JP3779314B1 - Tantalum carbide-coated carbon material and method for producing the same - Google Patents

Tantalum carbide-coated carbon material and method for producing the same Download PDF

Info

Publication number
JP3779314B1
JP3779314B1 JP2005255744A JP2005255744A JP3779314B1 JP 3779314 B1 JP3779314 B1 JP 3779314B1 JP 2005255744 A JP2005255744 A JP 2005255744A JP 2005255744 A JP2005255744 A JP 2005255744A JP 3779314 B1 JP3779314 B1 JP 3779314B1
Authority
JP
Japan
Prior art keywords
tantalum carbide
coating film
carbon material
plane
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005255744A
Other languages
Japanese (ja)
Other versions
JP2008308701A (en
Inventor
広和 藤原
典正 山田
純久 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005255744A priority Critical patent/JP3779314B1/en
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to CA 2723324 priority patent/CA2723324A1/en
Priority to PCT/JP2006/302418 priority patent/WO2006085635A1/en
Priority to CA 2559042 priority patent/CA2559042C/en
Priority to JP2006523476A priority patent/JP5275567B2/en
Priority to EP20060713560 priority patent/EP1852407B9/en
Priority to KR1020067019705A priority patent/KR100835157B1/en
Priority to US10/592,085 priority patent/US8216667B2/en
Priority to TW95104538A priority patent/TWI324192B/en
Application granted granted Critical
Publication of JP3779314B1 publication Critical patent/JP3779314B1/en
Priority to HK07110415A priority patent/HK1105096A1/en
Publication of JP2008308701A publication Critical patent/JP2008308701A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】高温下の還元性ガス(特に、アンモニア、水素、炭化水素ガスなど)に対して、優れた耐食性および耐熱衝撃性を有する炭化タンタル被覆炭素材料およびその製造方法を提供すること。
【解決手段】炭素基材1と、前記炭素基材1上に形成されかつ(220)面に配向した炭化タンタルの結晶から実質的になる被覆膜2とを有する、炭化タンタル被覆炭素材料10。被覆膜2のX線回折パターンにおいて、好ましくは、炭化タンタルの(220)面に基く回折強度が最大の強度を示しかつ2番目に大きな強度の回折強度の4倍以上の強度を示し、また、好ましくは、炭化タンタルの(220)面に基く回折強度の半価幅が0.2°以下である。
【選択図】 図1
A tantalum carbide-coated carbon material having excellent corrosion resistance and thermal shock resistance against a reducing gas (particularly ammonia, hydrogen, hydrocarbon gas, etc.) at a high temperature and a method for producing the same.
A tantalum carbide-coated carbon material 10 having a carbon substrate 1 and a coating film 2 formed on the carbon substrate 1 and substantially made of a tantalum carbide crystal oriented in a (220) plane. . In the X-ray diffraction pattern of the coating film 2, it is preferable that the diffraction intensity based on the (220) plane of tantalum carbide shows the maximum intensity and the intensity of the diffraction intensity of the second largest intensity is four times or more. Preferably, the half width of the diffraction intensity based on the (220) plane of tantalum carbide is 0.2 ° or less.
[Selection] Figure 1

Description

本発明は炭化タンタル被覆炭素材料およびその製造方法に関し、詳しくは、SiCやGaNなどといった化合物半導体の単結晶形成装置の部材として使用し得る炭化タンタル被覆炭素材料およびその製造方法に関する。   The present invention relates to a tantalum carbide-coated carbon material and a method for producing the same, and more particularly to a tantalum carbide-coated carbon material that can be used as a member of a compound semiconductor single crystal forming apparatus such as SiC or GaN and a method for producing the same.

従来から、Si、GaN、SiCなどといった半導体用単結晶の製造において、エピタキシャル成長を行う際にはMOCVDやMOVPEと呼ばれるCVD装置やMBE装置などが使用されている。SiCの製造では、1800℃以上の高温を要する昇華法やHTCVD法(高温CVD法)などがしばしば用いられる。これらの半導体用単結晶の製造では、キャリアガスや原料ガスとして水素、アンモニア、炭化水素ガスなどが一般的に使用されている。   Conventionally, in the production of single crystals for semiconductors such as Si, GaN, SiC, etc., a CVD apparatus called MBCVD apparatus or MBE apparatus is used for epitaxial growth. In the manufacture of SiC, a sublimation method or an HTCVD method (high temperature CVD method) that requires a high temperature of 1800 ° C. or higher is often used. In the production of these single crystals for semiconductors, hydrogen, ammonia, hydrocarbon gas or the like is generally used as a carrier gas or a raw material gas.

800℃以上の高温では、炭素材料はアンモニアや水素ガスとガス化反応してメタンガスを生成して容積変化と重量減少を生じる。容積変化によって、例えば、ヒーターの抵抗が変化してプロセス温度の変動が生じることによるエピタキシャル成長層の品質悪化が懸念される。また、容積変化によって、結晶ウェハーを保持するサセプタの、ウェハーとの接触面が粗くなり、ウェハーの温度分布が不均一になって、エピタキシャル成長層に欠陥が生じることが懸念される。炭素材料と上記ガスとの反応は、特に1000℃以上でさらに速くなり、極めて短時間でヒーターやサセプタが劣化する。炭素材料のメタン化を抑制するため、サセプタやヒーターなどといった炉内部材として、CVD法によって炭素基材上に緻密な炭化ケイ素を被覆した複合材料が使用されている。しかし、1300℃で炭化ケイ素のガス化反応が始まり、1500℃以上の高温では、炭化ケイ素被膜は水素とガス化反応して5〜30μm/hの速度で腐食する。サセプタを構成する炭化ケイ素被膜が水素によって腐食されるとクラックや剥離を生じて、内部の炭素材料が腐食され、さらに、炭素材料中に残留していたN、O、COなどのガスが放出して半導体デバイス用の結晶に取り込まれ、得られる半導体デバイスがドーピング不良を呈する原因となる。 At a high temperature of 800 ° C. or higher, the carbon material undergoes a gasification reaction with ammonia or hydrogen gas to generate methane gas, causing volume change and weight loss. Due to the change in volume, there is a concern that the quality of the epitaxially grown layer is deteriorated due to, for example, a change in the resistance of the heater and a variation in process temperature. Further, due to the volume change, the contact surface of the susceptor holding the crystal wafer becomes rough, and the temperature distribution of the wafer becomes non-uniform, which may cause defects in the epitaxial growth layer. The reaction between the carbon material and the gas becomes faster especially at 1000 ° C. or higher, and the heater and susceptor deteriorate in a very short time. In order to suppress methanation of a carbon material, a composite material in which a dense silicon carbide is coated on a carbon substrate by a CVD method is used as an in-furnace member such as a susceptor or a heater. However, the gasification reaction of silicon carbide starts at 1300 ° C., and at a high temperature of 1500 ° C. or higher, the silicon carbide coating gasifies with hydrogen and corrodes at a rate of 5 to 30 μm / h. When the silicon carbide film constituting the susceptor is corroded by hydrogen, cracks and peeling occur, the internal carbon material is corroded, and further, gases such as N 2 , O 2 , and CO 2 remaining in the carbon material Is released and taken into the crystal for a semiconductor device, which causes the resulting semiconductor device to exhibit poor doping.

そこで、耐食性を高めるためにヒーターやサセプタなどの炭素材料上に炭化タンタル層を被覆することが試みられた。特許文献1および特許文献2の開示によれば、AIP法で炭化タンタル微粒子を堆積してなる膜で被覆された炭素材料は、従来よりもヒーターやサセプタとして長く使用し得る。また、CVD法を用いると、さらに緻密で耐食性に優れた炭化タンタル被膜を形成することができ、さらなる長寿命化が期待できる。なぜなら、CVD法では結晶性が発達した炭化タンタル被膜を容易に得ることができるためである。しかし、CVD法によって結晶性を発達させた場合、炭化タンタル被膜は柱状構造をもち柔軟性が低下してクラックが生じやすい。クラックを通してアンモニアガスや水素ガスが炭素基材を腐食すると寿命が短くなってしまう。   In order to improve the corrosion resistance, an attempt has been made to coat a tantalum carbide layer on a carbon material such as a heater or a susceptor. According to the disclosure of Patent Document 1 and Patent Document 2, a carbon material coated with a film formed by depositing tantalum carbide fine particles by the AIP method can be used longer as a heater or a susceptor than in the past. In addition, when the CVD method is used, it is possible to form a tantalum carbide film that is more dense and excellent in corrosion resistance, and a longer life can be expected. This is because a tantalum carbide film having improved crystallinity can be easily obtained by the CVD method. However, when crystallinity is developed by the CVD method, the tantalum carbide coating has a columnar structure and is less flexible and easily cracks. If ammonia gas or hydrogen gas corrodes the carbon base material through the crack, the life is shortened.

そこで、CVD法を用いた炭化タンタル被膜において、全体的に結晶性が低く、アモルファス状態に近い結晶構造を形成することでクラックや剥離の発生を抑制することが試みられた(特許文献3)。この炭化タンタル被膜は緻密性や柔軟性に優れる。
特開平10−236892号公報 特開平10−245285号公報 特開2004−84057号公報
Therefore, an attempt has been made to suppress the occurrence of cracks and peeling by forming a crystal structure having a low crystallinity as a whole and close to an amorphous state in a tantalum carbide coating using a CVD method (Patent Document 3). This tantalum carbide coating is excellent in denseness and flexibility.
JP-A-10-236892 Japanese Patent Laid-Open No. 10-245285 JP 2004-84057 A

しかし、本発明者らの試験によれば、特許文献3に記載の炭化タンタル被膜を持つ材料は、水素とアンモニアとの混合ガス雰囲気中、1500℃の温度で数回使用しただけで、炭化タンタルの結晶構造や結晶性が変化してクラックや剥離してしまうことが分かった。また、高温では、水素やアンモニアに対して炭素は非常に弱く、タンタルは水素を吸蔵して脆化する。図8は、特許文献3の方法で得られる被覆膜の顕微鏡観察像である。このように、1500℃における数回の使用によって、結晶化していない炭素やタンタルが水素やアンモニアによって腐食してピンホールが発生し、結晶構造や結晶性の変化によってクラックが発生して、炭化タンタル被膜の嵩密度が著しく減少する。特許文献3に記載されるように、全体的に結晶性が低く、アモルファス状態に近い結晶構造を有する炭化タンタル炭素材料は、使用中に膜質が変質して特性を損なうことを本発明者らは初めて見出した。   However, according to the tests by the present inventors, the material having a tantalum carbide film described in Patent Document 3 is used only in a mixed gas atmosphere of hydrogen and ammonia at a temperature of 1500 ° C. several times. It has been found that the crystal structure and crystallinity of the film changed and cracked or peeled off. At high temperatures, carbon is very weak against hydrogen and ammonia, and tantalum occludes hydrogen and becomes brittle. FIG. 8 is a microscopic observation image of the coating film obtained by the method of Patent Document 3. As described above, when used several times at 1500 ° C., non-crystallized carbon or tantalum corrodes with hydrogen or ammonia to generate pinholes, and cracks are generated due to changes in crystal structure or crystallinity. The bulk density of the coating is significantly reduced. As described in Patent Document 3, the present inventors have found that a tantalum carbide carbon material having a crystal structure that is generally low in crystallinity and close to an amorphous state deteriorates in quality during use and deteriorates properties. I found it for the first time.

このような状況を鑑みて、本発明は、高温下の還元性ガス(特に、アンモニア、水素、炭化水素ガスなど)に対して、優れた耐食性および耐熱衝撃性を有する炭化タンタル被覆炭素材料およびその製造方法を提供することを課題とする。   In view of such circumstances, the present invention provides a tantalum carbide-coated carbon material having excellent corrosion resistance and thermal shock resistance against reducing gases at high temperatures (especially ammonia, hydrogen, hydrocarbon gas, etc.) and its It is an object to provide a manufacturing method.

本発明の特徴は以下のとおりである。
(1)炭素基材と、前記炭素基材上に炭化タンタルの(220)面が他のミラー面に対して特異的に発達している炭化タンタルの結晶からなる被覆膜とを有し、被覆膜のX線回折パターンにおいて、炭化タンタルの(220)面の回折線が最大の回折強度を示す、炭化タンタル被覆炭素材料。
(2)被覆膜のX線回折パターンにおいて、炭化タンタルの(220)面の回折線の半価幅が0.2°以下である(1)記載の炭化タンタル被覆炭素材料。
(3)被覆膜のX線回折パターンにおいて、炭化タンタルの(220)面の回折線が最大の回折強度を示しかつ2番目に大きな回折強度の4倍以上の強度を示す、(1)または(2)に記載の炭化タンタル被覆炭素材料。
(4)被覆膜の窒素ガス透過率が10−6cm/sec以下である(1)〜(3)のいずれかに記載の炭化タンタル被覆炭素材料。
(5)被覆膜の厚さが10〜100μmである(1)〜(4)のいずれかに記載の炭化タンタル被覆炭素材料。
(6)炭素基材と、前記炭素基材上に形成された炭化タンタルからなりX線回折パターンにおいて炭化タンタルの(220)面の回折線が最大の回折強度を示す被覆膜とを、1600〜2400℃の熱処理に供して被覆膜の炭化タンタルの結晶性を向上させる工程を有する、炭化タンタル被覆炭素材料の製造方法。
The features of the present invention are as follows.
(1) possess a carbon substrate and a coating film (220) plane of tantalum carbide on the carbon substrate is made of crystals of tantalum carbide which is developed specifically to other mirror surface, A tantalum carbide-coated carbon material in which the diffraction line of the (220) plane of tantalum carbide shows the maximum diffraction intensity in the X-ray diffraction pattern of the coating film .
(2) The tantalum carbide-coated carbon material according to (1), wherein in the X-ray diffraction pattern of the coating film, the half-value width of the diffraction line of the (220) plane of tantalum carbide is 0.2 ° or less.
(3) In the X-ray diffraction pattern of the coating film, the diffraction line of the (220) plane of tantalum carbide shows the maximum diffraction intensity and the intensity of 4 times or more of the second largest diffraction intensity, (1) or The tantalum carbide-coated carbon material according to (2).
(4) The tantalum carbide-coated carbon material according to any one of (1) to (3), wherein the coating film has a nitrogen gas permeability of 10 −6 cm 2 / sec or less.
(5) The tantalum carbide-coated carbon material according to any one of (1) to (4), wherein the coating film has a thickness of 10 to 100 μm.
(6) and the carbon substrate, and a coating film diffraction line of (220) plane of tantalum carbide at Do Ri X-ray diffraction pattern from the formed tantalum carbide on the carbon substrate is a diffraction intensity of the maximum, A method for producing a tantalum carbide-coated carbon material, comprising a step of improving the crystallinity of tantalum carbide in a coating film by subjecting to a heat treatment at 1600 to 2400 ° C.

本発明のように、実質的に一つの結晶面に配向した炭化タンタルの被覆膜を設けることで、熱膨張係数、熱伝導率、ヤング率などの物性値が平準化して歪や熱応力に起因する内部応力が発生し難くなり、急昇温や急冷却時においてもクラックや剥離が発生し難くなる。本発明者らの新知見によれば、炭化タンタルを(220)面に実質的に配向させる、つまり炭化タンタルの(220)面を他のミラー面に対して特異的に発達させることで上記効果が顕著にあらわれ、耐食性、耐熱衝撃性に優れた被覆膜を得ることができる。図2は、本発明で得られる被覆膜の顕微鏡観察像である。
本発明の好適態様では、被覆膜の炭化タンタルの結晶性を著しく向上させることで、炭素基材の腐食や炭化タンタル被覆膜のピンホールの発生をより低減でき、被覆膜の厚さや窒素ガス透過率を特定範囲内にすることで炭素基材の腐食および炭素基材中からのガスの放出をより効果的に抑制できる。本発明の製造方法は、炭化タンタルの被覆膜中に残留するタンタルと炭素を炭化タンタルに転化でき、結晶性をより向上させた被覆膜を形成でき、例えば、長寿命であり製造条件が安定し歩留まりが高い炉材を提供できる。
By providing a coating film of tantalum carbide substantially oriented on one crystal plane as in the present invention, physical properties such as thermal expansion coefficient, thermal conductivity, Young's modulus are leveled, and strain and thermal stress are reduced. The resulting internal stress is less likely to occur, and cracks and delamination are less likely to occur during rapid heating and rapid cooling. According to the new knowledge of the present inventors, the above effect is achieved by orienting tantalum carbide substantially in the (220) plane, that is, by specifically developing the (220) plane of tantalum carbide with respect to other mirror planes. Appears significantly, and a coating film excellent in corrosion resistance and thermal shock resistance can be obtained. FIG. 2 is a microscopic observation image of the coating film obtained in the present invention.
In a preferred embodiment of the present invention, the crystallinity of tantalum carbide in the coating film is remarkably improved, so that the corrosion of the carbon substrate and the generation of pinholes in the tantalum carbide coating film can be further reduced. By making the nitrogen gas permeability within a specific range, corrosion of the carbon substrate and release of gas from the carbon substrate can be more effectively suppressed. The production method of the present invention can convert tantalum and carbon remaining in the tantalum carbide coating film to tantalum carbide, and can form a coating film with improved crystallinity. A stable and high yield furnace material can be provided.

以下、図面を参照しながら本発明を詳細に説明する。図1は、本発明の炭化タンタル被覆炭素材料の模式図である。本発明の炭化タンタル被覆炭素材料10は、炭素基材1と被覆膜2とを有する。被覆膜2は炭素基材1上に形成され、他のミラー面に対して(220)面が特異的に発達した炭化タンタルの結晶からなる。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view of a tantalum carbide-coated carbon material of the present invention. The tantalum carbide-coated carbon material 10 of the present invention has a carbon substrate 1 and a coating film 2. The coating film 2 is formed on the carbon substrate 1 and is made of a tantalum carbide crystal whose (220) plane is specifically developed with respect to other mirror surfaces.

<炭素基材>
本発明で用いる炭素基材1は、主として炭素からなる基材であれば特に限定されない。炭素の形態は特に限定されず、一般黒鉛、等方性黒鉛、炭素繊維複合材料などが例示される。
<Carbon substrate>
The carbon substrate 1 used in the present invention is not particularly limited as long as it is a substrate mainly composed of carbon. The form of carbon is not particularly limited, and examples thereof include general graphite, isotropic graphite, and carbon fiber composite material.

本発明の炭化タンタル被覆炭素材料を半導体製造用装置の炉内部材として用いる場合などには、炭素基材が不純物を極力含まないことが好ましく、具体的には、1000℃基準のガス放出圧力は少なければ少ないほどよく、好ましくは10−4Pa/g以下である。1000℃基準のガス放出圧力とは、炭素基材の表面および細孔に吸着したガス分子が1000℃の温度下で脱離し、脱離したガスが雰囲気中の圧力を上昇させる圧力変化量を意味し、具体的には、特許第2684106号に開示される昇温脱離スペクトル(TDS)などにより測定することができる。 When the tantalum carbide-coated carbon material of the present invention is used as an in-furnace member of a semiconductor manufacturing apparatus, it is preferable that the carbon base material contains as little impurities as possible. Specifically, the gas discharge pressure based on 1000 ° C. is The smaller the amount, the better, and preferably 10 −4 Pa / g or less. The gas discharge pressure based on 1000 ° C. means the amount of pressure change by which gas molecules adsorbed on the surface and pores of the carbon substrate are desorbed at a temperature of 1000 ° C., and the desorbed gas increases the pressure in the atmosphere. Specifically, it can be measured by a temperature-programmed desorption spectrum (TDS) disclosed in Japanese Patent No. 2684106.

炭素基材の熱膨張係数は好ましくは6.5×10−6〜9.0×10−6/Kの範囲である。この範囲は、炭化タンタルの熱膨張係数(6.9×10−6〜7.8×10−6/K)に近いことを考慮している。炭素基材の熱膨張係数が大きすぎたり小さすぎたりすると、炭化タンタルの熱膨張係数との差が大きくなる。その場合、炭化タンタルの被覆膜を炭素基材に高温にて形成した後に降温する際に、該被覆膜に引張応力または圧縮応力が発生して、該被覆膜に亀裂が生じたり、該被覆膜が炭素基材から剥離したりする懸念がある。炭素基材の熱膨張係数は市販の装置で測定することができ、装置の一例として、株式会社リガク製熱分析装置ThermoPlus 2 TMA8310が挙げられる。測定の温度範囲は293〜1273Kとし、SiOをリファレンスとしてN雰囲気中で炭素基材の熱膨張係数を測定できる。 The thermal expansion coefficient of the carbon substrate is preferably in the range of 6.5 × 10 −6 to 9.0 × 10 −6 / K. This range is considered to be close to the thermal expansion coefficient (6.9 × 10 −6 to 7.8 × 10 −6 / K) of tantalum carbide. If the thermal expansion coefficient of the carbon substrate is too large or too small, the difference from the thermal expansion coefficient of tantalum carbide becomes large. In that case, when the temperature is lowered after the tantalum carbide coating film is formed on the carbon substrate at a high temperature, a tensile stress or a compressive stress is generated in the coating film, and the coating film is cracked, There is a concern that the coating film may be peeled off from the carbon substrate. The thermal expansion coefficient of the carbon base material can be measured with a commercially available apparatus, and an example of the apparatus is Rigaku Corporation thermal analysis apparatus ThermoPlus 2 TMA8310. The measurement temperature range is 293 to 1273 K, and the thermal expansion coefficient of the carbon substrate can be measured in an N 2 atmosphere using SiO 2 as a reference.

炭素基材の嵩比重は特に限定されない。炭素基材自体の機械的強度の向上と、炭素基材から炭化タンタルの被覆膜が剥離しにくくなることを考慮すると、炭素基材の嵩比重は、好ましくは1.65〜1.90g/cmであり、より好ましくは1.73〜1.83g/cm程度である。 The bulk specific gravity of the carbon substrate is not particularly limited. Considering the improvement of the mechanical strength of the carbon substrate itself and the difficulty in peeling off the tantalum carbide coating film from the carbon substrate, the bulk specific gravity of the carbon substrate is preferably 1.65 to 1.90 g / cm 3 , more preferably about 1.73 to 1.83 g / cm 3 .

炭素基材は多孔質であってもよく、炭素基材の平均気孔半径は、好ましくは0.01〜5μmである。ここで「平均気孔半径」は、水銀圧入法により求められ、最大圧力98MPa、試料と水銀の接触角141.3°としたときの累積気孔容積の1/2の容積を示す半径として定義される。平均気孔半径が0.01μm以上であれば、いわゆるアンカー効果が十分発揮して、炭化タンタルの被覆膜が剥離しにくくなる。平均気孔半径が5μm以下であれば、高温における炭素基材からの放出ガスの量が少なくなる。   The carbon substrate may be porous, and the average pore radius of the carbon substrate is preferably 0.01 to 5 μm. Here, the “average pore radius” is determined by a mercury intrusion method, and is defined as a radius indicating a volume that is ½ of the cumulative pore volume when the maximum pressure is 98 MPa and the contact angle between the sample and mercury is 141.3 °. . If the average pore radius is 0.01 μm or more, the so-called anchor effect is sufficiently exerted, and the tantalum carbide coating film is difficult to peel off. When the average pore radius is 5 μm or less, the amount of gas released from the carbon base material at high temperatures is reduced.

炭素基材中の不純物は少ないほど好ましく、不純物として含まれる各元素は、各々好ましくは、Alは0.3ppm以下、Feは1.0ppm以下、Mgは0.1ppm以下、Siは0.1ppm以下である。炭素基材の総灰分(本明細書では、単に灰分ともいう)は好ましくは10ppm以下である。前記範囲内であれば、高温で炭化タンタルと化学反応する量が少なく、炭化タンタルの被覆膜が炭素基材から剥離しにくくなり好ましい。灰分は、JIS−R−7223で規定される灰分の分析方法などにより測定することができる。   The smaller the impurities in the carbon substrate, the more preferable, and the elements contained as impurities are preferably Al, 0.3 ppm or less, Fe, 1.0 ppm or less, Mg, 0.1 ppm or less, and Si, 0.1 ppm or less. It is. The total ash content (also simply referred to as ash content in the present specification) of the carbon substrate is preferably 10 ppm or less. If it is in the said range, the quantity which chemically reacts with tantalum carbide at high temperature is small, and the coating film of tantalum carbide is difficult to peel from the carbon substrate, which is preferable. The ash content can be measured by an ash content analysis method defined in JIS-R-7223.

上記のように不純物濃度が低い炭素基材を得る手段の限定的ではない一例として、ハロゲン系ガス雰囲気、大気圧中、1800〜2200℃、5〜30時間の処理が挙げられる(特開平9−100162号公報)。ここで、ハロゲン系ガスとは、ハロゲンまたはその化合物のガスのことであり、例えば塩素、塩素化合物、フッ素、フッ素化合物、塩素とフッ素とを同一分子内に含む化合物(モノクロロトリフルオルメタン、トリクロロモノフルオルメタン、ジクロルフルオルエタン、トリクロロモノフルオルエタン等)などが挙げられる。ハロゲン系ガスと、金属不純物などといった炭素基材に含まれる不純物とが反応して、ハロゲン化物として蒸発または揮散して、炭素基材から除去される。この後、同一の処理炉で、ハロゲン系ガスを所定時間流した後、水素ガスを反応容器内に供給し、硫黄分等の不純物を水素化物として析出させることにより除去する。これにより、炭素基材の不純物は極めて少なくなり、上述したような範囲内になる。CVD処理を行う前に、炭素基材の表面の洗浄のために、有機溶媒浴中での超音波洗浄を行った後に、140℃の乾燥器中で24時間乾燥させるのが好ましい。   As a non-limiting example of a means for obtaining a carbon base material having a low impurity concentration as described above, treatment in a halogen-based gas atmosphere and atmospheric pressure, 1800 to 2200 ° C., for 5 to 30 hours can be mentioned (Japanese Patent Laid-Open No. 9-2000). 100162). Here, the halogen-based gas is a gas of halogen or a compound thereof, for example, chlorine, a chlorine compound, fluorine, a fluorine compound, a compound containing chlorine and fluorine in the same molecule (monochlorotrifluoromethane, trichloromono Fluoromethane, dichlorofluoroethane, trichloromonofluoroethane, etc.). The halogen-based gas reacts with impurities contained in the carbon base material such as metal impurities to evaporate or volatilize as a halide, and is removed from the carbon base material. Thereafter, in the same processing furnace, after flowing a halogen-based gas for a predetermined time, hydrogen gas is supplied into the reaction vessel, and impurities such as sulfur are removed by precipitation as hydrides. Thereby, the impurities of the carbon base material are extremely reduced, and are within the above-described range. Before performing the CVD treatment, it is preferable to perform ultrasonic cleaning in an organic solvent bath for cleaning the surface of the carbon substrate and then to dry in a dryer at 140 ° C. for 24 hours.

<被覆膜>
本発明の炭化タンタル被覆炭素材料10は、(220)面が他のミラー面に対して特異的に発達している炭化タンタルの結晶からなる被覆膜2を有する。該被覆膜2は上述の炭素基材1上に形成される。特許文献3に記載されるように、従来は数多くの結晶面に配向させたり結晶性を低下させることが指向されていたが、本発明では従来とは全く異なり、特定の結晶面、つまり(220)面に配向させることで、耐食性および耐熱衝撃性に優れた炭化タンタル被覆炭素材料を得ることができる。本発明では、被覆膜2は炭素基材1の少なくとも一部の上に形成され、好ましくは炭素基材1の全表面を覆うように形成される。被覆膜2は炭素基材1上に直接に形成されていてもよいし、中間層を介して形成されていてもよい。
<Coating film>
The tantalum carbide-coated carbon material 10 of the present invention has a coating film 2 made of tantalum carbide crystals whose (220) plane is specifically developed with respect to other mirror surfaces. The coating film 2 is formed on the carbon substrate 1 described above. As described in Patent Document 3, conventionally, orientation has been directed to a large number of crystal planes or crystallinity has been reduced. However, in the present invention, unlike a conventional one, a specific crystal plane, that is, (220 The tantalum carbide-coated carbon material having excellent corrosion resistance and thermal shock resistance can be obtained by orienting in the plane. In the present invention, the coating film 2 is formed on at least a part of the carbon substrate 1, and preferably formed so as to cover the entire surface of the carbon substrate 1. The coating film 2 may be formed directly on the carbon substrate 1 or may be formed via an intermediate layer.

本発明によれば、炭化タンタルの被覆膜は、炭化タンタルの(220)面を他のミラー面に対して特異的に発達させることで形成され、本発明の作用・効果を阻害しない限りにおいて他の結晶面に配向した炭化タンタルが存在していてもよい。被覆膜を構成する炭化タンタルの配向の程度は、X線回折によって定量化することができる。   According to the present invention, the coating film of tantalum carbide is formed by specifically developing the (220) surface of tantalum carbide with respect to other mirror surfaces, so long as it does not hinder the operation and effect of the present invention. There may be tantalum carbide oriented in other crystal planes. The degree of orientation of the tantalum carbide constituting the coating film can be quantified by X-ray diffraction.

好ましくは、被覆膜のX線回折パターンにおいて、炭化タンタルの(220)面の回折線は最大の回折強度を示す。より好ましくは、被覆膜のX線回折パターンにおいて、炭化タンタルの(220)面の回折線は最大の回折強度を示しかつ2番目に大きな回折強度の4倍以上、さらに好ましくは8倍以上の強度を示す。被覆膜のX線回折パターンにおいて、炭化タンタルの(220)面の回折線の半価幅は、好ましくは0.2°以下であり、さらに好ましくは0.10°〜0.16°である。被覆膜のX線回折パターンは、被覆膜にX線を照射したときの回折線の強度を測定し、横軸に回折角(2θ)、縦軸に回折強度をプロットして得られる曲線である。炭化タンタルの(220)面の回折線は、上記X線回折パターンの約58°の回折角に表れる。回折強度の高さとは、ピークの最大高さを意味する。回折線の半価幅は、最大高さの1/2の強度におけるピークの幅を意味し、当該ピークに由来する結晶面の結晶性の指標となる。   Preferably, in the X-ray diffraction pattern of the coating film, the diffraction line of the (220) plane of tantalum carbide shows the maximum diffraction intensity. More preferably, in the X-ray diffraction pattern of the coating film, the diffraction line of the (220) plane of tantalum carbide shows the maximum diffraction intensity and is 4 times or more, more preferably 8 times or more of the second largest diffraction intensity. Indicates strength. In the X-ray diffraction pattern of the coating film, the half width of the diffraction line of the (220) plane of tantalum carbide is preferably 0.2 ° or less, and more preferably 0.10 ° to 0.16 °. . The X-ray diffraction pattern of the coating film is a curve obtained by measuring the intensity of diffraction lines when the coating film is irradiated with X-rays and plotting the diffraction angle (2θ) on the horizontal axis and the diffraction intensity on the vertical axis. It is. The diffraction line of (220) plane of tantalum carbide appears at a diffraction angle of about 58 ° of the X-ray diffraction pattern. The high diffraction intensity means the maximum peak height. The half width of the diffraction line means a peak width at an intensity of ½ of the maximum height, and is an index of crystallinity of a crystal plane derived from the peak.

被覆膜のX線回折パターンは、公知の方法によって求めることができ、具体的には、炭素基材上に炭化タンタルの被覆膜を形成した後、Cuの管球を使用して、炭化タンタルの被覆膜の表面にX線を照射して行う。X線分析装置として、リガク社製X−ray Diffractometer RINT2000が例示される。被覆膜の結晶プロファイルを測定して、装置や結晶構造などに起因する適切な補正処理をしてX線回折パターンが得られ、該パターンから回折線の強度および半価幅を求める。   The X-ray diffraction pattern of the coating film can be obtained by a known method. Specifically, after a tantalum carbide coating film is formed on a carbon substrate, carbonization is performed using a Cu tube. This is performed by irradiating the surface of the tantalum coating film with X-rays. An example of the X-ray analyzer is X-ray Diffractometer RINT2000 manufactured by Rigaku Corporation. An X-ray diffraction pattern is obtained by measuring the crystal profile of the coating film and performing appropriate correction processing due to the apparatus and crystal structure, and the intensity and half-value width of the diffraction line are obtained from the pattern.

本発明の好ましい態様では、被覆膜の窒素ガス透過率は10−6cm/sec以下であり、より好ましくは10−8〜10−11cm/secである。窒素ガス透過率が小さければ被覆膜が緻密かつ強固であるので好ましい。一般に、基材黒鉛の窒素ガス透過率は10−2〜10−3cm/secである。被覆膜の窒素ガス透過率が10−6cm/sec以下であれば、黒鉛の1/1000以下となるので、十分に緻密であるといえる。 In a preferred embodiment of the present invention, the nitrogen gas permeability of the coating film is 10 −6 cm 2 / sec or less, more preferably 10 −8 to 10 −11 cm 2 / sec. A low nitrogen gas permeability is preferable because the coating film is dense and strong. Generally, the nitrogen gas permeability of the base graphite is 10 −2 to 10 −3 cm 2 / sec. If the nitrogen gas permeability of the coating film is 10 −6 cm 2 / sec or less, it is 1/1000 or less that of graphite, so it can be said that the coating film is sufficiently dense.

被覆膜の窒素ガス透過率は、文献(炭素、151(1992年)、p8.)の記載に準じて測定される。図3に測定の概要を示す。測定試料は、直径30mm以上の円板状とし、測定前に十分乾燥する。測定試料をセル内に設置し、セル一次側および二次側のタンクをロータリー式真空ポンプおよびターボ分子ポンプで一定の真空値になるまで減圧する。次いで、真空ポンプを停止してバルブを閉める。一次側のタンクにNガスを一定の試験圧で加える。Nガスは一次側から、測定試料を透過して、二次側のタンクへと移動し、二次側のタンクの圧力が上昇し始める。その圧力上昇率を測定する。ガス透過率(K)は、次の式(1)、(2)にしたがって算出する。
K=(QL)/(ΔPA)…(1)
Q={(p−p)V}/t…(2)
ここで、Kは窒素ガス透過率、Qは通気量、ΔPは一次側タンクと二次側タンクの圧力差、Aは透過面積、Lは測定試料の厚さ、pは二次側タンクの初期圧力、pは二次側タンクの最終圧力、Vは二次側タンクの容積、tは測定時間である。
被覆膜の窒素ガス透過率(K)を求めるには、まず、炭素基材上に被覆膜を設けた炭化タンタル被覆炭素材料の窒素ガス透過率(K)を測定し、次いで研磨により上記被覆膜を除去し、炭素基材のみの窒素ガス透過率(K)を測定する。そして、次の関係式(3)からKを算出する。
(L+L)/K=L/K+L/K…(3)
ここで、Lは炭素基材の厚さ、Lは炭化タンタルの被膜層の厚さである。
The nitrogen gas permeability of the coating film is measured according to the description in the literature (Carbon, 151 (1992), p8.). FIG. 3 shows an outline of the measurement. The measurement sample is a disk having a diameter of 30 mm or more and is sufficiently dried before measurement. The measurement sample is placed in the cell, and the tanks on the primary and secondary sides of the cell are depressurized with a rotary vacuum pump and a turbo molecular pump until a certain vacuum value is obtained. The vacuum pump is then stopped and the valve is closed. N 2 gas is added to the primary tank at a constant test pressure. From the primary side, the N 2 gas passes through the measurement sample and moves to the secondary side tank, and the pressure in the secondary side tank begins to rise. Measure the rate of pressure rise. The gas permeability (K) is calculated according to the following formulas (1) and (2).
K = (QL) / (ΔPA) (1)
Q = {(p 2 −p 1 ) V 0 } / t (2)
Here, K is the nitrogen gas permeability, Q is the air flow rate, ΔP is the pressure difference between the primary side tank and the secondary side tank, A is the permeation area, L is the thickness of the measurement sample, and p 1 is the secondary side tank. The initial pressure, p 2 is the final pressure of the secondary tank, V 0 is the volume of the secondary tank, and t is the measurement time.
In order to obtain the nitrogen gas permeability (K 2 ) of the coating film, first, the nitrogen gas permeability (K 0 ) of the tantalum carbide-coated carbon material in which the coating film is provided on the carbon substrate is measured, and then polished. To remove the coating film and measure the nitrogen gas permeability (K 1 ) of only the carbon substrate. Then, to calculate the K 2 from the following equation (3).
(L 1 + L 2 ) / K 0 = L 1 / K 1 + L 2 / K 2 (3)
Here, L 1 is the thickness of the carbon substrate, and L 2 is the thickness of the coating layer of tantalum carbide.

本発明では、被覆膜の厚さは、好ましくは10〜100μmであり、より好ましくは30〜80μmである。図4に示されるように被覆膜の厚さが10μm以上であれば、被覆膜の窒素ガス透過率が著しく小さくなる。また、被覆膜の厚さが10μm以上であれば、被覆膜を構成する、(220)面に配向した炭化タンタルの結晶性が著しく向上し、耐食性や耐熱衝撃性が向上する。一方、被覆膜の厚さが増すと被覆膜の内部応力が増大して該被覆膜が剥離し易くなり耐熱衝撃性が低下することが懸念されるため、膜厚は100μm以下が好ましい。また、好ましくは、被覆膜の熱膨張係数は6.9×10−6〜7.8×10−6/Kである。 In this invention, the thickness of a coating film becomes like this. Preferably it is 10-100 micrometers, More preferably, it is 30-80 micrometers. As shown in FIG. 4, when the thickness of the coating film is 10 μm or more, the nitrogen gas permeability of the coating film is remarkably reduced. If the thickness of the coating film is 10 μm or more, the crystallinity of the tantalum carbide oriented in the (220) plane constituting the coating film is remarkably improved, and the corrosion resistance and thermal shock resistance are improved. On the other hand, if the thickness of the coating film increases, the internal stress of the coating film increases and the coating film is likely to be peeled off and the thermal shock resistance is liable to be reduced. Therefore, the film thickness is preferably 100 μm or less. . Preferably, the thermal expansion coefficient of the coating film is 6.9 × 10 −6 to 7.8 × 10 −6 / K.

被覆膜を構成する炭化タンタルのタンタル源は、タンタルを含むものであれば限定はされない。以下、化学蒸着(CVD)で被覆膜を形成する場合を例示するが、本発明は以下の例に限定されない。TaClやTaFなどといったタンタルのハロゲン化合物、および、CH、Cなどといった炭化水素(好ましくは炭素数1〜4のアルカン)の原料ガスに、水素ガスやアルゴンガスを添加、混合した混合ガスを、熱分解反応に供し、前記熱分解反応で得られる炭化タンタルを炭素基材に堆積させて被覆膜を得る。 The tantalum carbide tantalum source constituting the coating film is not limited as long as it contains tantalum. Hereinafter, although the case where a coating film is formed by chemical vapor deposition (CVD) is illustrated, this invention is not limited to the following examples. Hydrogen gas or argon gas is added to and mixed with a raw material gas of a tantalum halogen compound such as TaCl 5 or TaF 5 and a hydrocarbon (preferably an alkane having 1 to 4 carbon atoms) such as CH 4 or C 3 H 8. The mixed gas is subjected to a pyrolysis reaction, and tantalum carbide obtained by the pyrolysis reaction is deposited on a carbon substrate to obtain a coating film.

図5は、高周波誘導加熱式真空炉の模式図である。該真空炉は、上記の製造方法を実施するためのCVD装置として用いることができる。反応室には二重石英管とその内側に断熱材および誘導負荷となる黒鉛炉壁、さらに反応室を加熱するための高周波コイルなどからなる加熱装置が配設されている。この反応室に原料ガスを導入するためのガス導入管を配管し、反応室内を排気するための排気口を設ける。排気口には可変バルブを設置しており、このバルブの操作により反応室内の圧力を調整することができる。   FIG. 5 is a schematic diagram of a high-frequency induction heating vacuum furnace. The vacuum furnace can be used as a CVD apparatus for carrying out the above manufacturing method. The reaction chamber is provided with a double quartz tube, a heat insulating material and a graphite furnace wall serving as an induction load, and a heating device including a high-frequency coil for heating the reaction chamber. A gas introduction pipe for introducing the raw material gas into the reaction chamber is provided, and an exhaust port for exhausting the reaction chamber is provided. A variable valve is installed at the exhaust port, and the pressure in the reaction chamber can be adjusted by operating this valve.

被覆膜の製造に際しては、反応管上流のガス導入管からTa原料ガス、炭化水素ガス、水素ガスおよびアルゴンガスの混合ガスを供給する。Ta原料ガスは、上述のタンタルのハロゲン化物等を原料タンク内で加熱、気化させて供給する。なお、水素ガスやアルゴンガスとしては純度99.99%以上、酸素含有量5ppm以下の高純度のものを用いることが好ましい。通常、製造は真空引き、加熱、CVD処理、熱処理、冷却の手順で行う。まず炭素基材を反応室内に1個又は複数個入れた後、反応室内を0.1〜0.01Torr程度まで真空引きする。次いで反応室内にHガスを7000cc/min導入し1100℃程度まで加熱し反応室内の脱ガス処理を行う。その後反応室内を800〜950℃程度まで冷却し、この温度で炭素基材上にCVD処理を行って炭化タンタルを被覆する。CVD処理は反応室内の炭素基材の温度を800〜950℃、より好ましくは800〜900℃に、反応室内の圧力を1〜400Torrにして行う。温度が750℃以下であると1分子中のC原子に対するTa原子の比率が1.5以上となる被膜が形成され易く、目的の炭化タンタル被膜が得難い。なお、本発明における炭化タンタルは、TaCなる化学式で表現し得る化合物であり、xは好ましくは0.8〜1.2である。また950℃以上の場合もしくは圧力が400Torr以上である場合、炭化タンタルは微粉として生成され易く、目的の炭化タンタル被膜が得難い。 When manufacturing the coating film, a mixed gas of Ta source gas, hydrocarbon gas, hydrogen gas and argon gas is supplied from a gas introduction pipe upstream of the reaction pipe. The Ta source gas is supplied by heating and vaporizing the above-mentioned tantalum halide in the source tank. Note that it is preferable to use a high purity hydrogen gas or argon gas having a purity of 99.99% or more and an oxygen content of 5 ppm or less. Usually, the production is carried out in the order of vacuuming, heating, CVD treatment, heat treatment, and cooling. First, after putting one or more carbon base materials in the reaction chamber, the reaction chamber is evacuated to about 0.1 to 0.01 Torr. Next, 7000 cc / min of H 2 gas is introduced into the reaction chamber and heated to about 1100 ° C. to perform degassing treatment in the reaction chamber. Thereafter, the reaction chamber is cooled to about 800 to 950 ° C., and the carbon substrate is subjected to CVD treatment at this temperature to coat tantalum carbide. The CVD treatment is performed at a temperature of the carbon substrate in the reaction chamber of 800 to 950 ° C., more preferably 800 to 900 ° C., and a pressure of 1 to 400 Torr. When the temperature is 750 ° C. or lower, a film in which the ratio of Ta atoms to C atoms in one molecule is 1.5 or more is easily formed, and the desired tantalum carbide film is difficult to obtain. In addition, the tantalum carbide in the present invention is a compound that can be expressed by a chemical formula of Ta x C, and x is preferably 0.8 to 1.2. Further, when the temperature is 950 ° C. or higher, or when the pressure is 400 Torr or higher, tantalum carbide is easily generated as fine powder and it is difficult to obtain the desired tantalum carbide coating.

反応室内に供給する原料ガスは、反応室内の炭素基材が所定の温度および圧力になった後に、該反応室内に導入する。このときのそれぞれのガス流量は、例えば、TaClガスが20cc/min、Cガスが250cc/min、水素ガスが1000cc/min、アルゴンガスが4000cc/minである。温度、圧力、各ガス流量および処理時間などのCVD条件を適宜組み合わせることにより成長速度を1〜50μm/hrに制御することができ、炭素基材上に所望の厚みの炭化タンタル被膜を形成することができる。 The source gas supplied into the reaction chamber is introduced into the reaction chamber after the carbon substrate in the reaction chamber reaches a predetermined temperature and pressure. The gas flow rates at this time are, for example, 20 cc / min for TaCl 5 gas, 250 cc / min for C 3 H 8 gas, 1000 cc / min for hydrogen gas, and 4000 cc / min for argon gas. The growth rate can be controlled to 1 to 50 μm / hr by appropriately combining CVD conditions such as temperature, pressure, gas flow rates, and processing time, and a tantalum carbide film having a desired thickness is formed on a carbon substrate. Can do.

本発明では、CVD処理によるコーティング後における炭化タンタルの(220)面の回折線は最大の回折強度を示しかつ2番目に大きな回折強度の好ましくは4倍以上であり、炭化タンタルの(220)面の回折線の半価幅は0.2°以下であることが望ましい。もし、半価幅が0.2°を超えていても次に示す熱処理によって結晶性を向上できるが、そのような熱処理をせずに半価幅が0.2°を超えたままであっても本発明に包含される。さらに結晶性を向上させるために好ましくは、炭化タンタルの被覆膜を形成後に1600〜2400℃の熱処理を施す。該熱処理によって、被覆膜中の余剰なタンタルと炭素とが活性化して炭化タンタルに転化し、それによって結晶性が向上する。しかし、熱処理前後における半価幅や回折強度の変化量を少なくすることが望ましい。熱処理は、CVD処理の後、炭化タンタル被覆炭素材料を反応室内に設置した状態で、反応室内を0.1〜0.01Torr程度まで真空引きする。次いでHガス、Arガス、Heガスもしくはこれらのガスに微量な炭化水素ガスを混合したガスを100〜5000cc/minで導入し、反応室内の圧力を400Torrに調整しながら反応室内を加熱する。加熱する温度は1600〜2400℃であり、この温度で5〜10時間処理する。この時の昇温および降温温度は50℃/min以下として被覆膜に発生する熱応力を低減することが望ましい。処理操作が終了すれば、反応室内を所定温度まで冷却した後、製品としての炭化タンタル被膜炭素材料を反応室から取り出す。 In the present invention, the diffraction line of the (220) plane of tantalum carbide after coating by CVD treatment shows the maximum diffraction intensity and is preferably 4 times or more of the second largest diffraction intensity, and the (220) plane of tantalum carbide. The half width of the diffraction line is desirably 0.2 ° or less. Even if the half width exceeds 0.2 °, the crystallinity can be improved by the following heat treatment, but even if the half width remains above 0.2 ° without such heat treatment. Included in the present invention. In order to further improve the crystallinity, it is preferable to perform heat treatment at 1600 to 2400 ° C. after the formation of the tantalum carbide coating film. By the heat treatment, excess tantalum and carbon in the coating film are activated and converted into tantalum carbide, thereby improving crystallinity. However, it is desirable to reduce the amount of change in half width and diffraction intensity before and after heat treatment. In the heat treatment, after the CVD process, the reaction chamber is evacuated to about 0.1 to 0.01 Torr with the tantalum carbide-coated carbon material installed in the reaction chamber. Next, H 2 gas, Ar gas, He gas or a gas obtained by mixing a trace amount of hydrocarbon gas with these gases is introduced at 100 to 5000 cc / min, and the reaction chamber is heated while adjusting the pressure in the reaction chamber to 400 Torr. The heating temperature is 1600 to 2400 ° C., and treatment is performed at this temperature for 5 to 10 hours. At this time, it is desirable to reduce the thermal stress generated in the coating film by setting the temperature rise and fall temperature to 50 ° C./min or less. When the processing operation is completed, the reaction chamber is cooled to a predetermined temperature, and then the tantalum carbide-coated carbon material as a product is taken out from the reaction chamber.

以下、実施例を用いて本発明をより詳しく説明するが、これらの例は本発明を何ら限定するものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail using an Example, these examples do not limit this invention at all.

まず、還元性ガス雰囲気における耐熱衝撃性試験の方法を示す。耐熱衝撃試験の方法は2種類あり、通常のエピタキシャル成長を模擬した試験<熱衝撃試験1>と厳しい条件下を想定した試験<熱衝撃試験2>がある。<熱衝撃試験2>は、通常の使用よりもずっと厳しい条件による試験であって、該試験でクラック等が発生しない炭化タンタル被覆炭素材料は、非常に優れた特性を有するといえる。仮にそのような<熱衝撃試験2>ではクラック等が発生したとしても、<熱衝撃試験1>においてクラック等が発生しない炭化タンタル被覆炭素材料は、十分に本発明の効果を奏しているということができる。
真空炉は石英管を反応室とした高周波誘導加熱炉であり、反応室内部に炭化タンタル被覆炭素材料を設置する。反応室内を0.01Torr以下に真空引きした後、反応室内に3000cc/minの水素と500cc/minのアンモニアの混合ガスを供給して、圧力を760Torrに制御する。
<熱衝撃試験1>では、誘導加熱によって炭化タンタル被覆炭素材料を150℃/minの昇温速度で1500℃まで加熱する。そして、炭化タンタル被覆炭素材料を1500℃で3時間保持する。その後、300℃/minの降温速度で室温まで冷却する。これらを1サイクルとして、100サイクル(合計約300時間)実施する。
<熱衝撃試験2>では、誘導加熱によって炭化タンタル被覆炭素材料を1000℃/minの昇温速度で1500℃まで加熱する。そして、炭化タンタル被覆炭素材料を1500℃で3時間保持する。その後、300℃/minの降温速度で室温まで冷却する。これらを1サイクルとして、1000サイクル(合計約3000時間)実施する。
First, a method for a thermal shock resistance test in a reducing gas atmosphere will be described. There are two types of thermal shock test methods: a test simulating normal epitaxial growth <thermal shock test 1> and a test simulating severe conditions <thermal shock test 2>. <Thermal shock test 2> is a test under conditions much stricter than normal use, and it can be said that the tantalum carbide-coated carbon material which does not generate cracks or the like in the test has very excellent characteristics. Even if a crack or the like occurs in such <thermal shock test 2>, the tantalum carbide-coated carbon material in which no crack or the like occurs in <thermal shock test 1> sufficiently exhibits the effects of the present invention. Can do.
The vacuum furnace is a high-frequency induction heating furnace using a quartz tube as a reaction chamber, and a tantalum carbide-coated carbon material is installed inside the reaction chamber. After evacuating the reaction chamber to 0.01 Torr or less, a mixed gas of 3000 cc / min hydrogen and 500 cc / min ammonia is supplied into the reaction chamber to control the pressure to 760 Torr.
In <thermal shock test 1>, the tantalum carbide-coated carbon material is heated to 1500 ° C. at a temperature increase rate of 150 ° C./min by induction heating. And a tantalum carbide covering carbon material is hold | maintained at 1500 degreeC for 3 hours. Then, it cools to room temperature with the temperature-fall rate of 300 degreeC / min. These are defined as one cycle, and 100 cycles (total of about 300 hours) are performed.
In <Thermal Shock Test 2>, the tantalum carbide-coated carbon material is heated to 1500 ° C. at a rate of temperature increase of 1000 ° C./min by induction heating. And a tantalum carbide covering carbon material is hold | maintained at 1500 degreeC for 3 hours. Then, it cools to room temperature with the temperature-fall rate of 300 degreeC / min. These are defined as one cycle, and 1000 cycles (total of about 3000 hours) are performed.

〔実施例1〜3〕
熱膨張係数が7.8×10−6/K、1000℃基準のガス放出圧力が10−6Pa/g、灰分が2ppmである直径60mm、厚さ10mmの黒鉛基板を上述したハロゲン処理に供した後、下記表1のようなCVD条件によって該炭素基板上に炭化タンタルの被覆膜を形成し、被覆膜のC/Taの組成比はC流量によって、1.0〜1.2に調整した。下記の表1に示すCVD条件を用いて、反応時間を11、18、25時間と変えることで膜厚を21、34、44μmと変えた。その後、さらに水素ガス雰囲気中で2000℃で10時間、熱処理を施して被覆膜の結晶性をさらに向上した。実施例1〜3のX線回折結果を図6に示す。X線回折では、主として(220)面の回折線が確認され、わずかに、(111)、(200)、(311)の各面の回折線が認められた。具体的には、(220)面の回折線が最も強い回折強度を示し、(220)面の半価幅は0.13〜0.15であった。(220)と2番目に強い(311)の強度比は、回折線の強度比で10以上であった(実施例1)。また、表2に示すように水素とアンモニアガスを混合した還元性ガス雰囲気における<熱衝撃試験1>後のガス透過率は5×10−10〜2×10−7cm/secであった。<熱衝撃試験2>後のガス透過率は4×10−10〜2×10−7cm/secであった。このように、(220)面が最も強い回折強度を示した炭化タンタルの被覆膜は緻密であり、ガスの不透過性に優れていることが分かる。
[Examples 1-3]
A graphite substrate having a thermal expansion coefficient of 7.8 × 10 −6 / K, a gas discharge pressure based on 1000 ° C. of 10 −6 Pa / g, an ash content of 2 ppm, a diameter of 60 mm, and a thickness of 10 mm is subjected to the halogen treatment described above. Then, a tantalum carbide coating film is formed on the carbon substrate under the CVD conditions as shown in Table 1 below, and the C / Ta composition ratio of the coating film is 1.0-1 depending on the C 3 H 8 flow rate. Adjusted to .2. Using the CVD conditions shown in Table 1 below, the film thickness was changed to 21, 34, and 44 μm by changing the reaction time to 11, 18, and 25 hours. Thereafter, heat treatment was further performed in a hydrogen gas atmosphere at 2000 ° C. for 10 hours to further improve the crystallinity of the coating film. The X-ray diffraction results of Examples 1 to 3 are shown in FIG. In X-ray diffraction, diffraction lines on (220) plane were mainly confirmed, and slight diffraction lines on each plane (111), (200), and (311) were observed. Specifically, the diffraction line of the (220) plane showed the strongest diffraction intensity, and the half width of the (220) plane was 0.13 to 0.15. The intensity ratio between (220) and the second strongest (311) was 10 or more in the intensity ratio of diffraction lines (Example 1). Further, as shown in Table 2, the gas permeability after <thermal shock test 1> in a reducing gas atmosphere in which hydrogen and ammonia gas were mixed was 5 × 10 −10 to 2 × 10 −7 cm 2 / sec. . The gas permeability after <Thermal Shock Test 2> was 4 × 10 −10 to 2 × 10 −7 cm 2 / sec. Thus, it can be seen that the coating film of tantalum carbide having the strongest diffraction intensity on the (220) plane is dense and excellent in gas impermeability.

〔比較例1〜3〕
CVDの条件を下記表1のように変えたこと、および、被覆膜を形成後の熱処理を省略したことのほかは、実施例1〜3と同様に炭化タンタル被覆炭素材料を製造した。比較例1〜3のX線回折結果を図7に示す。実施例1〜3とは異なり、(200)面や(111)面の回折線が強いプロファイルが得られた。この場合、表2に示すようにコーティング後に炭化タンタルの被覆膜にクラックが発生しており、水素とアンモニアガスを混合した<熱衝撃試験1>後のガス透過率は2×10−5〜9×10−5cm/sec、<熱衝撃試験2>後のガス透過率は2×10−4〜7×10−4cm/secと緻密性に欠けるものであり、黒鉛基材のガス化反応によって重量減少が確認された。このように、炭化タンタル結晶が主として(220)面に配向する場合以外は、緻密性に劣ることが分かる。
[Comparative Examples 1-3]
A tantalum carbide-coated carbon material was produced in the same manner as in Examples 1 to 3, except that the CVD conditions were changed as shown in Table 1 below, and the heat treatment after forming the coating film was omitted. The X-ray diffraction results of Comparative Examples 1 to 3 are shown in FIG. Unlike Examples 1 to 3, profiles with strong diffraction lines on the (200) plane and (111) plane were obtained. In this case, as shown in Table 2, cracks occurred in the coating film of tantalum carbide after coating, and the gas permeability after <thermal shock test 1> in which hydrogen and ammonia gas were mixed was 2 × 10 −5 to 9 × 10 −5 cm 2 / sec, the gas permeability after <Thermal Shock Test 2> is 2 × 10 −4 to 7 × 10 −4 cm 2 / sec and lacks the denseness. A weight reduction was confirmed by the gasification reaction. Thus, it turns out that it is inferior to denseness except a case where a tantalum carbide crystal is mainly oriented in the (220) plane.

〔実施例4〜8〕
実施例1〜3と同様の炭素基材上にCVD法によって炭化タンタルの被覆膜を形成した。CVD条件は、温度を850℃、圧力を1330Paと一定にして、CとTaClの流量を変えて炭化タンタルの成長速度を1〜30μm/hrの範囲で変化させた。実施例4〜6では、被覆膜の形成後、水素ガス雰囲気中の2000℃で10時間、熱処理した。得られた被覆膜の結晶構造をX線回折により調べたところ、(220)面の回折線の強度比が最強であり、2番目に強い回折線の4倍以上の強度であった。表3に示すように半価幅が0.11〜0.14°の範囲でなる被覆膜が得られた。これらはいずれも、還元性ガス雰囲気における耐熱衝撃試験前はクラックや剥離が生じない優れた被覆膜であった。とりわけ、半価幅が0.2°以下と小さい被覆膜は、<熱衝撃試験1>および非常に厳しい条件である<熱衝撃試験2>の後であってもクラックや剥離が生じないきわめて優れた膜であった。
実施例7〜8では、実施例1〜3と同様の炭素基材上にCVD法によって炭化タンタルの被覆膜を形成した。CVD条件は、温度を850℃、圧力を1330Paと一定にして、CとTaClの流量を変えて炭化タンタルの成長速度を31〜50μm/hrの範囲で変化させた。実施例7〜8では、水素ガス雰囲気中での熱処理を省略した。得られた被覆膜の結晶構造をX線回折により調べたところ、(220)面の回折線の強度比が最強であるが、成長速度を変えたことによって、表3に示すように結晶の発達度合(結晶性)が変化しており、半価幅が0.31〜0.75°の範囲で異なる被覆膜が得られた。実施例7〜8の半価幅が大きい被覆膜は、非常に厳しい条件である<熱衝撃試験2>の後においてはガス透過率の増加が見られたが(実施例8)、<熱衝撃試験1>の後ではクラックや剥離が生じない優れた被覆膜であり、実用では問題のない品質であった。
[Examples 4 to 8]
A tantalum carbide coating film was formed by CVD on the same carbon substrate as in Examples 1-3. The CVD conditions were such that the temperature was kept constant at 850 ° C. and the pressure was kept constant at 1330 Pa, and the flow rates of C 3 H 8 and TaCl 5 were changed to change the growth rate of tantalum carbide in the range of 1 to 30 μm / hr. In Examples 4 to 6, after the coating film was formed, heat treatment was performed at 2000 ° C. in a hydrogen gas atmosphere for 10 hours. When the crystal structure of the obtained coating film was examined by X-ray diffraction, the intensity ratio of the (220) plane diffraction lines was the strongest, and the intensity was four times or more that of the second strongest diffraction line. As shown in Table 3, a coating film having a half width in the range of 0.11 to 0.14 ° was obtained. These were all excellent coating films in which cracking and peeling did not occur before the thermal shock test in a reducing gas atmosphere. In particular, a coating film having a small half width of 0.2 ° or less is extremely free from cracking and peeling even after <Thermal Shock Test 1> and <Thermal Shock Test 2>, which is a very severe condition. It was an excellent film.
In Examples 7 to 8, a tantalum carbide coating film was formed on the same carbon substrate as in Examples 1 to 3 by the CVD method. The CVD conditions were such that the temperature was kept constant at 850 ° C. and the pressure was kept constant at 1330 Pa, and the flow rates of C 3 H 8 and TaCl 5 were changed to change the growth rate of tantalum carbide in the range of 31 to 50 μm / hr. In Examples 7 to 8, the heat treatment in a hydrogen gas atmosphere was omitted. When the crystal structure of the obtained coating film was examined by X-ray diffraction, the intensity ratio of diffraction lines on the (220) plane was the strongest, but by changing the growth rate, the crystal structure as shown in Table 3 was obtained. The degree of development (crystallinity) was changed, and different coating films were obtained in the half-value width range of 0.31 to 0.75 °. The coating films having large half widths of Examples 7 to 8 showed an increase in gas permeability after <Thermal Shock Test 2>, which is a very severe condition (Example 8). After the impact test 1>, it was an excellent coating film in which cracks and peeling did not occur, and the quality had no problem in practical use.

〔実施例9〜18〕
表4に記載の特性をもつ種々の黒鉛基材を用いて炭化タンタル被覆炭素材料を製造した。表4に記載の種々の熱膨張係数(CTE)を有する直径60mm、厚さ10mmの黒鉛基板に上述のハロゲン処理を施し、黒鉛基材の灰分を10ppm以下とした。但し、実施例18では該ハロゲン処理を省略し、黒鉛基材の灰分が16ppmであった。実施例1〜3と同様の条件で基板上に炭化タンタルの被覆膜(厚み43μm)を形成した。被覆膜のC/Taの組成比はC流量によって、1.0〜1.2に調整した。被覆膜を形成後、水素ガス雰囲気中の2000℃で10時間、熱処理を施した。実施例9〜18の実施例における被覆膜はすべて(220)面が最も強い回折強度を示し、かつ2番目に強い回折線の4倍以上の強度であり、(220)面の半価幅が0.2°以下であった。表4に示すように、いずれの炭化タンタル被覆炭素材料も<熱衝撃試験1>の後ではクラックや剥離が生じることはなく優れた材料であることが確認された。
[Examples 9 to 18]
Tantalum carbide-coated carbon materials were produced using various graphite substrates having the characteristics described in Table 4. The above-mentioned halogen treatment was applied to a graphite substrate having a diameter of 60 mm and a thickness of 10 mm having various thermal expansion coefficients (CTEs) shown in Table 4 so that the ash content of the graphite substrate was 10 ppm or less. However, in Example 18, the halogen treatment was omitted, and the ash content of the graphite base material was 16 ppm. A tantalum carbide coating film (thickness: 43 μm) was formed on the substrate under the same conditions as in Examples 1 to 3. The C / Ta composition ratio of the coating film was adjusted to 1.0 to 1.2 by the C 3 H 8 flow rate. After forming the coating film, heat treatment was performed at 2000 ° C. in a hydrogen gas atmosphere for 10 hours. In all of the coating films in Examples 9 to 18, the (220) plane shows the strongest diffraction intensity, and is at least four times the intensity of the second strongest diffraction line, and the half width of the (220) plane Was 0.2 ° or less. As shown in Table 4, it was confirmed that any tantalum carbide-coated carbon material was an excellent material without cracking or peeling after <thermal shock test 1>.

本発明の炭化タンタル被覆炭素材料の模式図である。It is a schematic diagram of the tantalum carbide-coated carbon material of the present invention. 本発明で得られる被覆膜の顕微鏡観察像である。It is a microscope observation image of the coating film obtained by this invention. 窒素ガス透過率の測定の概要を示す図である。It is a figure which shows the outline | summary of a measurement of nitrogen gas permeability. 被覆膜の厚さと窒素ガス透過率との関係の一例を表す。An example of the relationship between the thickness of the coating film and the nitrogen gas permeability is shown. 高周波誘導加熱式真空炉の該略図である。1 is a schematic view of a high-frequency induction heating vacuum furnace. 本発明で得られる被覆膜のX線回折パターンを表す図である。It is a figure showing the X-ray-diffraction pattern of the coating film obtained by this invention. 比較例の被覆膜のX線回折パターンを表す図である。It is a figure showing the X-ray-diffraction pattern of the coating film of a comparative example. 従来技術で得られる被覆膜の顕微鏡観察像である。It is a microscope observation image of the coating film obtained by a prior art.

符号の説明Explanation of symbols

1 炭素基材
2 被覆膜
10 炭化タンタル被覆炭素材料
1 Carbon substrate 2 Coating film 10 Tantalum carbide coated carbon material

Claims (6)

炭素基材と、前記炭素基材上に炭化タンタルの(220)面が他のミラー面に対して特異的に発達している炭化タンタルの結晶からなる被覆膜とを有し、被覆膜のX線回折パターンにおいて、炭化タンタルの(220)面の回折線が最大の回折強度を示す、炭化タンタル被覆炭素材料。 Possess a carbon substrate and a coating film (220) plane of tantalum carbide on the carbon substrate is made of crystals of tantalum carbide which is developed specifically to other mirror surface, the coating film A tantalum carbide-coated carbon material in which the diffraction line of the (220) plane of tantalum carbide shows the maximum diffraction intensity in the X-ray diffraction pattern of 被覆膜のX線回折パターンにおいて、炭化タンタルの(220)面の回折線の半価幅が0.2°以下である請求項1記載の炭化タンタル被覆炭素材料。   The tantalum carbide-coated carbon material according to claim 1, wherein the half-value width of the diffraction line of the (220) plane of tantalum carbide is 0.2 ° or less in the X-ray diffraction pattern of the coating film. 被覆膜のX線回折パターンにおいて、炭化タンタルの(220)面の回折線が最大の回折強度を示しかつ2番目に大きな回折強度の4倍以上の強度を示す、請求項1または請求項2に記載の炭化タンタル被覆炭素材料。   3. The X-ray diffraction pattern of the coating film, wherein the diffraction line of the (220) plane of tantalum carbide exhibits the maximum diffraction intensity and exhibits an intensity that is at least four times the second largest diffraction intensity. The tantalum carbide-coated carbon material described in 1. 被覆膜の窒素ガス透過率が10−6cm/sec以下である請求項1〜3のいずれか一項に記載の炭化タンタル被覆炭素材料。 The tantalum carbide-coated carbon material according to claim 1, wherein the coating film has a nitrogen gas permeability of 10 −6 cm 2 / sec or less. 被覆膜の厚さが10〜100μmである請求項1〜4のいずれか一項に記載の炭化タンタル被覆炭素材料。   The tantalum carbide-coated carbon material according to claim 1, wherein the coating film has a thickness of 10 to 100 μm. 炭素基材と、前記炭素基材上に形成された炭化タンタルからなりX線回折パターンにおいて炭化タンタルの(220)面の回折線が最大の回折強度を示す被覆膜とを、1600〜2400℃の熱処理に供して被覆膜の炭化タンタルの結晶性を向上させる工程を有する、炭化タンタル被覆炭素材料の製造方法。 A carbon substrate, a diffraction line of (220) plane of tantalum carbide at Do Ri X-ray diffraction pattern from the formed tantalum carbide on the carbon substrate is a coating film having a diffraction intensity of the maximum, from 1600 to 2400 A method for producing a tantalum carbide-coated carbon material, comprising a step of improving the crystallinity of tantalum carbide in a coating film by subjecting to a heat treatment at ° C.
JP2005255744A 2005-02-14 2005-09-02 Tantalum carbide-coated carbon material and method for producing the same Active JP3779314B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2005255744A JP3779314B1 (en) 2005-02-14 2005-09-02 Tantalum carbide-coated carbon material and method for producing the same
US10/592,085 US8216667B2 (en) 2005-02-14 2006-02-07 Tantalum carbide-coated carbon material and production method thereof
CA 2559042 CA2559042C (en) 2005-02-14 2006-02-07 Tantalum carbide-coated carbon material and production method thereof
JP2006523476A JP5275567B2 (en) 2005-02-14 2006-02-07 Tantalum carbide-coated carbon material and method for producing the same
EP20060713560 EP1852407B9 (en) 2005-02-14 2006-02-07 Tantalum carbide coated carbon material and production method thereof
KR1020067019705A KR100835157B1 (en) 2005-02-14 2006-02-07 Tantalum carbide-coated carbon material and production method thereof
CA 2723324 CA2723324A1 (en) 2005-02-14 2006-02-07 Tantalum carbide-coated carbon material and production method thereof
PCT/JP2006/302418 WO2006085635A1 (en) 2005-02-14 2006-02-07 Tantalum carbide-covered carbon material and process for producing the same
TW95104538A TWI324192B (en) 2005-02-14 2006-02-10 Tantalum carbide-coated carbon material and method for fabricating the same
HK07110415A HK1105096A1 (en) 2005-02-14 2007-09-25 Tantalum carbide-covered carbon material and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005036838 2005-02-14
JP2005255744A JP3779314B1 (en) 2005-02-14 2005-09-02 Tantalum carbide-coated carbon material and method for producing the same

Publications (2)

Publication Number Publication Date
JP3779314B1 true JP3779314B1 (en) 2006-05-24
JP2008308701A JP2008308701A (en) 2008-12-25

Family

ID=36729214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255744A Active JP3779314B1 (en) 2005-02-14 2005-09-02 Tantalum carbide-coated carbon material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3779314B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081210A1 (en) 2009-12-28 2011-07-07 東洋炭素株式会社 Tantalum carbide-coated carbon material and manufacturing method for same
CN109896515A (en) * 2017-12-04 2019-06-18 信越化学工业株式会社 Cover the carbon material and its manufacturing method, apparatus for manufacturing semiconductor single crystal component of tantalum carbide
CN110582476A (en) * 2017-04-28 2019-12-17 韩国东海炭素株式会社 Carbon material having coating layer comprising TaC and method for producing same
CN115212656A (en) * 2022-07-22 2022-10-21 中材人工晶体研究院(山东)有限公司 Porous filter, preparation method and application thereof in growth of silicon carbide single crystal
CN116332678A (en) * 2023-05-30 2023-06-27 中南大学 Method for preparing tantalum carbide coating on surface of carbon material
CN116695089A (en) * 2023-08-09 2023-09-05 通威微电子有限公司 Relay ring tantalum carbide coating device and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5341706B2 (en) * 2009-10-16 2013-11-13 株式会社ニューフレアテクノロジー Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP7083732B2 (en) * 2017-12-04 2022-06-13 信越化学工業株式会社 Tantalum Carbide Coated Carbon Material and Parts for Semiconductor Single Crystal Manufacturing Equipment
JP7293647B2 (en) 2018-12-21 2023-06-20 株式会社レゾナック Manufacturing method of tantalum carbide material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081210A1 (en) 2009-12-28 2011-07-07 東洋炭素株式会社 Tantalum carbide-coated carbon material and manufacturing method for same
CN110582476A (en) * 2017-04-28 2019-12-17 韩国东海炭素株式会社 Carbon material having coating layer comprising TaC and method for producing same
CN110582476B (en) * 2017-04-28 2022-05-24 韩国东海炭素株式会社 Carbon material having coating layer comprising TaC and method for producing same
CN109896515A (en) * 2017-12-04 2019-06-18 信越化学工业株式会社 Cover the carbon material and its manufacturing method, apparatus for manufacturing semiconductor single crystal component of tantalum carbide
CN109896515B (en) * 2017-12-04 2023-12-22 信越化学工业株式会社 Tantalum carbide-coated carbon material, method for producing same, and member for semiconductor single crystal production device
CN115212656A (en) * 2022-07-22 2022-10-21 中材人工晶体研究院(山东)有限公司 Porous filter, preparation method and application thereof in growth of silicon carbide single crystal
CN116332678A (en) * 2023-05-30 2023-06-27 中南大学 Method for preparing tantalum carbide coating on surface of carbon material
CN116332678B (en) * 2023-05-30 2023-08-11 中南大学 Method for preparing tantalum carbide coating on surface of carbon material
CN116695089A (en) * 2023-08-09 2023-09-05 通威微电子有限公司 Relay ring tantalum carbide coating device and method
CN116695089B (en) * 2023-08-09 2023-10-24 通威微电子有限公司 Relay ring tantalum carbide coating device and method

Also Published As

Publication number Publication date
JP2008308701A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP5275567B2 (en) Tantalum carbide-coated carbon material and method for producing the same
JP3779314B1 (en) Tantalum carbide-coated carbon material and method for producing the same
JP5502721B2 (en) Method for producing tantalum carbide-coated carbon material
CN100450978C (en) Tantalum carbide-covered carbon material and process for producing the same
US8470400B2 (en) Graphene synthesis by chemical vapor deposition
KR102480454B1 (en) Process for manufacturing silicon carbide coated bodies
KR20230122187A (en) Process for manufacturing a silicon carbide coated body
TWI526585B (en) Graphite crucible for single crystal pulling device and method for manufacturing the same
KR102571078B1 (en) Process for manufacturing silicon carbide coated bodies
RU2286616C2 (en) Method for producing part incorporating silicon substrate whose surface is covered with silicon carbide film
WO2021117498A1 (en) Tantalum carbonate-coated graphite member and method for producing same
KR102476826B1 (en) Process for manufacturing silicon carbide coated bodies
RU2352019C1 (en) Method of product manufacture containing silicon substrate with film from carbide of silicon on its surface
RU2286617C2 (en) Method for producing part incorporating silicon substrate whose surface is covered with silicon carbide film
JP2023015602A (en) Tantalum nitride-coated carbon material and compound semiconductor growth equipment
JP2023026011A (en) Tantalum carbide coated carbon material
WO2021034214A1 (en) Article with silicon carbide coating and method for producing article with silicon carbide coating

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060301

R150 Certificate of patent or registration of utility model

Ref document number: 3779314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250