JP3778881B2 - Method for producing antibacterial wood composite molding - Google Patents

Method for producing antibacterial wood composite molding Download PDF

Info

Publication number
JP3778881B2
JP3778881B2 JP2002218627A JP2002218627A JP3778881B2 JP 3778881 B2 JP3778881 B2 JP 3778881B2 JP 2002218627 A JP2002218627 A JP 2002218627A JP 2002218627 A JP2002218627 A JP 2002218627A JP 3778881 B2 JP3778881 B2 JP 3778881B2
Authority
JP
Japan
Prior art keywords
wood
hinokitiol
adhesive component
antibacterial
mechanochemical reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002218627A
Other languages
Japanese (ja)
Other versions
JP2004058409A (en
Inventor
貴士 遠藤
孝弘 廣津
美保子 篠原
室  力
三男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002218627A priority Critical patent/JP3778881B2/en
Publication of JP2004058409A publication Critical patent/JP2004058409A/en
Application granted granted Critical
Publication of JP3778881B2 publication Critical patent/JP3778881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、抗菌作用を有する木質系複合成形の製造方法に関するものである。
【0002】
【従来の技術】
ヒノキ科に属する樹木、例えばヒノキやヒバなどは、ヒノキチオールを含有し、それから抽出される精油成分は、芳香を有し、抗菌性、防虫性、防ばい性を示すことが知られている。
【0003】
そのため、これらの樹木から製材される木材は、建材をはじめ、家具、浴槽などの高級材料として利用されているが、その加工時に発生する端材やおが屑などは大部分なんら利用されることなく、木材廃棄物として焼却されたり、せいぜい埋め立てに用いられていたにすぎなかった。その後、これらの廃棄物から水蒸気蒸留や溶剤抽出により生理活性物質や芳香性精油を採取することも試みられたが、操作が煩雑なために、収集や運搬に経費がかかり、コスト高になるのを免れず、工業的には実用化されなかった。
【0004】
ところで、ヒノキチオール(4‐イソプロピル‐2‐ヒドロキシ‐2,4,6‐シクロヘプタトリエン‐1‐オン)は、台湾ヒノキ油、青森産ヒバ油及びウエスタン・レッド・セダー・オイル(western red ceder oil)などの中に存在する結晶性物質であるが、現在は合成品として入手でき、化粧品、養毛剤、歯磨きなどの添加剤として用いられている。また、このヒノキチオールは、ヒノキ特有の木香を有することから香料としても注目されているほか、腸チフス菌、大腸菌、赤痢菌、ブドウ状球菌、真菌、虫歯菌などの細菌に対し、抗菌作用を有し、またガンや白血病の治療に対しても有効であることが報告されている(「フレグランス・ジャーナル」,第17巻,第2号,第74〜79ページ、「バイオロジカル・アンド・ファーマシューティカル・ビュレタン(Biol.Pharm.Bull)」,第16巻(5),第521〜523ページ)。
【0005】
このため、ヒノキチオールをプラスチックに混合し、保存容器、包装用フィルム、繊維製品などに加工して利用することが考えられるが、ヒノキチオールは、融点が52〜53℃と低く、昇華性がある上に、各種プラスチックとの混和性を欠くため、熱可塑性樹脂中に配合して加熱成形することが困難であり、したがって所望の形状の成形品や合成繊維としてヒノキチオールのもつ望ましい性質を利用することができなかった。
【0006】
他方、一般に天然の動植物中に存在する生理活性物質は、通常多数の物質の混合物であり、環境や生物に対して強力な作用を与えることがないように自然の調和が保たれているので、その中から特定の有効成分を単一の化合物として分解すると、生理活性作用が強くなりすぎて、自然界における調和が乱されるおそれがあるため、これらの生理活性物質は、本来の混合物の状態のままで利用するのが望ましい。
【0007】
したがって、ヒノキやヒバなどの廃材も、これらから生理活性物質を抽出単離することなく、木材の状態でその生理活性物質が本来有している活性を利用するのが有利であるが、これまで、このような利用方法としては、廃材を粉末化して浴用剤として利用すること以外、特に注目しうる方法は知られていなかった。
【0008】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、ヒノキやヒバのような樹木の廃材を、できるだけ自然の状態に保ったまま、その中に存在する生理活性物質を有効利用する技術を提供することを目的としてなされたものである。
【0009】
【課題を解決するための手段】
本発明者らは、ヒノキ科に属する樹木に由来する木質粉を、その中に含まれる有効成分の有用な物性をそこなうことなく、熱可塑性樹脂に配合し、成形して、成形とする技術を開発するために鋭意研究を重ねた結果、上記の木質粉を、ある種の弱塩基性物質の存在下で木質用接着成分とメカノケミカル反応させると、木質粉が含有している有機酸類が部分的に中和され、加熱時の有機酸類に起因する木質部分の加水分解や変性が抑制されること及び木質の主成分であるセルロース結晶が破壊されてアモルファス化して高分子鎖の中間で部分的に分子配列が乱れ、この際にヒノキチオールのような生理活性物質が乱れたセルロース分子鎖中に包接され、熱や光に対し、安定化することを見出し、この知見に基づいて本発明をなすに至った。
【0010】
すなわち、本発明は、ヒノキチオール含有木質粉と木質用接着成分との混合物に、弱塩基性物質の中から選ばれた少なくとも1種の安定化剤を添加し、上記木質粉が上記木質用接着成分により均一に濡れた状態になるまでメカノケミカル反応させたのち、その反応生成物を熱可塑性樹脂と混合し、成形することを特徴とする抗菌性木質系複合成形の製造方法を提供するものである。
【0011】
【発明の実施の形態】
本発明により得られる成形は、ヒノキチオール含有木質粉と木質用接着成分とのメカノケミカル反応生成物及び熱可塑性樹脂の複合体からなるが、原料のヒノキチオール含有木質粉としては、ヒノキ科に属する樹木、例えばヒノキやヒバの粉末が用いられる。そして、木質粉としては、端材や鋸屑やおが屑のような加工に際して発生する廃材や、枝おろし廃材を利用するのが好ましい。
【0012】
通常の加工直後に得られる鋸屑やおが屑は10質量%以上の水分を含んでおり、このためメカノケミカル反応中に加水分解や発泡を生じるので、使用に際しては、水分が1質量%以下になるように乾燥するのが好ましい。この乾燥は、例えば熱風乾燥、真空乾燥、減圧乾燥により、60〜120℃の温度で、できるだけ短時間で行う。また、木質粉の粒径が大きい場合には、後続のメカノケミカル反応や押出成形を容易にするために、粒径1mm以下、好ましくは0.5mm以下に細断するのが好ましい。この細断は、例えばウイレーミル、カッターミルが用いられる。
【0013】
このヒノキチオール含有木質粉と併用される木質用接着成分としては、木質を構成するセルロースが多数のヒドロキシル基を有することから、このヒドロキシル基に対し、反応性を有する官能基をもつものが好ましい。このような木質用接着成分としては、例えばマレイン酸又は無水マレイン酸変性ポリオレフィンのような熱可塑性樹脂が好ましい。
【0014】
このポリオレフィンとしては、例えばポリエチレン、ポリプロピレン、ポリブチレン、ポリイソプレンのような単独重合体や、エチレンとプロピレンの共重合体、エチレンとブチレンとの共重合体、エチレンと他の炭素数5以上のα‐オレフィンとの共重合体、すなわち低密度線状ポリエチレンのような共重合体などが用いられる。これらは単独で用いてもよいし、また2種以上の混合物として用いてもよい。さらに、これらのポリオレフィンの代りに、オレフィンのオリゴマーを用いることもできる。
【0015】
また、マレイン酸又は無水マレイン酸変性ポリオレフィンとしては、ポリオレフィンにマレイン酸又は無水マレイン酸をグラフト共重合させたものが用いられる。ポリエチレンやポリプロピレンは、マレイン酸又は無水マレイン酸と容易にグラフト共重合して変性ポリエチレン又は変性ポリプロピレンを形成する。この変性ポリオレフィンは、カルボキシル基や酸無水物基を有するので、これらの部分は、木質粉中の水酸基をもつ成分と容易に反応して親和性を発現する。
【0016】
そのほか、木質用接着剤として慣用されている酢酸ビニル樹脂、エチレン−酢酸ビニル共重合樹脂のような熱可塑性樹脂や、ユリア樹脂、メラミン樹脂、フェノール樹脂、エポキシ樹脂、ウレタン樹脂、水性高分子−イソシアネートプレポリマーなどの熱硬化性樹脂も用いることができる。
【0017】
上記のヒノキチオール含有木質粉と木質用接着成分とは、質量比で100:1ないし100:40、好ましくは100:5ないし100:20の範囲の割合で用いられる。この木質用接着成分の量がこれよりも少ないと成形材料の強度が不十分になるし、これよりも多いとメカノケミカル反応過程で温度が上昇し、溶融したときに塊を形成するおそれがある。
【0018】
本発明方法においては、ヒノキチオール含有木質粉と木質用接着成分とを所定の割合で混合し、安定化剤の存在下でメカノケミカル反応させることにより、先ずマスターバッチを調製する。
【0019】
この際、木質用接着成分として、ペレット状のものを用いる場合は、迅速に複合化させるために、あらかじめ粒径1mm以下に粉砕して用いるのが好ましい。特にメカノケミカル反応を行うのに使用される粉砕機の圧力、せん断力が小さい場合には、より微粉化するのが好ましい。
【0020】
この木質用接着成分が、熱可塑性の場合は、必要に応じその融点近くまで加温して行うこともできるし、また熱硬化性の場合は、硬化温度まで昇温しながら粉砕することが必要である。
【0021】
次に、本発明におけるメカノケミカル反応は、弱塩基性物質の存在下で行うことが必要である。この弱塩基性物質は、木質中に存在する有機酸などの酸性物質の作用を抑制し、安定化するために加えられるものである。そして、この弱塩基性物質としては、亜硫酸、炭酸、リン酸のような無機酸の水素アルカリ塩、例えば亜硫酸水素ナトリウム、炭酸水素ナトリウム、リン酸二水素ナトリウム、リン酸二水素アンモニウムなどが好ましいが、酢酸、乳酸のような有機酸のアルカリ塩などを用いることもできる。
【0022】
この弱塩基性物質は、その種類により若干異なるが、通常ヒノキチオール含有木質粉100質量部当り1〜7質量部、好ましくは2〜5質量部の割合で用いられる。この量がこれよりも少ないと、木質中の酸性物質の中和が不十分になり、変性を完全に抑制することができないし、またこれよりも多くなると、形成される形成材料の物性の低下をもたらす。
【0023】
本発明におけるメカノケミカル反応は、乾式条件下、すなわち溶媒の不存在下に機械的エネルギーを加えながら、ヒノキチオール含有木質粉と木質用接着成分と安定化剤とを粉砕処理することによって行われる。この機械的エネルギーは、通常、ボールミル、ロールミル、ジェットミル、アトリションミル又は高速ミキサーを用いて加えられる。この際、粉砕処理に伴って温度は150〜200℃まで上昇する。このメカノケミカル反応に要する時間は、温度条件、加えられる機械的エネルギー量に左右されるが、通常40〜100分間の範囲である。
【0024】
このメカノケミカル反応は、最初にヒノキチオール含有木質粉と安定化剤との間で行い、両者の複合体を形成させたのち、木質用接着成分を加えて反応を継続してこれを複合させてもよいし、最初からヒノキチオール含有木質粉に安定化剤と木質用接着成分とを同時に加えて反応させ、複合化してもよい。
また、このメカノケミカル反応は、反応生成物の酸化による変質を避けるために、非酸化雰囲気中、例えば窒素雰囲気中で行うのが有利である。
【0025】
この反応過程において、木質用接着成分は、ヒノキチオール含有木質粉、又はこれと安定化剤との複合体に分子レベルで接近するとともに、木質粉粒子の周囲を被覆し、複合化する。そして、これにより木質粉は、木質用接着成分の内部に閉じ込められ安定化する。
【0026】
本発明におけるメカノケミカル反応は、添加した木質の形状が認められなくなり、木質用接着成分が溶融し、微粒子化した木質粉が木質用接着成分により均一に濡れ、湿った状態になった時点で終了する。この際、溶融液中に塊を形成することがあるが、このときは粉砕機を冷却したり切断刃の回転数又は圧力を低下させることにより、せん断力を調整し、塊を消失させる。
【0027】
成形体は、このようにして得られたメカノケミカル反応生成物をマスターバッチとし、これを熱可塑性樹脂と混合することによって製造される。
この際の熱可塑性樹脂としては、特に制限はなく、これまで汎用されていた熱可塑性樹脂の中から、使用目的に応じ、任意に選ぶことができる。このような熱可塑性樹脂としては、例えばポリオレフィン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエステル、ABS樹脂、AES樹脂、ポリ(メタ)アクリレート及びポリカーボネートなどがあるが、このほかケイ素樹脂、フッ素樹脂なども所望に応じ用いることができる。
【0028】
成形体は、最終的なメカノケミカル反応生成物の含有量が全質量に基づき、1〜90%、好ましくは10〜50%になるようにメカノケミカル反応生成物と熱可塑性樹脂とを混合し、100〜250℃の温度で混練して各成分を均一に分散させる。この際、安定化剤の存在により、上記のような高い温度を用いても、有機酸に起因する木質成分の分解や加熱による木質成分の炭化を防止することができる。
このようにして得られた混練物は、次に所望に応じ混練押出成形機を用いてペレット化することができる。
【0029】
次に、本発明の製造方法を添付図面に従って説明する。
図1は、本発明の製造方法の1例の工程図であって、原料のヒバ木粉を粒径0.5mm以下に粉砕し、水分量1質量%以下に乾燥する。
次いで、安定化剤を加えて、メカノケミカル反応させたのち、木質用接着成分を加えて、さらにメカノケミカル反応を行って、マスターバッチを調製する。
【0030】
次に、このマスターバッチに熱可塑性樹脂を配合して抗菌性木質系複合成形材料を製造後、所望に応じ、混練り押出成形してペレット化する。
上記の2回にわたるメカノケミカル反応は、場合により安定化剤と木質用接着成分とを同時に配合して1回のメカノケミカル反応とすることができる。
【0031】
このようにして得られる木質系複合成形材料には、所望に応じ、通常の熱可塑性樹脂成形材料に慣用されている添加剤、例えばステアリン酸カルシウム、ステアリン酸亜鉛のような可塑剤、ゼオライトのような充填剤、ユーメックス(三洋化成工業社製)のような相溶化剤、樹脂改質剤、フィラー分散剤のほか、酸化防止剤、紫外線吸収剤、難燃剤、帯電防止剤、滑剤、着色剤などを配合することができる。
【0032】
【発明の効果】
本発明の成形材料は、ヒノキチオール特有の木香を有し、グラム陽性菌、グラム陰性菌、酵母菌、カビ類に対し、広い抗菌、防カビ性を示し、さらに、シロアリ、ダニ、ゴキブリなどに対する防虫性を示す上、長期間にわたってその効力を持続するので、抗菌用、防腐用、防虫用容器、包装材の製造用材料として好適である。
【0033】
【実施例】
次に、実施例により本発明をさらに詳細に説明するが,本発明はこれらの例によりなんら限定されるものではない。
【0034】
なお、各例中の機械的性質は以下の方法により測定した。
(1)引張強さ;
JIS R1606に従い、ダンベル型試験片を作製し、JIS K6200に準じる方法に従って測定した。
(2)弾性率;
(1)と同じ試験片を用い、JIS K6900に準じる方法に従って測定した。
(3)破断伸び;
(1)と同じ試験片を用い、JIS G0202に準じる方法に従って測定した。
【0035】
実施例1
ヒバ木材の加工に際し発生する鋸屑を、カッターミルを用いて粒径500μm以下になるまで粉砕したのち、熱風乾燥機により100℃で30分間乾燥した。これによりヒバ木粉の水分含有量は1質量%以下になった。
このようにして得た乾燥ヒバ木粉100質量部に対し、炭酸水素ナトリウム2.5質量部及びリン酸二水素アンモニウム2.5質量部を加え、この混合物を高速ミキサー(2000rpm)を用いて、窒素を通じながら室温で30分間メカノケミカル反応を行わせた。
【0036】
次いで、ミキサー容器の周囲を150℃に加温し、粉末状無水マレイン酸グラフト化ポリエチレンオリゴマー(三洋化成工業社製,商品名「ユーメックスCA60」5質量部を添加し、さらに同じ条件下で60分間メカノケミカル反応を継続した。この際の窒素ガス流量は、1分間当り、毎分高速ミキサーの内容物の体積の5分の1に相当する割合とした。
【0037】
このようにして得たマスターバッチにポリプロピレンを加えて、ヒバ木粉の含有量が50質量%の混合物を調製し、二軸混練り押出機及び水冷式ペレタイザーを用いて常法により170℃でペレット化した。
このペレットを150℃で60分間熱風乾燥したのち、正方形金型(150×150×1mm)に充填し、加熱プレス成形機を用いて、180℃において4分間プレス成形し、板状成形体を作製した。この板状成形体をダンベル状に打ち抜いて試験片を作製し、その機械的性質すなわち引張強さ、弾性率及び破断伸びを測定した。その結果を表1に示す。
【0038】
比較例1
実施例1で用いたのと同じヒバ木粉100質量部に対し、炭酸水素ナトリウム2.5質量部、リン酸二水素アンモニウム2.5質量部及び実施例1で用いたのと同じ粉末状無水マレイン酸グラフト化ポリエチレンオリゴマー5質量部を加えて混合したのち、メカノケミカル反応を行わずにマスターバッチを調製した。
次いで、このマスターバッチにポリプロピレンを加えて、ヒバ木粉含有量50質量%の混合物を調製し、実施例1と同様にして板状成形体を作製し、その機械的性質を測定した。その結果を表1に示す。
【0039】
【表1】

Figure 0003778881
【0040】
この表から分るように、メカノケミカル反応を行わせることにより、引張強さは99%、弾性率は27%、破断伸びは13%向上する。
【0041】
実施例2,3、比較例2,3
実施例1と同様にして、160℃又は190℃でメカノケミカル反応させることにより、表2に示す組成の木質系複合成形体を調製し、これを用いて実施例1と同様にして、板状成形体を作製した。
この板状成形体の機械的性質を測定し、表2示す。
【0042】
【表2】
Figure 0003778881
1)酸変性低分子ポリプロピレン系樹脂(三洋化成工業社製、分子量40000)
)低密度ポリエチレン「L502」(三菱化学社製、メルトインデックス:1.0)
)ポリプロピレン「MG05BS」(日本ポリケム社製、メルトインデックス:45)
)ゼオライト(和光純薬工業社製)
【0043】
この表から分るように、メカノケミカル反応生成物を用いることにより、機械的性質の良好な複合体が得られる。
【0044】
参考例1
実施例1で作製した板状成形体を50mm四方の正方形に裁断したのち、オートクレーブ処理により滅菌して試験片(以下Aという)3枚を準備した。
また、比較のためにポリピロピレンのみで板状成形体を作製し、同じく50mm四方の正方形に裁断したのち、オートクレーブ処理により滅菌して試験片(以下Bという)6枚を準備した。
【0045】
次に、大腸菌(Escherichia coli IFO3972)と黄色ブドウ球菌(Staphylococcus aureus IFO 12732)をそれぞれ、普通寒天培地に接種し、35℃で24時間前々培養したのち、これを普通ブイヨン培地に移し、35℃で20時間前培養した。
【0046】
このようにして培養した菌液0.5mlを、前記3枚の試験片A及び6枚の試験片Bにそれぞれ接種し、試験片Bの中の3枚については、直ちに接種菌液を洗い落として、この接種菌液中の菌数を測定した。
残りの試験片Aの3枚と試験片Bの3枚については、菌液接種後、35℃、相対湿度90%で24時間培養したのち、接種菌液を洗い落して、この中における菌数を測定した。
このようにして得た各試験片3枚についての平均菌数を求め、表3に示す。
【0047】
【表3】
Figure 0003778881
【0048】
この表から分るように、本発明の木質系複合材料は、大腸菌、黄色ブドウ球菌のいずれに対しても抗菌効果を示す。
【0049】
参考例2
実施例1におけるポリプロピレンの代りに、同量の低密度ポリエチレンを用いた場合について、参考例1と同様の試験を行った結果を表4に示す。
【0050】
【表4】
Figure 0003778881
【0051】
この表から分るように、本発明の木質系複合材料は大腸菌、黄色ブドウ球菌のいずれに対しても抗菌効果を示す。
【図面の簡単な説明】
【図1】 本発明の製造方法の1例の工程図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a wood-based composite molded article having an antibacterial action.
[0002]
[Prior art]
Trees belonging to the cypress family, such as cypress and hiba, contain hinokitiol, and it is known that the essential oil component extracted therefrom has a fragrance and exhibits antibacterial, insecticidal and antifungal properties.
[0003]
Therefore, the lumber produced from these trees is used as high-grade materials such as building materials, furniture, bathtubs, etc., but most of the scraps and sawdust generated during the processing are not used at all. It was only incinerated as wood waste or used for reclamation at best. After that, it was tried to collect bioactive substances and aromatic essential oils from these wastes by steam distillation or solvent extraction, but the operation is complicated, so the collection and transportation are expensive and the cost is high. It was not escaped and was not put into practical use industrially.
[0004]
By the way, hinokitiol (4-isopropyl-2-hydroxy-2,4,6-cycloheptatrien-1-one) is made from Taiwan cypress oil, Aomori hiba oil and Western red ceder oil. Although it is a crystalline substance present in these products, it is currently available as a synthetic product and is used as an additive for cosmetics, hair nourishing agents, toothpastes and the like. In addition, hinokitiol has attracted attention as a fragrance because it has a woody scent unique to cypress, and has antibacterial activity against bacteria such as Salmonella typhi, Escherichia coli, Shigella, Staphylococcus, fungi and caries. It has also been reported to be effective for the treatment of cancer and leukemia (“Fragrance Journal”, Vol. 17, No. 2, pp. 74-79, “Biological and Pharmaceutical Tikal Bulletin (Biol. Pharm. Bull), 16 (5), 521-523).
[0005]
For this reason, hinokitiol may be mixed with plastic and processed into storage containers, packaging films, textile products, etc., but hinokitiol has a low melting point of 52-53 ° C. and has sublimation properties. Because of its lack of miscibility with various plastics, it is difficult to mix and heat-mold into thermoplastic resins, so the desired properties of hinokitiol can be used as molded products with desired shapes and synthetic fibers. There wasn't.
[0006]
On the other hand, the physiologically active substances generally present in natural animals and plants are usually a mixture of a large number of substances, and the natural harmony is maintained so as not to give a strong action to the environment and organisms. If a specific active ingredient is decomposed as a single compound, the bioactive action becomes too strong and the harmony in nature may be disturbed. Therefore, these bioactive substances are in the original mixture state. It is desirable to use it as it is.
[0007]
Therefore, waste materials such as cypress and hiba are also advantageous to utilize the activity inherent to the physiologically active substance in the state of wood without extracting and isolating the physiologically active substance from them. As such a method of use, there has been no known method that can be particularly noticed, except that the waste material is powdered and used as a bath agent.
[0008]
[Problems to be solved by the invention]
Under such circumstances, the present invention provides a technique for effectively using a physiologically active substance existing in wood waste such as cypress and hiba while keeping it in a natural state as much as possible. It was made for the purpose.
[0009]
[Means for Solving the Problems]
The present inventors have incorporated a woody powder derived from a tree belonging to the cypress family into a thermoplastic resin without deteriorating the useful physical properties of the active ingredients contained therein , and molding it into a molded product. As a result of intensive research to develop a wood powder, when the above wood powder is subjected to a mechanochemical reaction with a wood adhesive component in the presence of certain weakly basic substances, the organic acids contained in the wood powder are Partially neutralized, the hydrolysis and denaturation of the wood part caused by organic acids during heating is suppressed, and the cellulose crystal, which is the main ingredient of the wood, is destroyed and amorphized to become a part in the middle of the polymer chain In this case, the molecular arrangement is disturbed, and a physiologically active substance such as hinokitiol is included in the disturbed cellulose molecular chain, and is stabilized against heat and light. It came to an eggplant.
[0010]
That is, the present invention adds at least one stabilizer selected from weakly basic substances to a mixture of a hinokitiol-containing wood powder and a wood adhesive component, and the wood powder becomes the wood adhesive component. It provides a method for producing an antibacterial wood-based composite molded article characterized in that the reaction product is mixed with a thermoplastic resin and molded after the mechanochemical reaction until a uniform wet state is obtained. is there.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The molded product obtained according to the present invention comprises a composite of a mechanochemical reaction product of a hinokitiol-containing wood powder and a wood adhesive component and a thermoplastic resin. For example, hinoki or hiba powder is used. And as woody powder, it is preferable to use waste materials generated during processing such as mill ends, sawdust and sawdust, and pruning waste materials.
[0012]
Sawdust and sawdust obtained immediately after normal processing contains 10% by mass or more of moisture, and thus hydrolyzes and foams during the mechanochemical reaction. It is preferable to dry it. This drying is performed at a temperature of 60 to 120 ° C. in as short a time as possible by, for example, hot air drying, vacuum drying, or vacuum drying. When the particle size of the woody powder is large, it is preferable that the particle size is 1 mm or less, preferably 0.5 mm or less in order to facilitate the subsequent mechanochemical reaction and extrusion molding. For this chopping, for example, a wheelie mill or a cutter mill is used.
[0013]
As the wood adhesive component used in combination with the hinokitiol-containing wood flour, cellulose having a large number of hydroxyl groups is preferable, and those having functional groups having reactivity with respect to the hydroxyl groups are preferable. As such an adhesive component for wood, a thermoplastic resin such as maleic acid or maleic anhydride-modified polyolefin is preferable.
[0014]
Examples of the polyolefin include homopolymers such as polyethylene, polypropylene, polybutylene, and polyisoprene, copolymers of ethylene and propylene, copolymers of ethylene and butylene, and other α-carbons having 5 or more carbon atoms. Copolymers with olefins, that is, copolymers such as low density linear polyethylene are used. These may be used singly or as a mixture of two or more. Furthermore, olefin oligomers can be used in place of these polyolefins.
[0015]
In addition, as the maleic acid or maleic anhydride modified polyolefin, polyolefin obtained by graft copolymerization of maleic acid or maleic anhydride is used. Polyethylene and polypropylene are readily graft copolymerized with maleic acid or maleic anhydride to form modified polyethylene or modified polypropylene. Since this modified polyolefin has a carboxyl group and an acid anhydride group, these portions easily react with a component having a hydroxyl group in the wood flour and develop affinity.
[0016]
In addition, thermoplastic resins such as vinyl acetate resins and ethylene-vinyl acetate copolymer resins that are commonly used as adhesives for wood, urea resins, melamine resins, phenol resins, epoxy resins, urethane resins, aqueous polymers-isocyanates Thermosetting resins such as prepolymers can also be used.
[0017]
The hinokitiol-containing wood powder and wood adhesive component are used in a mass ratio of 100: 1 to 100: 40, preferably 100: 5 to 100: 20. If the amount of the adhesive component for wood is less than this, the strength of the molding material becomes insufficient, and if it is more than this, the temperature rises in the mechanochemical reaction process, and there is a risk of forming a lump when melted. .
[0018]
In the method of the present invention, a masterbatch is first prepared by mixing a hinokitiol-containing wood powder and a wood adhesive component in a predetermined ratio and causing a mechanochemical reaction in the presence of a stabilizer.
[0019]
At this time, when a woody adhesive component is used, it is preferably pulverized in advance to a particle size of 1 mm or less in order to quickly combine it. In particular, when the pressure and shearing force of the pulverizer used for carrying out the mechanochemical reaction are small, it is preferable to further pulverize.
[0020]
If the wood adhesive component is thermoplastic, it can be heated to near its melting point if necessary, and if thermosetting, it must be crushed while raising the temperature to the curing temperature. It is.
[0021]
Next, the mechanochemical reaction in the present invention needs to be performed in the presence of a weakly basic substance. This weakly basic substance is added to suppress and stabilize the action of acidic substances such as organic acids present in the wood. The weakly basic substance is preferably an alkali hydrogen salt of an inorganic acid such as sulfurous acid, carbonic acid or phosphoric acid, such as sodium hydrogensulfite, sodium hydrogencarbonate, sodium dihydrogenphosphate, ammonium dihydrogenphosphate, etc. Further, alkali salts of organic acids such as acetic acid and lactic acid can also be used.
[0022]
This weakly basic substance is used in a proportion of 1 to 7 parts by mass, preferably 2 to 5 parts by mass, per 100 parts by mass of hinokitiol-containing woody flour, although it varies slightly depending on the type. If this amount is less than this, neutralization of acidic substances in the wood will be insufficient, and denaturation cannot be completely suppressed, and if more than this, the physical properties of the formed material will be reduced. Bring.
[0023]
The mechanochemical reaction in the present invention is carried out by pulverizing hinokitiol-containing wood powder, wood-based adhesive component and stabilizer while applying mechanical energy under dry conditions, that is, in the absence of a solvent. This mechanical energy is usually applied using a ball mill, roll mill, jet mill, attrition mill or high speed mixer. At this time, the temperature rises to 150 to 200 ° C. along with the grinding treatment. The time required for this mechanochemical reaction depends on temperature conditions and the amount of mechanical energy applied, but is usually in the range of 40 to 100 minutes.
[0024]
This mechanochemical reaction is first performed between the hinokitiol-containing wood flour and the stabilizer, and after forming a composite of both, the wood adhesive component is added and the reaction is continued to make the composite. Alternatively, from the beginning, a hinokitiol-containing wood powder may be added with a stabilizer and an adhesive component for wood at the same time and reacted to form a composite.
In addition, this mechanochemical reaction is advantageously performed in a non-oxidizing atmosphere, for example, a nitrogen atmosphere in order to avoid alteration of the reaction product due to oxidation.
[0025]
In this reaction process, the wood adhesive component approaches the hinokitiol-containing wood powder, or a complex of this with a stabilizer, at the molecular level, and coats and surrounds the wood powder particles. As a result, the wood powder is trapped and stabilized in the wood adhesive component.
[0026]
In the mechanochemical reaction in the present invention, when the shape of the added wood powder is not recognized, the wood adhesive component is melted, and the finely divided wood powder is uniformly wetted by the wood adhesive component and becomes wet. finish. At this time, a lump may be formed in the melt. At this time, the shearing force is adjusted by cooling the pulverizer or decreasing the rotation speed or pressure of the cutting blade, thereby eliminating the lump.
[0027]
The molded body is produced by using the mechanochemical reaction product thus obtained as a master batch and mixing it with a thermoplastic resin.
The thermoplastic resin in this case is not particularly limited, and can be arbitrarily selected from conventionally used thermoplastic resins according to the purpose of use. Examples of such thermoplastic resins include polyolefin, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyester, ABS resin, AES resin, poly (meth) acrylate, polycarbonate, and the like, but also silicon resin, fluorine resin, etc. Can also be used as desired.
[0028]
The molded body is a mixture of the mechanochemical reaction product and the thermoplastic resin so that the content of the final mechanochemical reaction product is 1 to 90%, preferably 10 to 50%, based on the total mass, Each component is uniformly dispersed by kneading at a temperature of 100 to 250 ° C. At this time, due to the presence of the stabilizer, it is possible to prevent the decomposition of the wood component due to the organic acid and the carbonization of the wood component due to heating even when using the above high temperature.
The kneaded product thus obtained can then be pelletized using a kneading extruder as desired.
[0029]
Next, the manufacturing method of this invention is demonstrated according to an accompanying drawing.
FIG. 1 is a process chart of an example of the production method of the present invention, in which raw Hiba wood flour is pulverized to a particle size of 0.5 mm or less and dried to a moisture content of 1% by mass or less.
Next, after adding a stabilizer and causing a mechanochemical reaction, an adhesive component for wood is added, and a mechanochemical reaction is further performed to prepare a masterbatch.
[0030]
Next, a thermoplastic resin is blended with this master batch to produce an antibacterial wood-based composite molding material, and then kneaded, extruded, and pelletized as desired.
The above two mechanochemical reactions can be made into one mechanochemical reaction by optionally blending the stabilizer and the wood adhesive component simultaneously.
[0031]
In the wood-based composite molding material thus obtained, if desired, additives commonly used in ordinary thermoplastic resin molding materials, for example, plasticizers such as calcium stearate and zinc stearate, zeolites, etc. In addition to fillers, compatibilizers such as Umex (manufactured by Sanyo Chemical Industries), resin modifiers, filler dispersants, antioxidants, UV absorbers, flame retardants, antistatic agents, lubricants, colorants, etc. Can be blended.
[0032]
【The invention's effect】
The molding material of the present invention has a woody scent specific to hinokitiol, exhibits broad antibacterial and antifungal properties against gram-positive bacteria, gram-negative bacteria, yeasts and molds, and further against termites, ticks, cockroaches, etc. In addition to exhibiting insecticidal properties, it maintains its efficacy over a long period of time, and is therefore suitable as a material for producing antibacterial, antiseptic, insecticidal containers, and packaging materials.
[0033]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
[0034]
The mechanical properties in each example were measured by the following method.
(1) Tensile strength;
Dumbbell-shaped test pieces were prepared according to JIS R1606 and measured according to a method according to JIS K6200.
(2) Elastic modulus;
Using the same test piece as in (1), measurement was performed according to a method according to JIS K6900.
(3) Elongation at break;
Using the same test piece as in (1), the measurement was performed according to a method according to JIS G0202.
[0035]
Example 1
Sawdust generated during processing of hiba wood was pulverized to a particle size of 500 μm or less using a cutter mill, and then dried at 100 ° C. for 30 minutes with a hot air dryer. Thereby, the water content of the Hiba wood flour became 1 mass% or less.
To 100 parts by mass of the dried hiba wood powder thus obtained, 2.5 parts by mass of sodium hydrogen carbonate and 2.5 parts by mass of ammonium dihydrogen phosphate were added, and this mixture was used using a high-speed mixer (2000 rpm). The mechanochemical reaction was performed at room temperature for 30 minutes while passing nitrogen.
[0036]
Next, the periphery of the mixer vessel is heated to 150 ° C., and 5 parts by mass of powdered maleic anhydride grafted polyethylene oligomer (manufactured by Sanyo Kasei Kogyo Co., Ltd., trade name “Yumex CA60”) is further added under the same conditions for 60 minutes The mechanochemical reaction was continued at a rate corresponding to one fifth of the volume of the content of the high speed mixer per minute per minute.
[0037]
Polypropylene is added to the master batch thus obtained to prepare a mixture having a Hiba wood flour content of 50% by mass, and pellets are formed at 170 ° C. by a conventional method using a twin-screw kneading extruder and a water-cooled pelletizer. Turned into.
The pellets were dried with hot air at 150 ° C. for 60 minutes, filled into a square mold (150 × 150 × 1 mm), and press molded at 180 ° C. for 4 minutes using a hot press molding machine to produce a plate-shaped molded body. did. A test piece was produced by punching the plate-like molded body into a dumbbell shape, and its mechanical properties, ie, tensile strength, elastic modulus and elongation at break were measured. The results are shown in Table 1.
[0038]
Comparative Example 1
100 parts by weight of Hiba wood flour used in Example 1, 2.5 parts by weight of sodium bicarbonate, 2.5 parts by weight of ammonium dihydrogen phosphate and the same powdery anhydrous as used in Example 1 After adding 5 parts by mass of maleic acid grafted polyethylene oligomer and mixing, a masterbatch was prepared without performing mechanochemical reaction.
Next, polypropylene was added to this master batch to prepare a mixture having a Hiba wood flour content of 50% by mass. A plate-like molded body was produced in the same manner as in Example 1, and its mechanical properties were measured. The results are shown in Table 1.
[0039]
[Table 1]
Figure 0003778881
[0040]
As can be seen from this table, by performing a mechanochemical reaction, the tensile strength is improved by 99%, the elastic modulus is improved by 27%, and the elongation at break is improved by 13%.
[0041]
Examples 2 and 3 and Comparative Examples 2 and 3
In the same manner as in Example 1, a woody composite molded body having the composition shown in Table 2 was prepared by a mechanochemical reaction at 160 ° C or 190 ° C. A molded body was produced.
Table 2 shows the measured mechanical properties of the plate-like molded body.
[0042]
[Table 2]
Figure 0003778881
1) Acid-modified low-molecular-weight polypropylene resin (manufactured by Sanyo Chemical Industries, molecular weight 40000)
2 ) Low density polyethylene “L502” (Mitsubishi Chemical Corporation, melt index: 1.0)
3 ) Polypropylene “MG05BS” (manufactured by Nippon Polychem, melt index: 45)
4 ) Zeolite (Wako Pure Chemical Industries)
[0043]
As can be seen from this table, a composite having good mechanical properties can be obtained by using a mechanochemical reaction product.
[0044]
Reference example 1
The plate-shaped molded body produced in Example 1 was cut into a 50 mm square and then sterilized by autoclaving to prepare three test pieces (hereinafter referred to as A).
For comparison, a plate-like molded body was prepared only with polypyropylene, cut into a square of 50 mm square, and then sterilized by autoclaving to prepare six test pieces (hereinafter referred to as B).
[0045]
Next, E. coli (Escherichia coli IFO 3972) and Staphylococcus aureus IFO 12732 were each inoculated on a normal agar medium, cultured at 35 ° C. for 24 hours in advance, and then transferred to a normal bouillon medium. For 20 hours.
[0046]
Inoculate 0.5 ml of the thus cultured bacterial solution into each of the three test pieces A and six test pieces B, and immediately wash off the inoculated bacterial solution for three of the test pieces B. The number of bacteria in this inoculum was measured.
For the remaining three specimens A and B, after inoculating the bacterial solution and culturing for 24 hours at 35 ° C. and 90% relative humidity, the inoculated bacterial solution is washed off and the number of bacteria in this Was measured.
The average number of bacteria for each of the three test pieces thus obtained was determined and shown in Table 3.
[0047]
[Table 3]
Figure 0003778881
[0048]
As can be seen from this table, the woody composite material of the present invention exhibits antibacterial effects against both Escherichia coli and Staphylococcus aureus.
[0049]
Reference example 2
Table 4 shows the results of the same test as in Reference Example 1 when the same amount of low density polyethylene was used instead of polypropylene in Example 1.
[0050]
[Table 4]
Figure 0003778881
[0051]
As can be seen from this table, the wood-based composite material of the present invention exhibits antibacterial effects against both Escherichia coli and Staphylococcus aureus.
[Brief description of the drawings]
FIG. 1 is a process chart of an example of a production method of the present invention.

Claims (5)

ヒノキチオール含有木質粉と木質用接着成分との混合物に、弱塩基性物質の中から選ばれた少なくとも1種の安定化剤を添加し、上記木質粉が上記木質用接着成分により均一に濡れた状態になるまでメカノケミカル反応させたのち、その反応生成物を熱可塑性樹脂と混合し、成形することを特徴とする抗菌性木質系複合成形の製造方法。A state in which at least one stabilizer selected from weakly basic substances is added to a mixture of hinokitiol-containing wood powder and wood adhesive component, and the wood powder is uniformly wetted by the wood adhesive component A method for producing an antibacterial wood-based composite molded article , which comprises subjecting a reaction product to a thermoplastic resin and molding after a mechanochemical reaction until it becomes . 非酸化雰囲気中でメカノケミカル反応を行う請求項記載の抗菌性木質系複合成形の製造方法。Method for producing antibacterial wood composite molding according to claim 1, wherein performing the mechanochemical reaction in a non-oxidizing atmosphere. ヒノキチオール含有木質粉と木質用接着成分の使用割合が、質量比で100:1ないし100:40である請求項又は記載の抗菌性木質系複合成形の製造方法。The method for producing an antibacterial wood-based composite molded article according to claim 1 or 2 , wherein a use ratio of the hinokitiol-containing wood powder and the wood adhesive component is 100: 1 to 100: 40 by mass ratio. 安定化剤の使用割合がヒノキチオール含有木質粉100質量部当り、1〜7質量部である請求項1,2又は記載の抗菌性木質系複合成形の製造方法。The ratio is hinokitiol-containing wood powder 100 parts by weight per stabilizer manufacturing method according to claim 1, 2 or 3 antibacterial wood-based composite molded article according from 1 to 7 mass parts. 安定化剤が亜硫酸塩、炭酸塩及びリン酸塩の中から選ばれた少なくとも1種の弱アルカリ性塩である請求項ないしのいずれかに記載の抗菌性木質系複合成形の製造方法。Stabilizer sulfite, at least one of the method for manufacturing the antimicrobial wood composite molded article according to any one of 4 to claims 1 to weakly alkaline salts selected from among carbonates and phosphates.
JP2002218627A 2002-07-26 2002-07-26 Method for producing antibacterial wood composite molding Expired - Fee Related JP3778881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218627A JP3778881B2 (en) 2002-07-26 2002-07-26 Method for producing antibacterial wood composite molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218627A JP3778881B2 (en) 2002-07-26 2002-07-26 Method for producing antibacterial wood composite molding

Publications (2)

Publication Number Publication Date
JP2004058409A JP2004058409A (en) 2004-02-26
JP3778881B2 true JP3778881B2 (en) 2006-05-24

Family

ID=31939759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218627A Expired - Fee Related JP3778881B2 (en) 2002-07-26 2002-07-26 Method for producing antibacterial wood composite molding

Country Status (1)

Country Link
JP (1) JP3778881B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045854A (en) * 2005-08-05 2007-02-22 Patent Technology Development Inc Resin composition for molding
JP5158858B2 (en) * 2007-01-17 2013-03-06 独立行政法人産業技術総合研究所 Organic-inorganic composite with metal-tropolone complex supported between layers and method
KR101386893B1 (en) 2013-12-11 2014-04-18 마준식 A manufacture method and an abs edge for furniture radiates phytoncide
JP2020158606A (en) * 2019-03-26 2020-10-01 古河電気工業株式会社 Wood flour-containing polyolefin resin composition
CN114670519B (en) * 2022-04-19 2023-03-24 安徽科居新材料科技有限公司 Antibacterial PVC (polyvinyl chloride) wood-plastic multilayer composite material and preparation method thereof

Also Published As

Publication number Publication date
JP2004058409A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP6985154B2 (en) Masterbatch composition containing a high concentration of biological entity
CN100551961C (en) Antibacterial, ventilating, waterproof plastic granular materials for membrane and manufacture method thereof
JP3934553B2 (en) Multi-component composition for photodegradable and biodegradable plastic products and use thereof
CN104592629B (en) A kind of preparation method of Cu/ZnO composite antibacterial PP master batch
US6756428B2 (en) Degradable plastics possessing a microbe-inhibiting quality
JPH05230325A (en) Antibacterial, antifungal polyacetal resin composition
JP2009527594A (en) Environmentally degradable polymer composition and method for obtaining an environmentally degradable polymer composition
JP6517142B2 (en) Polymer composition derived from melt-processed leaf sheath of a tree belonging to the family of palm
KR100291545B1 (en) Biodegradable plastic product made from coconut husk fiber powder mixture
CN109485998A (en) A kind of composite plastic of novel degradable and preparation method thereof
CN101195694A (en) Degradable composite plastics and method for producing the same
JP3778881B2 (en) Method for producing antibacterial wood composite molding
JPS62241932A (en) Polymer foam having antibacterial and antifungal function and its production
US4045388A (en) Resin composition of hydrophilic pullulan, hydrophobic thermoplastic resin, and plasticizer
KR102163944B1 (en) Complex decomposable sheet or vacuum formed product capable of maintaining freshness
KR20180096934A (en) Composition for biomass sheet and antiboitic biomass sheet using thereof
CN113354843B (en) Preparation method and application of high-molecular degradable master batch
KR101895794B1 (en) Functional polymer plastic comprising fullerene and phytoncide, and preparation method thereof
Prapruddivongs et al. Biodegradation and anti-bacterial properties of PLA and wood/PLA composites incorporated with zeomic anti-bacterial agent
CN102453314A (en) Antibacterial mouldproof biaxially oriented polylactic film and preparation method thereof
KR101968316B1 (en) Medical container containing biodegradable polymer plastics
CA2027034A1 (en) Biologically degradable cover film and method of preparing same
KR102116992B1 (en) A complex decomposition additive composition having a freshness-retaining function, and a complex decomposition additive prepared using the composition thereof
KR101732987B1 (en) a method manufacturing eco-polymer plastic containing phytoncide
JPH1160804A (en) Antibacterial resin composition and molded article using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350