:25%以下、Mn:11〜25%以下、Ni:10%以下、Si:2.5%以下、Nb:0〜10%を含む、マンガンを主な合金成分とするマンガンオーステナイト系合金であり、炭化物形成元素としてTi、V、W、Mo、B等をそれぞれ10%以下で添加することができる。代表的な成分系としては、例えばC:1.2%、Mn:17.4%、Si:0.35%、Cr:8.5%、Nb:2.6%、Ti:0.11%(硬度HB250)を挙げることができる。
【0036】
(削除)
【0037】
(削除)
【0038】
(削除)
【0039】
(削除)
【0040】
(削除)
【0041】
(削除)
【0042】
いずれの実施形態においても、耐磨耗性の低い部分Aの高さは、耐磨耗性の高い部分Bの高さ(耐磨耗性金属材20の肉盛厚さ)によって決定され、これとほぼ同じとされるが、当初より粉砕原料の粉砕性を高めたい場合は、耐磨耗性の高い部分Bの高さ(耐磨耗性金属材20の肉盛厚さ)より低くすることも可能である。この場合の高さの差は3〜5mmが好適である。
【0043】
また、耐磨耗性の高い部分Bを形成する耐磨耗性金属材20が、炭化物粒子を含有する複合肉盛材の場合は、最下層及び/又は中間層には、炭化物粒子を含有しない比較的溶接性の良好な耐磨耗性金属材を肉盛することができ、これにより耐磨耗性の高い部分Bの機械的強度を高めることができる。
【0044】
(削除)
【0045】
【発明の効果】
以上に説明した通り、本発明の粉砕機に使用される破砕面部材は、母材部の表面に設けられた溝に、耐磨耗性の高い部分Bを母材部より耐磨耗性の高い耐磨耗性金属材を多層肉盛溶接することにより形成すると共に、隣接する溝を仕切る仕切り壁を、耐磨耗性の高い部分Bにおける耐磨耗性金属材の肉盛高さより高さを低くし、その高さの低い仕切り壁上に、耐磨耗性の低い部分Aを、母材部より耐磨耗性が高く耐磨耗性の高い部分より耐磨耗性が低い耐磨耗性金属材により形成し、特に、母材部より耐磨耗性が高く耐磨耗性の高い部分Bと耐磨耗性が同じかこれより耐磨耗性が低い耐磨耗性金属材を肉盛することで形成することにより、耐磨耗性の低い部分Aを、耐磨耗性の高い部分Bの耐磨耗性を顕著に引き上げた場合に問題となる耐磨耗性の低い部分Aの早期磨耗を、母材部の耐磨耗性を高めることなく防止することができ、その寿命延長に特に大きな効果を発揮する。
【図面の簡単な説明】
【図1】 本発明の第1実施形態を示す破砕面部材の要部断面図である。
【図2】 本発明の第2実施形態を示す破砕面部材の要部断面図である。
【図3】 本発明の第3実施形態を示す破砕面部材の要部断面図である。
【図4】 本発明の第4実施形態を示す破砕面部材の要部断面図である。
【図5】 破砕面部材の一例を示すローラの斜視図である。
【図6】 破砕面部材の表面磨耗状況を示す断面図である。
【符号の説明】
10 母材部
11 溝
12 仕切り壁
20,30 耐磨耗性金属材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crushing surface member such as a roller or a table used in a crushing machine such as a roll crusher, a cone crusher, a ring roll mill, a vertical roller mill, or an edge runner and receiving high surface pressure friction.
[0002]
[Prior art]
As this type of crushing surface member, the applicant of the present invention firstly arranges at least the surface layer part of two types of blocks having different wear resistances alternately arranged in the direction in which the material is bitten on the crushing surface. (Japanese Patent Laid-Open No. 63-143946). This crushing surface member will be described with reference to FIG .
[0003]
Abrasion-resistant metal material is welded and welded to the surface of the base material portion 2 of the roller 1 at predetermined intervals in the circumferential direction so that the surface layer portion of the roller 1 is polished. The portions A having low wear resistance and the portions B having high wear resistance are alternately formed. That is, the build-up welded part of the wear-resistant metal material is a part B having high wear resistance, and a part of the base material part 2 sandwiched between adjacent build-up welds is a part A having low wear resistance. It is.
[0004]
When the portions B, B,... With high wear resistance are formed at predetermined intervals on the surface of the base material portion 2 of the roller 1, the portions A, A, with low wear resistance are formed as shown in FIG.・ Stable dents are formed on each surface, and the crushability is remarkably improved. The depth d of the dent generated in the portion A having low wear resistance is preferably 0.5 to 15 mm, and the width wa of the portion A having low wear resistance is the width wb of the portion B having high wear resistance. 1/10 to 1/2 of is suitable.
[0005]
Apart from this crushing surface member, the present applicant uses a manganese austenitic alloy containing manganese as a main alloy component as a matrix, and separately produces high-hardness carbide particles in the matrix at a cross-sectional area ratio of 20 to A composite material added and dispersed and mixed so as to occupy 70% was first developed (Japanese Patent Laid-Open No. 9-108887).
[0006]
Since this composite material is remarkably excellent in wear resistance under high surface pressure, it is also suitable as a wear-resistant build-up material for forming the portion B having high wear resistance. As the matrix, C: 0.2 to 1.8% by weight, Cr: 25% or less, Mn: 11 to 25% or less, Ni: 10% or less, Si: 2.5% or less, Nb: 0 to 0 Manganese austenitic alloys containing 10% are particularly preferred.
[0007]
[Problems to be solved by the invention]
If parts B, B,... With high wear resistance are formed from this composite material, the wear resistance of part B with high wear resistance is too high. As shown in FIG. 6 (b), the difference in wear resistance between the portion B having high wear resistance is overwhelmingly different, and as a result, the portion A having low wear resistance is worn at an early stage. Become.
[0008]
When the low wear-resistant part A wears too quickly, both side surfaces of the high wear-resistant part B are exposed to extreme wear, and wear progresses from the edges on both sides. The high part B has a sharp mountain shape. As a result, the apparent width of the portion B with high wear resistance becomes extremely small, and the depth of the dent generated in the portion A with low wear resistance becomes extremely deep. As a result, problems such as increased noise and chipping in the highly wear-resistant portion B, resulting in shortened lifespan, and the like occur.
[0009]
Such early wear of the portion A having low wear resistance occurs in the portion A having low wear resistance when pulverizing a fine-grained material having a particle diameter of about 2 to 3 mm, such as clay or silica. Since the fine powder is buried in the dent and the wear progress beyond a certain level is prevented, it does not become noticeable. However, in the case of pulverizing coarse particles having a particle diameter of 50 to 60 mm, such as pulverization of clay and silica using a raw material mill roller in a cement factory, this early wear becomes prominent.
[0010]
If the wear resistance of the portion A having low wear resistance is increased, this early wear is prevented. However, increasing the wear resistance of the portion A having low wear resistance can be achieved by the base material portion of the roller 1. 2 means that the wear resistance of the base material portion 2 is improved, and thus the mechanical strength is lowered. That is, for the base material portion 2 of the roller 1, in order to ensure the overall mechanical strength, it is essential to use a material with low wear resistance such as SS400, stainless steel, S35C carbon steel.
[0011]
The object of the present invention is to prevent the early wear of the portion A having low wear resistance, which becomes a problem when the wear resistance of the portion B having high wear resistance is remarkably increased, and to reduce the wear resistance of the base material portion. It is providing the crushing surface member which can prevent without raising.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the crushing surface member used in the crusher of the present invention has a portion A having low wear resistance and a portion having high wear resistance on the surface of the base material portion of the crushing surface member. B is alternately provided at a predetermined pitch, and the wear-resistant metal having a lower wear resistance than the base material portion B is less wear-resistant than the base material portion B. It is made of a material.
[0013]
Here, the portion B having high wear resistance is formed by multi-layer overlay welding of a wear-resistant metal material having higher wear resistance than the base material portion in a groove provided on the surface of the base material portion. Is done. Further, the portion A having low wear resistance partitions the adjacent groove, and is formed on the partition wall whose height is lower than the build-up height of the wear-resistant metal material in the portion B having high wear resistance. It is formed by building up a wear-resistant metal material that has the same or higher wear resistance than the portion B that has higher wear resistance and higher wear resistance than the portion. Even if a wear-resistant metal material with the same wear resistance as the wear-resistant part B is built up, it will receive sufficient dilution from the partition wall of the base metal part due to intentional melting, so wear resistance The wear resistance lower than that of the highly wearable portion B is imparted to the portion A having low wear resistance. According to this, since both parts can be formed by the same welding, construction is easy.
[0014]
The portion B having high wear resistance can be formed by a multi-layer pile of high chromium cast iron alloy. Moreover, it can form by the multilayer pile of a carbide precipitation type alloy. Further, it can be formed by a multi-layer stack of a composite material in which tungsten carbide particles are dispersed and mixed by 55 to 65% in a nickel base alloy matrix or a cobalt base alloy matrix. Further, a composite material in which high-hardness carbide particles produced separately are added to a matrix made of a manganese austenitic alloy containing manganese as a main alloy component so as to occupy 20 to 70% in a cross-sectional area ratio and dispersed and mixed. It can be formed by a multilayer stack. Manganese austenitic alloy as a matrix is C: 0.2-1.8%, Cr: 25% or less, Mn: 11-25% or less, Ni: 10% or less, Si: 2.5% or less by weight%. , Nb: 0 to 10% is preferable. The composite material can impart particularly high wear resistance to the portion B having high wear resistance.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0016]
FIG. 1 shows a first embodiment of the present invention. In the crushing surface member of the present embodiment, portions A having low wear resistance and portions B having high wear resistance are alternately formed on the surface of the base material portion 10 such as a roller or a table. The portion B having high wear resistance is formed by overlay welding a wear-resistant metal material 20 having higher wear resistance than the base material portion 10 in a groove 11 provided on the surface of the base material portion 10. Is formed.
[0017]
Here, the partition wall 12 that partitions the adjacent grooves 11 and 11 is set lower than the build-up height of the wear-resistant metal material 20. That is, the wear-resistant metal material 20 is built up higher than the partition wall 12. Then, the wear-resistant metal material 30 that is the same as the wear-resistant metal material 20 is deposited on the partition wall 12 so as to have the same height as that of the portion B having high wear resistance. A portion A having a low property is formed.
[0018]
That is, when the same wear-resistant metal material 30 as the wear-resistant metal material 20 is built up on the partition wall 12, the wear-resistant metal material 30 is diluted by the partition wall portion 12 of the base material portion 10. Therefore, the wear resistance is lowered, and the portion A having low wear resistance is formed.
[0019]
The portion A having a low wear resistance formed in this manner has a small difference in wear resistance from the portion B having a high wear resistance, so that early wear is prevented. The difference in wear resistance here is a difference that can prevent early wear of the portion A having low wear resistance, and more specifically, a dent that is stably generated on the surface of the portion A having low wear resistance. This is a difference necessary for setting the depth d of the steel to 0.5 to 15 mm.
[0020]
[Table 1]
Figure 0003779529
[0021]
As the wear resistant metal materials 20 and 30, high chromium cast iron alloys (Nos. 7 to 21) as shown in Table 1 can be used. This alloy contains, by weight, C: 1.0-7.5%, Mn: 0.1-4.5%, Si: 0.1-5.0%, Cr: 5-40%, the balance Addition of Mo, Ti, V, Nb, W, B, Zr, Ta, etc. as carbide-forming elements to the main component consisting of Fe and inevitable impurities, and addition of Co, Al, Ni, Cu, etc. It is. The amount of these additives is 20% at the maximum for one type and 20% or less in total. Further, it is possible to use carbide precipitation type alloys (No. 1 to 6) and nickel-base or cobalt-base tungsten carbide alloys (No. 22 and 23).
[0022]
Ni-Cr-B-Si based alloy matrix or Stellite No. A commercially available tungsten carbide alloy in which 55 to 65% of fine tungsten carbide particles are contained in a cobalt-based alloy matrix corresponding to 6 is very expensive, but the hardness of the matrix is as low as about Hv 400 to 520, and high chromium carbide. Compared to alloy and carbide precipitation type alloy, the toughness of the matrix is excellent, and it is a preferable material as the wear-resistant metal materials 20 and 30. The shape of the carbide particles contained is preferably spherical. The reason for this is the same as that ductile cast iron (FCD) containing spheroidal graphite is more excellent in impact resistance and fracture strength than Zuku cast (FC material) containing acicular graphite. The tungsten carbide may contain 6-30% cobalt. When the matrices are compared with each other, the wear resistance is lower than that of the manganese austenitic alloy, so that the wear resistant metal material 30 is particularly suitable.
[0023]
FIG. 2 shows a second embodiment of the present invention. In the crushing surface member of this embodiment, the wear-resistant metal material 30 that is built up on the partition wall 12 is more resistant to wear than the wear-resistant metal material 20 that forms the portion B having high wear resistance. The point with low property differs from the crushing surface member of the first embodiment.
[0024]
The portion A with low wear resistance formed in this way can also suppress the difference in wear resistance with the portion B with high wear resistance to such an extent that early wear can be prevented. As the wear-resistant metal materials 20 and 30, two kinds having appropriate wear resistance differences may be selected from various alloys shown in Table 1.
[0025]
FIG. 3 shows a third embodiment of the present invention. The crushing surface member of the present embodiment is different from the crushing surface member of the second embodiment in that the wear-resistant metal material 30 that is built up on the partition wall 12 is multi-layered.
[0026]
In the high chromium cast iron alloy and carbide precipitation type alloy shown in Table 1, the carbon content dominates the carbide precipitation amount, and the higher the carbon content, the easier the cracks occur in the overlay weld metal. During the pulverization operation, peeling and dropping are likely to occur due to the pulverized raw material. For this reason, the build-up thickness is limited as the carbon content increases.
[0027]
From this point of view, the build-up thickness of the wear-resistant metal material 30 is 20 mm or less when the carbon content is 1.2% or more and less than 2.1%, or 2.1% or more and less than 4.5%. In the case of 10 mm or less and 4.5% or more and 6% or less, it is limited to 6 mm or less. In the case of a nickel-base or cobalt-base tungsten carbide alloy, it is limited to 10 mm or less.
[0028]
Within this limit, the wear-resistant metal material 30 can be multi-layered.
[0029]
(Delete)
[0030]
(Delete)
[0031]
In addition, the partition wall 12 does not necessarily need to be integrated with the base material part 10, and can also be formed by welding. In this case, the material is not necessarily the same as that of the base material part 10. For example, a mild steel clad bar material, a stainless steel flat bar material, 14% manganese steel or the like may be attached on the base material portion 10 by welding, or may be formed by overlaying with the same welding material.
[0032]
FIG. 4 shows a fourth embodiment of the present invention. In the crushing surface member of the present embodiment, as the wear-resistant metal materials 20 and 30, high-hardness carbide particles separately manufactured in the matrix are added and dispersed and mixed so as to occupy 20 to 70% in terms of the cross-sectional area ratio. The point which used the composite build-up material differs from the crushing surface member of 1st Embodiment.
[0033]
That is, as the wear-resistant metal material 20 forming the highly wear-resistant portion B, a composite cladding material containing, for example, 40 to 60% of high-hardness carbide particles in a cross-sectional area ratio is used. As the wear-resistant metal material 20 that is built up and forms the portion A having low wear resistance, a composite build-up material containing, for example, 30% of high-hardness carbide particles in a cross-sectional area ratio is used.
[0034]
As described above, in the crushing surface member of this embodiment, the composite material containing high-hardness carbide particles is used as the wear-resistant metal materials 20 and 30, and the particle content in the wear-resistant metal material 20 is polished. By making it more than the particle content in the wearable metal material 30, the difference in wear resistance between the portion A having low wear resistance and the portion B having high wear resistance is suppressed to a small level. The portion A with low wear resistance formed in this way can also suppress the difference in wear resistance with the portion B with high wear resistance to such an extent that early wear can be prevented. Further, the difference in wear resistance between the portion A having low wear resistance and the portion B having high wear resistance can be easily adjusted by changing the amount of particles.
[0035]
The matrix is C: 0.2 to 1.8% by weight, Cr: 25% or less, Mn: 11 to 25% or less, Ni: 10% or less, Si: 2.5% or less, Nb: 0 to 10 And a manganese austenitic alloy containing manganese as a main alloy component, and Ti, V, W, Mo, B, and the like can be added at 10% or less as carbide forming elements. Typical component systems include, for example, C: 1.2%, Mn: 17.4%, Si: 0.35%, Cr: 8.5%, Nb: 2.6%, Ti: 0.11% (Hardness HB250).
[0036]
(Delete)
[0037]
(Delete)
[0038]
(Delete)
[0039]
(Delete)
[0040]
(Delete)
[0041]
(Delete)
[0042]
In any embodiment, the height of the portion A having low wear resistance is determined by the height of the portion B having high wear resistance (the build-up thickness of the wear-resistant metal material 20). However, if it is desired to improve the pulverization of the pulverized raw material from the beginning, the height should be lower than the height of the portion B having a high wear resistance (the build-up thickness of the wear-resistant metal material 20). Is also possible. In this case, the height difference is preferably 3 to 5 mm.
[0043]
Further, when the wear-resistant metal material 20 forming the part B having high wear resistance is a composite cladding material containing carbide particles, the lowermost layer and / or the intermediate layer does not contain carbide particles. A wear-resistant metal material having relatively good weldability can be built up, and thereby the mechanical strength of the portion B having high wear resistance can be increased.
[0044]
(Delete)
[0045]
【The invention's effect】
As described above, the crushing surface member used in the pulverizer of the present invention has a higher wear resistance portion B in the groove provided on the surface of the base material portion than the base material portion. A high wear-resistant metal material is formed by multi-layer overlay welding, and the partition wall that partitions adjacent grooves is higher than the build-up height of the wear-resistant metal material in the highly wear-resistant part B A low wear resistance part A on the partition wall with a low height, and a wear resistance that has a higher wear resistance than the base material part and a lower wear resistance than the high wear resistance part. A wear-resistant metal material formed from a wear-resistant metal material, in particular, wear-resistant metal material that has the same or less wear resistance than part B, which has higher wear-resistance and higher wear-resistance than the base metal part. the by formed by cladding, becomes a problem when a low portion a of abrasion resistance, significantly raising the abrasion resistance of high wear resistance portion B耐磨Premature wear of sexual lower portion A, can be prevented without increasing the wear resistance of the base metal, particularly a great effect on the life extension.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an essential part of a crushing surface member showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of an essential part of a crushing surface member showing a second embodiment of the present invention.
FIG. 3 is a cross-sectional view of an essential part of a crushing surface member showing a third embodiment of the present invention.
FIG. 4 is a cross-sectional view of an essential part of a crushing surface member showing a fourth embodiment of the present invention.
FIG. 5 is a perspective view of a roller showing an example of a crushing surface member.
FIG. 6 is a cross-sectional view showing a surface abrasion state of a crushing surface member.
[Explanation of symbols]
10 Base material part 11 Groove 12 Partition wall 20, 30 Wear-resistant metal material

Claims (3)

粉砕機に使用される破砕面部材であって、その破砕面部材の母材部の表面に、耐磨耗性の高い部分と、母材部より耐磨耗性が高く耐磨耗性の高い部分より耐磨耗性が低い耐磨耗性金属材により形成された耐磨耗性の低い部分とが、所定ピッチで交互に設けられており、耐磨耗性の高い部分は、母材部の表面に設けられた溝に、母材部より耐磨耗性の高い耐磨耗性金属材を多層肉盛溶接することにより形成されており、耐磨耗性の低い部分は、隣接する溝を仕切り、耐磨耗性の高い部分における耐磨耗性金属材の肉盛高さより高さが低い仕切り壁の上に、母材部より耐磨耗性が高く耐磨耗性の高い部分と耐磨耗性が同じかこれより耐磨耗性が低い耐磨耗性金属材を肉盛することにより形成されていることを特徴とする粉砕機に使用される破砕面部材。A crushing surface member used in a pulverizer, the surface of the base material part of the crushing surface member having a high wear resistance and a higher wear resistance than the base material part. The parts with low wear resistance formed by the wear-resistant metal material having lower wear resistance than the part are alternately provided at a predetermined pitch, and the part with high wear resistance is the base material part. Is formed by multi-layer overlay welding of a wear-resistant metal material having a higher wear resistance than the base metal part in the groove provided on the surface of the base material. In the part with high wear resistance, on the partition wall whose height is lower than the build-up height of the metal material, the part with higher wear resistance and higher wear resistance than the base material part crushing surface used for grinding machine, wherein the abrasion resistance is formed by overlaying the equal to or more abrasion resistance is less wear resistant metallic material Wood. 耐磨耗性の低い部分は、耐磨耗性の高い部分と耐磨耗性が同じ耐磨耗性金属材を肉盛することにより形成されており、溶け込みによる仕切り壁からの希釈により耐磨耗性の高い部分より耐磨耗性が低くされている請求項1に記載の粉砕機に使用される破砕面部材。The part with low wear resistance is formed by building up a wear-resistant metal material that has the same wear resistance as the part with high wear resistance. The crushing surface member used for the pulverizer according to claim 1, wherein the wear resistance is lower than that of the highly wearable portion . 耐磨耗性の高い部分は、高クロム鋳鉄系合金、炭化物析出型合金、ニッケル基合金マトリックス又はコバルト基合金マトリックスにタングステン炭化物粒子を55〜65%分散混合させた複合材、或いはマンガンを主な合金成分とするマンガンオーステナイト系合金からなるマトリクス中に、別途製造された高硬度炭化物粒子を、断面積比で20〜70%占めるよう添加して分散混合させた複合材の多層盛りにより形成されている請求項1に記載の粉砕機に使用される耐磨耗性部材。  The parts with high wear resistance mainly consist of high chromium cast iron alloy, carbide precipitation type alloy, nickel base alloy matrix or cobalt base alloy matrix in which 55 to 65% tungsten carbide particles are dispersed and mixed, or manganese. It is formed by a multi-layered composite material in which high-hardness carbide particles produced separately are added so as to occupy 20 to 70% of the cross-sectional area ratio in a matrix made of a manganese austenitic alloy as an alloy component and dispersed and mixed. The wear-resistant member used in the pulverizer according to claim 1.
JP2000172184A 2000-06-08 2000-06-08 Crushing surface member used in crusher Expired - Fee Related JP3779529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000172184A JP3779529B2 (en) 2000-06-08 2000-06-08 Crushing surface member used in crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000172184A JP3779529B2 (en) 2000-06-08 2000-06-08 Crushing surface member used in crusher

Publications (2)

Publication Number Publication Date
JP2001347175A JP2001347175A (en) 2001-12-18
JP3779529B2 true JP3779529B2 (en) 2006-05-31

Family

ID=18674625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000172184A Expired - Fee Related JP3779529B2 (en) 2000-06-08 2000-06-08 Crushing surface member used in crusher

Country Status (1)

Country Link
JP (1) JP3779529B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844117A (en) * 2010-04-16 2012-12-26 Fl史密斯公司 Wear-resistant roller

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919610B2 (en) * 2005-03-11 2012-04-18 特殊電極株式会社 Sintered crusher tooth
JP4579035B2 (en) * 2005-04-05 2010-11-10 アイエヌジ商事株式会社 Crushing surface member
CN100443185C (en) * 2006-09-19 2008-12-17 西安建筑科技大学 Production technology for composite breaking wall and composite rolling mortar wall
GB2464968A (en) * 2008-10-31 2010-05-05 Welding Alloys Ltd Manufacture of composite rollers
JP5110659B2 (en) * 2009-01-08 2012-12-26 株式会社栗本鐵工所 Vertical mill and method for regenerating the same
WO2011064685A1 (en) * 2009-11-25 2011-06-03 Flsmidth A/S Wear -resistant roller for crushing and method for producing the same
JP5187978B2 (en) * 2010-11-15 2013-04-24 アイエヌジ商事株式会社 Crushing surface member
CN102921501B (en) * 2012-11-26 2014-10-22 遂宁华能机械有限公司 Fine crushing roller of wear-resisting crusher
DE102015222020A1 (en) 2015-11-09 2017-05-11 Thyssenkrupp Ag Tool for machining abrasive materials
AU2016102005A4 (en) * 2016-11-18 2016-12-15 Muddie's Holdings Pty Ltd Method of Application of Hard Facing to Wear Parts and Apparatus formed therefrom
CN109772523A (en) * 2019-03-11 2019-05-21 张思汉 A kind of centrifugation milling device of biological medicine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844117A (en) * 2010-04-16 2012-12-26 Fl史密斯公司 Wear-resistant roller

Also Published As

Publication number Publication date
JP2001347175A (en) 2001-12-18

Similar Documents

Publication Publication Date Title
US4119459A (en) Composite body consisting of cemented carbide and cast alloy
JP3779529B2 (en) Crushing surface member used in crusher
US8679207B2 (en) Wear resisting particle and wear resisting structure member
EP0464087B1 (en) Wear-resistant steel castings
CN101380698B (en) Novel tubular hard surfacing material
CN100482350C (en) Composite-material abrasive roller of tungsten carbide grain reinforced metal base and its production
CN102962114B (en) Manufacturing method of breaking hammerhead
CN106457400A (en) A wear resistant component and a device for mechanical decomposition of material provided with such a component
JP4696795B2 (en) Welding material for overlaying, excavation tool hardened using the same, and plate for wear prevention
JP5410065B2 (en) Transport structure
US2507195A (en) Composite surfacing weld rod
CN101595233A (en) Hard-face overlaying welding is used for the hard-face overlaying welding material and preparation method thereof of the earth-boring bits of abrasion environment
JP4579035B2 (en) Crushing surface member
JP4148390B2 (en) Abrasion resistant plate
KR100249954B1 (en) Welding method of wear resistant overlaying layer and wear resistant material for use therein
JP3548414B2 (en) Flux-cored wire for hardfacing welding
Vasilescu et al. Hardfacing corrosion and wear resistant alloys
Henderson et al. Alloy classification of hardfacing materials
JP3066390B2 (en) Wear resistant material
JP4579668B2 (en) Sieving machine
JP3462742B2 (en) Surface hardened member, method for producing the same, and deposited metal
JPH0671451A (en) Production of shovel
JP2006241505A (en) High hardness variant carbide particle and wear-resistant material using the same
JP6249772B2 (en) Crushing blade
JPH11207471A (en) Wear resistant liner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060302

R150 Certificate of patent or registration of utility model

Ref document number: 3779529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees