JP3778488B2 - Heat generating resistor for ink jet recording head, ink jet recording head, and recording apparatus - Google Patents

Heat generating resistor for ink jet recording head, ink jet recording head, and recording apparatus Download PDF

Info

Publication number
JP3778488B2
JP3778488B2 JP2001151340A JP2001151340A JP3778488B2 JP 3778488 B2 JP3778488 B2 JP 3778488B2 JP 2001151340 A JP2001151340 A JP 2001151340A JP 2001151340 A JP2001151340 A JP 2001151340A JP 3778488 B2 JP3778488 B2 JP 3778488B2
Authority
JP
Japan
Prior art keywords
resistor
thin film
ink jet
ink
jet recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001151340A
Other languages
Japanese (ja)
Other versions
JP2001322280A (en
Inventor
正男 三谷
健二 山田
勝則 川澄
一夫 清水
治 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001151340A priority Critical patent/JP3778488B2/en
Publication of JP2001322280A publication Critical patent/JP2001322280A/en
Application granted granted Critical
Publication of JP3778488B2 publication Critical patent/JP3778488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱エネルギを利用してインク液滴を記録媒体に向けて飛翔させる形式のインク噴射記録ヘッド用発熱抵抗体、インク噴射記録ヘッドおよび記録装置に関するものである。
【0002】
【従来の技術】
パルス加熱によってインクの一部を急速に気化させ、その膨張力によってインク液滴をオリフィスから吐出させる方式のインクジェット記録装置は特開昭48−9622号公報、特開昭54−51837号公報等によって開示されている。
【0003】
このパルス加熱の最も簡便な方法は発熱抵抗体にパルス通電することであり、その具体的な方法が日経メカニカル1992年12月28日号58ページ、及びHewlett-Packard-Journal,Aug.1988で発表されている。これら従来の発熱抵抗体の共通する基本的構成は、薄膜抵抗体と薄膜導体を酸化防止層で被覆し、この上に該酸化防止層のキャビテーション破壊を防ぐ目的で、耐キャビテーション層を1〜2層被覆するというものであった。
【0004】
この複雑な多層構造を抜本的に簡略化するものとして、本出願人が先に出願した特開平06−71888号公報に記載のように、前記酸化防止層と耐キャビテーション層を不要とする発熱抵抗体を用いて印字する方法がある。この場合は、薄膜抵抗体がインクと直接接触しているため、パルス加熱によるインクの急激な核沸騰とそれによるインクの吐出特性が大幅に改善され、熱効率の大幅な改善と吐出周波数の向上を図ることができた。このような画期的な性能を実現できた最大の理由は、耐パルス性、耐酸化性、耐電食性に優れたCr−Si−SiO又はTa−Si−SiO合金薄膜抵抗体とNi薄膜導体のみから構成される発熱抵抗体を用いたことにあり、如何なる保護層も必要としないことによる。
【0005】
このように、従来技術に比較して、大幅に小さな投入エネルギでインク噴射が可能となったので、この発熱抵抗体を駆動用LSIチップ上のデバイス領域に近接して形成しても、もはやLSIデバイスを加熱して温度上昇をもたらすこともなく、非常に簡単な構成のモノリシックLSIヘッドを実現することができるようになった。これについては本出願人が先に出願した特願平04−347150号及び特願平05−90123号に記載の通りである。この新しい技術によって、多くのインク噴射ノズルを持つオンデマンド型インクジェットプリントヘッドが高密度に、しかも2次元的に集積化して製造することができるようになり、高速印刷の可能なフルカラーインクジェットプリンタを実現させることができた。
【0006】
更に、保護層の不要な薄膜発熱抵抗体の優れた発泡消滅特性(特願平05−272451号)を利用すれば、この発熱抵抗体面と垂直又はほぼ垂直方向にインク滴を吐出させる方式のサーマルインクジェットプリントヘッドにおいては、新しい駆動方法によってクロストークを大幅に低減でき、サブドロップの発生とか印画濃度変化の無いヘッドとすることが可能となった(特願平06−21060号、特願平06−49202号、特願平06−156949号参照)。
【0007】
また、このような特性を持つ大規模高集積化プリントヘッドの製造方法についても、高い歩留りで製造する方法を考案した(特願平06−201985号参照)。
【0008】
【発明が解決しようとする課題】
この大規模高集積化プリントヘッドに種々の水性インクを充填してフルカラー印刷を行っていたところ、設計寿命を下廻るヘッドが出現することが分かった。そこで詳細な検討を行ったところ、寿命的に問題のなかったヘッドのインクは比抵抗が比較的大きいほぼ中性の水性インクであったこと、設計寿命を下廻るヘッドのインクは比抵抗が102 〜103 Ωcmと小さく、PH=8〜9と非中性であることが分かった。
【0009】
本発明の目的は、比抵抗の小さな非中性の水性インクに対しても寿命的に問題がなく、しかも加熱発泡特性では保護層のない発熱抵抗体と同等であるインク噴射記録ヘッド用発熱抵抗体、インク噴射記録ヘッドおよびこれを用いた記録装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的は、Si基板上に形成されたTa−Si−SiO合金薄膜抵抗体とこのTa−Si−SiO合金薄膜抵抗体上に部分的に形成された薄膜導体とからなり、前記Ta−Si−SiO合金薄膜抵抗体が、前記薄膜導体の形成されない前記Ta−Si−SiO合金薄膜抵抗体の表面に、自らの表面が熱酸化処理されて形成された電気絶縁性被膜を有するインク噴射記録ヘッド用発熱抵抗体であって、前記電気絶縁性被膜の形成されたTa−Si−SiO合金薄膜抵抗体は、パルス加熱で自ら350度に加熱しても抵抗値が変化しないことを特徴とするインク噴射記録ヘッド用発熱抵抗体により達成される。
【0012】
この場合、前記電気絶縁性被膜は、ピンホールのない均質な被膜であるのがよい。
また、上記目的は、複数個の前記インク噴射記録ヘッド用発熱抵抗体と、
この発熱抵抗体と垂直方向または略垂直方向にインク滴を吐出する複数個の吐出ノズルと、
この複数個の吐出ノズルの各々に対応して前記Si基板上に設けられた複数個の個別インク通路と、
この複数個の個別インク通路と連通する前記Si基板上に設けられた共通インク通路を備えることを特徴とするインク噴射記録ヘッドにより達成される。
【0013】
その際、前記薄膜導体は、前記Ta−Si−SiO合金薄膜抵抗体の各々につながる個別薄膜導体を有し、
この個別薄膜導体のすべてと前記発熱抵抗体の一部が前記個別インク通路を形成する耐熱性樹脂の隔壁によって被われているのが好ましい。
【0014】
その際、前記耐熱性樹脂は、ポリイミドであるのが好ましい。
また、前記薄膜導体は、Ni金属薄膜導体であるのが好ましい。
【0015】
また、本発明は、前記インク噴射記録ヘッドを搭載することを特徴とする記録装置を提供する。
【0016】
上記のように、薄くて均質な熱酸化電気絶縁性被膜で被覆されている薄膜抵抗体は、もはや電解質インクと直接的に接触することがなく、したがって電食による短寿命化の問題も発生しない。更に、この上に薄い絶縁物層がある場合でもその厚さが抵抗体膜厚と同等と非常に薄いので、インクへの加熱効率は絶縁物層の無い場合とほとんど変わらず今迄と同等の性能が得られ、信頼性が更に高くなる。
【0017】
但し、これらの薄い絶縁物層が破壊されてしまうと電食が発生する可能性があるので絶縁物層の破壊を完全に防止しておくことが重要である。そのためには気泡の消滅時に発生する衝撃波を起こさせてはならない。
【0018】
そこで、本出願人はこの衝撃波を起こさせない方法として「個別インク通路の高さを30μm以下とし、且つ吐出ノズル底の発熱抵抗体面への垂直投影像が該発熱抵抗体と±5μm以内で重なるかそれより小さい構造とし、好ましくは前記ノズルの深さを80μmよりも浅くするヘッド構造とすること」を見出した。このような構造とすることによって、発生した気泡は外気とつながるところ(吐出口)まで成長を続け、もはや気泡がつぶれるという現象が発生しないことを実験的にも確認した。
【0019】
一方、熱分解開始温度が400℃以上のポリイミドなどの樹脂隔壁でヒータの一部を含む個別薄膜導体をカバーするのは、共通薄膜導体と同電位にある電解質インクに対し高い(又は低い)電位にある個別薄膜導体を樹脂で埋め込み、個別薄膜導体が電食される可能性を完全に零とするためである。ヒータの必要な加熱温度はゆらぎ核沸騰が発生する約310℃であり、ヒータとか駆動回路のバラツキを考慮してもヒ−タの加熱温度を340±30℃の範囲に制御することは容易である。即ち、耐熱性樹脂がカバーする個別薄膜導体に近いヒータ部分の最高温度は360〜370℃であり、この最高温度に近い温度に加熱される積算時間は約0.2μs×1億パルス=20秒という短時間である。即ち、ポリイミドのような熱分解開始温度が400℃又はそれ以上の樹脂を利用する限りにおいて、この構成のヘッドの寿命や信頼性に何の問題も発生しないことが分かる。これらについてのデータは実施例において説明する。
【0020】
なお、共通薄膜導体上に同様の樹脂を被覆する必要のない理由は、該導体とインクは同電位にしておくので、単なる腐食はNi薄膜金属では発生しないことによる。
【0021】
【発明の実施の形態】
以下、図面を用いて具体的な実施例を説明する。
【0022】
図1に、本発明のインク噴射記録ヘッドの一例であるインク噴射記録ヘッドのインク吐出ノズル近傍の拡大断面図を、図2にはその周辺までを含めた断面図を示す。シリコン基板1上に厚さ1〜2μmのSiO2 断熱層17を設け、この上に耐パルス性と耐酸化性に優れた厚さ約0.2μmのTa−Si−SiO合金薄膜抵抗体3と厚さ約1μmの個別Ni金属薄膜導体4と共通Ni金属薄膜導体5をスパッタ法とフォトエッチング法によって形成することは本出願人が先に出願した特開平06−71888号公報に記載した通りである。
【0023】
ここで先ず、Ta−Si−SiO合金薄膜抵抗体(以下抵抗体という)の高温熱酸化特性について説明する。この抵抗体を500℃大気中に放置した時の抵抗値Rを測定したが、その逆数Ro/Rを図5に示す。ここでRoは熱処理前の抵抗値である。熱酸化処理された抵抗体の表面はいずれも電気的な絶縁物(酸化物)に変化していることを確認している。図5において、Ro/Rが直線的に減少している事実は、熱酸化処理によって絶縁性酸化物に変化する速さ(表面からの酸化深さ)が熱処理時間に比例していることを示している。
【0024】
一方、500℃で酸化処理された抵抗体は、350℃での大気中の放置でその抵抗値を変化させないことを確認しており、このままの状態で本抵抗体を350℃付近でパルス加熱させても抵抗値が何ら変化しないことを1億パルス以上の印加テストで確認済みである。
【0025】
更に、この絶縁性酸化被膜の厚さを約1000Åとした抵抗体をpH8〜9の電解質インクにつけて電位勾配30V/50μmでの電蝕テストを行ったが、10分以上の連続印加で何の変化も認められなかった。このことは、1000Å(0.1μm)という非常に薄い膜であるにもかかわらずピンホ−ル等の欠陥の無い絶縁被膜が形成されていることを示しており、熱酸化膜でなければ達成し得ない性質と、しかもそれが均質であるという特徴を合わせ持っていることが分かる。
【0026】
さて、この熱酸化処理によってNiのような金属薄膜導体が酸化されたり、本出願人が先に出願した特願平04−347150号、特願平05−90123号、及び特願平06−201985号に記載したモノリシックLSIヘッドのように400℃以上の加熱処理が難しい場合は、合金薄膜抵抗体にパルス通電して抵抗体のみを約550〜600℃にパルス加熱することによって熱酸化処理を行なう必要がある。この場合の加熱パルス幅は高温保持時間の長い約1msという長いパルス幅とするのが熱酸化処理にとって効果的であり、外部からの駆動で容易にこれを行うことが可能である。即ち、実駆動時のパルス幅1〜2μsに比して103 倍も長いパルス幅で加熱処理を行うので、加熱処理温度を実駆動時よりも200〜250℃高くしても駆動LSIの定格電力を大幅に下廻り、何ら問題とならないのである。又、このパルス加熱処理時のSi基板温度を100℃程度に加熱しておいても良い。
【0027】
上記熱処理によって薄膜抵抗体の抵抗値は30〜40%大きくなるが、特にパルス加熱処理工程中に同時にこの抵抗値を計測検査することが可能である。そこでこのパルス加熱処理中に全ての抵抗体の抵抗値をモニタし、それらを±1%以内の抵抗値に揃えるようにした。これによって従来、±5%程度のバラツキを持っていた抵抗体列の抵抗値を揃えることが可能となり、実駆動時のインク加熱温度を均一に揃えることで余分な加熱がなくなり、インクのこげつき、抵抗体寿命等、ヘッドの信頼性の向上に大きく貢献させることが可能となった。
【0028】
更に、本出願人が先に出願した特願平06−201985号に記載した方法で隔壁8とオリフィスプレ−ト11を形成するが、図1に示すように、個別電極4の全部と発熱抵抗体3の一部を隔壁8によって被覆した構成とする。発熱抵抗体3を被覆するのは個別電極4の端から5〜8μmで良く、これによる熱効率の低下は10〜15%程度に止まっている。
上述したように、発熱抵抗体の最高温度は360〜370℃以下であり、隔壁8の構成材料をポリイミドのような熱分解開始温度が400℃以上である耐熱性樹脂を用いる限り寿命的に何ら問題とならないことを後で示す。
【0029】
これに対し、従来技術で用いられている耐熱性の低い感光性レジスト材料などをこの隔壁に用いると、1000万ドット程度の吐出で電食による破断が発生することを確認している。なお、隔壁材料をこのような耐熱性樹脂としたことにより、発熱抵抗体3と隔壁8の重なりが個別インク通路9の幅方向で発生しても信頼性には問題がなく、ヘッド製造上の位置合わせ精度(アライナの精度)に余裕を与えるという良い結果をもたらせている。
【0030】
さて、図1及び図2に示すように、オリフィスプレ−ト11にドライエッチングによってあけられるインク吐出ノズル12はストレ−トな円筒形であり、場合によっては本出願人が先に出願した特願平05−318272号に記載したように傾斜させるが、その底面の発熱抵抗体3への垂直投影像が該発熱抵抗体3と±5μm以内で重なるかそれより小さい構造とし、隔壁8の高さも30μm以下とする。この実施例ではそれを25μmとし、ヒ−タを50μm□、ノズル径を50μmφとした。
【0031】
なお、オリフィスプレ−ト11は隔壁と同じポリイミドの50μm厚フィルムを用いているので、これに純水を充填してストロボ観察を行うと、ポリイミドはほぼ透明なのでパルス通電による気泡の発生とか水滴の吐出の様子を見ることが出来る。通電パルス幅を2μsとした時、通電開始後のこの観察結果を図3(a)に示す。
【0032】
即ち、通電開始後約2〜3μsでノズル内の水は12〜15m/sの速さで吐出を始めているが、インク通路9内の水はほとんど動いていない。但し既にこの時の気泡16の内圧はほとんど零である。通電開始後6μSで吐出する水の最後尾はノズル12の出口近くまで来ており、一方のインク通路8内の水は1気圧の圧力差によって発熱抵抗体3側に移動を始めている。しかし通電開始後9μSの時点でノズル12は既に大気圧となっており、インク通路9内の水の移動も圧力差が零となるので緩慢となる。そして再びノズル12に水が充満するのに約70μsの時間が必要であった。この吐出過程の観察結果から明らかになったように、真空気泡の消滅という現象は発生せず、従って、キャビテ−ション特有の衝撃波も発生していない。
【0033】
これに対し、ノズル底が大きく拡がっている図3(b)の場合、吐出する水はインク通路9内の水と完全につながり、真空気泡は約9μS後に消滅してその時に衝撃波を発生させる。この衝撃波はリバウンド現象(再発泡)を発生させる程の強さではないが、ヒ−タの中央部に局部的な衝撃力を与え、場合によってはヒ−タを破壊してしまう(Hewlett-Packard Journal,Feb.1994,P41 参照)。
【0034】
電解質インクを充填した寿命試験では、図3(a)では1億パルス以上のインク吐出で何ら問題はなく、図3(b)では100万パルス以下から1000万パルス程度の範囲に大きくバラツいていてその差は明らかであった。また、上記衝撃力の有無は、ヘッド基板裏面に張り付けたAEセンサ(音響検出器)によって直接的に検証することもできた。即ち、オ−プンプ−ル沸騰では気泡の発生時と消滅時に検出される衝撃力が、本発明のヘッドでは気泡の発生時の衝撃力さえ1/10以下と小さくなり、気泡の消滅時に観測されるべき衝撃力が全く検出できなくなるのである。これは上に述べたように、気泡が消滅するという現象そのものが無くなっていることを示している。
【0035】
なお、絶縁性酸化被膜は形成されるがピンホ−ル等の欠陥が発生し易い他の抵抗体材料の場合は、発熱抵抗体膜と同程度の厚さの絶縁物層7をヒ−タ全面に被膜すると有効であることが認められた(図4参照)。この薄い絶縁物層7としては、RFスパッタ法によるSiO2 層、Ta2 5 層、Si3 4 層、プラズマCVD法によるSi3 4 層、或いはゾルゲルコ−ト法によるAl2 3 層、半導体プロセスで良く使用されているSOG膜など、密着性と被覆性の良い絶縁物であれば利用可能である。この場合でもゆらぎ核沸騰に必要な印加電力はパルス幅を2μSの場合で裸のヒ−タの場合の約1.5倍程度で良く、これは厚い2層構造の保護層を持つ従来技術のヒ−タの場合の印加エネルギの1/7〜1/10という大きさで、その優れた熱効率の良さが理解されよう。この優れた熱効率によって駆動回路をヘッドと同一のSi基板上に高密度に集積化させることができ、これによって作られる高集積化ヘッドで高速のフルカラ−インクジェットプリンタが作られることは本出願人が出願した特願平06−201985号他に記載した通りである。
【0036】
なお、オリフィスプレート11の厚さを80μm以上とすると、吐出インクがノズルから離脱する前に補充インクが発熱抵抗体上に完全に復帰できる場合がある。この場合は、キャビテーションの衝撃波が発生し、発熱抵抗体の寿命を短くしてしまうことを確認しており、ヘッドの設計上の制約となっている。
【0037】
【発明の効果】
本発明によれば、非常に薄い熱酸化物層或いは更にこの上に薄い絶縁物層で発熱抵抗体を電解質インクと隔離し、個別電極の全てを耐熱性隔壁で電解質インクと隔離し、しかも核沸騰によって発生した気泡を消滅させないノズル構造とすることによって薄い絶縁物層をキャビテ−ション破壊から守り、これらによって加熱効率をほとんど低下させずにヒ−タの電食破壊を完全に防止することができた。このことは信頼性の高い高集積化ヘッドの製造が可能となり、電解質インクを用いても高速のフルカラ−インクジェットプリンタを構成できることを示している。
【図面の簡単な説明】
【図1】 本発明のインク噴射記録ヘッドの一例であるインク噴射記録ヘッドのインク吐出ノズルの拡大断面図である。
【図2】 (a)、(b)は、図1に示すノズルの周辺部を含めた断面図である。
【図3】 (a)、(b)は、ノズル構造の違いによる気泡と水滴の動きの様子を観察した結果である。
【図4】 図1に示す発熱抵抗体に薄膜抵抗体と同程度の厚さの絶縁物層を被覆したインク吐出ノズルの拡大断面図である。
【図5】 Ta−Si−SiO合金薄膜抵抗体の500℃大気中での抵抗変化を示すグラフである。
【符号の説明】
1、 シリコン基板
2、 駆動用LSIデバイス領域
3、 薄膜発熱抵抗体
4、 個別薄膜導体
5、 共通薄膜導体(グランド)
6、 スルーホール接続部
7、 絶縁物層
8、 隔壁
9、 個別インク通路
10、 共通インク通路
11、 オリフィスプレート
12、 インク吐出ノズル
13、 吐出インク
14、 インク溝
15、 インクのメニスカス
16、 気泡
17、 断熱層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heating resistor for an ink jet recording head, an ink jet recording head, and a recording apparatus that use thermal energy to fly ink droplets toward a recording medium.
[0002]
[Prior art]
An ink jet recording apparatus of a type in which a part of ink is rapidly vaporized by pulse heating and an ink droplet is ejected from the orifice by the expansion force is disclosed in JP-A-48-9622, JP-A-54-51837, etc. It is disclosed.
[0003]
The simplest method of this pulse heating is to apply a pulse current to the heating resistor, and the specific method is announced on page 58 of Nikkei Mechanical December 28, 1992 and Hewlett-Packard-Journal, Aug.1988. Has been. The basic structure common to these conventional heating resistors is that a thin film resistor and a thin film conductor are covered with an antioxidant layer, and an anti-cavitation layer is formed on the anti-oxidation layer for the purpose of preventing cavitation destruction of 1-2. It was to coat the layers.
[0004]
In order to drastically simplify the complex multilayer structure, as described in Japanese Patent Application Laid-Open No. 06-71888 filed earlier by the present applicant, a heating resistor that eliminates the need for the antioxidant layer and the anti-cavitation layer is provided. There is a method of printing using the body. In this case, since the thin film resistor is in direct contact with the ink, the rapid nucleate boiling of the ink due to pulse heating and the resulting ink ejection characteristics are greatly improved, greatly improving thermal efficiency and increasing the ejection frequency. I was able to plan. The biggest reason for realizing such breakthrough performance is only Cr-Si-SiO or Ta-Si-SiO alloy thin film resistors and Ni thin film conductors with excellent pulse resistance, oxidation resistance, and electrolytic corrosion resistance. This is because a heating resistor composed of the above is used and no protective layer is required.
[0005]
In this way, since it is possible to eject ink with much smaller input energy than in the prior art, even if this heating resistor is formed close to the device region on the driving LSI chip, it is no longer LSI. A monolithic LSI head having a very simple configuration can be realized without heating the device and causing a temperature rise. This is as described in Japanese Patent Application No. 04-347150 and Japanese Patent Application No. 05-90123 filed earlier by the present applicant. This new technology enables on-demand inkjet printheads with many ink jet nozzles to be densely and two-dimensionally integrated to produce a full-color inkjet printer capable of high-speed printing. I was able to.
[0006]
Further, if an excellent foam extinction characteristic (Japanese Patent Application No. 05-272451) of a thin film heating resistor that does not require a protective layer is used, a thermal system that ejects ink droplets in a direction perpendicular to or substantially perpendicular to the surface of the heating resistor. In the ink jet print head, the crosstalk can be greatly reduced by a new driving method, and it is possible to make the head free from the occurrence of sub-drop and the print density change (Japanese Patent Application Nos. 06-21060 and 06). -49202, Japanese Patent Application No. 06-156949).
[0007]
In addition, a method of manufacturing a large-scale highly integrated print head having such characteristics has been devised with a high yield (see Japanese Patent Application No. 06-201985).
[0008]
[Problems to be solved by the invention]
When full-color printing was performed by filling this large-scale highly integrated print head with various water-based inks, it was found that a head having a design life shorter than the design life appeared. Therefore, a detailed study was conducted, and it was found that the ink of the head that had no problem in life was a neutral water-based ink having a relatively large specific resistance, and the ink of the head that had a design life of less than 10 had a specific resistance. It was found to be as small as 2 to 10 3 Ωcm and non-neutral with PH = 8 to 9.
[0009]
An object of the present invention is to provide a heating resistance for an ink jet recording head, which has no problem in life even for non-neutral aqueous ink having a small specific resistance, and is equivalent to a heating resistor having no protective layer in terms of heating and foaming characteristics. It is an object to provide an ink jet recording head and a recording apparatus using the same.
[0010]
[Means for Solving the Problems]
The object is composed of a Ta—Si—SiO alloy thin film resistor formed on a Si substrate and a thin film conductor partially formed on the Ta—Si—SiO alloy thin film resistor. For an ink jet recording head, the SiO alloy thin film resistor has an electrically insulating film formed by thermally oxidizing the surface of the Ta-Si-SiO alloy thin film resistor on which the thin film conductor is not formed. Ink jetting characterized in that the resistance value of the Ta-Si-SiO alloy thin film resistor on which the electrically insulating film is formed does not change even if it is heated to 350 degrees by pulse heating. This is achieved by the heating resistor for the recording head .
[0012]
In this case, the electrically insulating film is preferably a homogeneous film having no pinholes.
Further, the object is to provide a plurality of heating resistors for the ink jet recording head,
A plurality of ejection nozzles that eject ink droplets in a direction perpendicular to or substantially perpendicular to the heating resistor;
A plurality of individual ink passages provided on the Si substrate corresponding to each of the plurality of discharge nozzles;
This is achieved by an ink jet recording head comprising a common ink passage provided on the Si substrate communicating with the plurality of individual ink passages.
[0013]
In that case, the thin film conductor has an individual thin film conductor connected to each of the Ta-Si-SiO alloy thin film resistor,
It is preferable that all of the individual thin film conductors and a part of the heating resistor are covered with a heat-resistant resin partition which forms the individual ink passages.
[0014]
In that case, it is preferable that the said heat resistant resin is a polyimide.
The thin film conductor is preferably a Ni metal thin film conductor.
[0015]
The present invention also provides a recording apparatus comprising the ink jet recording head.
[0016]
As described above, the thin film resistor coated with a thin and homogeneous thermally oxidized electrical insulating film no longer comes into direct contact with the electrolyte ink, and therefore does not cause the problem of shortening the life due to electrolytic corrosion. . Furthermore, even if there is a thin insulator layer on top of this, the thickness is very thin, equivalent to the resistor film thickness, so the heating efficiency to the ink is almost the same as in the case without the insulator layer, which is the same as before. Performance is obtained and reliability is further increased.
[0017]
However, if these thin insulator layers are destroyed, there is a possibility that electrolytic corrosion may occur. Therefore, it is important to completely prevent the insulator layers from being destroyed. For this purpose, the shock wave generated when the bubble disappears must not be caused.
[0018]
Therefore, the applicant of the present invention, as a method of preventing the shock wave, “whether the height of the individual ink passage is 30 μm or less and the vertical projection image on the surface of the heating resistor at the bottom of the discharge nozzle overlaps the heating resistor within ± 5 μm. It has been found that the head structure is smaller than that, and preferably the nozzle depth is less than 80 μm ”. It was also confirmed experimentally that by using such a structure, the generated bubbles continued to grow to a place connected to the outside air (discharge port), and the phenomenon that the bubbles collapsed no longer occurred.
[0019]
On the other hand, covering the individual thin film conductor including a part of the heater with a resin partition such as polyimide having a thermal decomposition starting temperature of 400 ° C. or higher is a high (or low) potential with respect to the electrolyte ink at the same potential as the common thin film conductor. This is because the possibility that the individual thin-film conductor is electrically eroded is completely zeroed by embedding the individual thin-film conductor in the resin. The required heating temperature of the heater is about 310 ° C. at which fluctuation nucleate boiling occurs, and it is easy to control the heating temperature of the heater within the range of 340 ± 30 ° C. even considering variations in the heater and drive circuit. is there. That is, the maximum temperature of the heater portion close to the individual thin film conductor covered by the heat resistant resin is 360 to 370 ° C., and the accumulated time for heating to the temperature close to this maximum temperature is about 0.2 μs × 100 million pulses = 20 seconds. It is a short time. That is, it can be understood that as long as a resin having a thermal decomposition start temperature of 400 ° C. or higher such as polyimide is used, no problem occurs in the life and reliability of the head having this configuration. Data on these will be described in the examples.
[0020]
The reason why it is not necessary to coat the same resin on the common thin film conductor is that the conductor and the ink are kept at the same potential, so that simple corrosion does not occur in the Ni thin film metal.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments will be described with reference to the drawings.
[0022]
FIG. 1 is an enlarged cross-sectional view of the vicinity of an ink discharge nozzle of an ink jet recording head which is an example of the ink jet recording head of the present invention, and FIG. 2 is a cross-sectional view including the periphery thereof. A SiO 2 heat insulating layer 17 having a thickness of 1 to 2 μm is provided on the silicon substrate 1, and a Ta—Si—SiO alloy thin film resistor 3 having a thickness of about 0.2 μm and excellent in pulse resistance and oxidation resistance is provided thereon. The individual Ni metal thin film conductor 4 and the common Ni metal thin film conductor 5 having a thickness of about 1 μm are formed by sputtering and photoetching as described in Japanese Patent Application Laid-Open No. 06-71888 filed earlier by the present applicant. is there.
[0023]
First, the high-temperature thermal oxidation characteristics of a Ta—Si—SiO alloy thin film resistor (hereinafter referred to as a resistor) will be described. The resistance value R when this resistor was left in the atmosphere at 500 ° C. was measured, and its reciprocal Ro / R is shown in FIG. Here, Ro is a resistance value before the heat treatment. It has been confirmed that the surfaces of the resistors subjected to the thermal oxidation treatment are all changed into electrical insulators (oxides). In FIG. 5, the fact that Ro / R decreases linearly indicates that the rate of change to the insulating oxide by the thermal oxidation treatment (oxidation depth from the surface) is proportional to the heat treatment time. ing.
[0024]
On the other hand, it has been confirmed that the resistance value of the resistor oxidized at 500 ° C. does not change when left in the atmosphere at 350 ° C., and this resistor is pulse-heated at around 350 ° C. in this state. However, it has been confirmed by an application test of 100 million pulses or more that the resistance value does not change at all.
[0025]
Furthermore, an electric corrosion test was conducted at a potential gradient of 30 V / 50 μm by applying a resistor having a thickness of about 1000 mm to the electrolyte ink having a pH of 8 to 9 to this insulating oxide film. No change was observed. This indicates that an insulating film having no defects such as pinholes is formed even though it is a very thin film of 1000 mm (0.1 μm). It can be seen that it has the characteristics of being unobtainable and homogeneous.
[0026]
By this thermal oxidation treatment, a metal thin film conductor such as Ni is oxidized, or Japanese Patent Application Nos. 04-347150, 05-90123, and 06-201985 filed earlier by the present applicant. When heat treatment at 400 ° C. or higher is difficult as in the monolithic LSI head described in No. 1, thermal oxidation treatment is performed by pulsing the alloy thin film resistor and pulse-heating only the resistor to about 550 to 600 ° C. There is a need. In this case, it is effective for the thermal oxidation treatment to make the heating pulse width as long as about 1 ms with a long high temperature holding time, and this can be easily performed by driving from the outside. That is, since the heat treatment is performed with a pulse width that is 10 3 times longer than the pulse width of 1 to 2 μs during actual driving, the rating of the driving LSI is maintained even if the heat treatment temperature is 200 to 250 ° C. higher than that during actual driving. It is far below electricity and no problem. Further, the Si substrate temperature during the pulse heat treatment may be heated to about 100 ° C.
[0027]
Although the resistance value of the thin film resistor is increased by 30 to 40% by the heat treatment, the resistance value can be measured and inspected at the same time particularly during the pulse heat treatment process. Therefore, the resistance values of all the resistors were monitored during the pulse heat treatment, and the resistance values were adjusted to within ± 1%. This makes it possible to align the resistance value of the resistor array, which has had a variation of about ± 5% in the past, and eliminates unnecessary heating by uniformly aligning the ink heating temperature during actual driving, resulting in ink scooping, It has become possible to make a significant contribution to improving the reliability of the head, such as the life of the resistor.
[0028]
Further, the partition wall 8 and the orifice plate 11 are formed by the method described in Japanese Patent Application No. 06-201985 filed earlier by the present applicant. As shown in FIG. A part of the body 3 is covered with a partition wall 8. The heating resistor 3 may be covered from 5 to 8 [mu] m from the end of the individual electrode 4, and the decrease in thermal efficiency due to this is only about 10 to 15%.
As described above, the maximum temperature of the heating resistor is 360 to 370 ° C. or lower, and the life of the heat generating resistor is not limited as long as a heat resistant resin having a thermal decomposition starting temperature of 400 ° C. or higher such as polyimide is used as the constituent material of the partition wall 8. I will show later that it does not matter.
[0029]
On the other hand, when a photosensitive resist material having low heat resistance used in the prior art is used for this partition wall, it has been confirmed that breakage due to electrolytic corrosion occurs when discharging about 10 million dots. By using such a heat resistant resin as the partition wall material, there is no problem in reliability even if the heating resistor 3 and the partition wall 8 overlap in the width direction of the individual ink passages 9. A good result is given that a margin is given to the alignment accuracy (alignment accuracy).
[0030]
As shown in FIGS. 1 and 2, the ink discharge nozzle 12 opened in the orifice plate 11 by dry etching has a straight cylindrical shape, and in some cases, the Japanese Patent Application previously filed by the present applicant. As described in Japanese Patent Laid-Open No. 05-318272, the vertical projection image of the bottom surface of the heating resistor 3 overlaps the heating resistor 3 within ± 5 μm or smaller, and the height of the partition 8 is 30 μm or less. In this embodiment, it is 25 μm, the heater is 50 μm square, and the nozzle diameter is 50 μmφ.
[0031]
The orifice plate 11 uses the same polyimide 50 μm thick film as the partition wall. When the stroboscopic observation is performed by filling pure water into the orifice plate 11, the polyimide is almost transparent. The state of discharge can be seen. When the energization pulse width is 2 μs, this observation result after the energization is started is shown in FIG.
[0032]
That is, the water in the nozzle starts to be ejected at a speed of 12 to 15 m / s about 2-3 μs after the start of energization, but the water in the ink passage 9 hardly moves. However, the internal pressure of the bubble 16 at this time is almost zero. The tail of the water discharged at 6 μS after the start of energization has come close to the outlet of the nozzle 12, and the water in one ink passage 8 has started to move toward the heating resistor 3 due to a pressure difference of 1 atm. However, at 9 μS after the start of energization, the nozzle 12 is already at atmospheric pressure, and the movement of water in the ink passage 9 becomes slow because the pressure difference becomes zero. Then, it took about 70 μs to fill the nozzle 12 again with water. As is clear from the observation result of the discharge process, the phenomenon of the disappearance of the vacuum bubble does not occur, and therefore the shock wave peculiar to cavitation does not occur.
[0033]
On the other hand, in the case of FIG. 3B in which the nozzle bottom is greatly expanded, the water to be discharged is completely connected to the water in the ink passage 9, and the vacuum bubble disappears after about 9 μS and generates a shock wave at that time. Although this shock wave is not strong enough to cause a rebound phenomenon (re-foaming), it applies a local impact force to the center of the heater, and in some cases destroys the heater (Hewlett-Packard Journal, Feb. 1994, p. 41).
[0034]
In the life test in which the electrolyte ink is filled, there is no problem in ejecting ink of 100 million pulses or more in FIG. 3A, and in FIG. 3B, there is a large variation in the range from 1 million pulses to 10 million pulses. The difference was clear. The presence or absence of the impact force could be directly verified by an AE sensor (acoustic detector) attached to the back surface of the head substrate. That is, in the open boiling, the impact force detected at the time of bubble generation and disappearance is as small as 1/10 or less in the head of the present invention, and is observed when the bubble disappears. The impact force to be detected cannot be detected at all. This indicates that the phenomenon of the disappearance of the bubble itself disappears as described above.
[0035]
In the case of another resistor material which is easy to generate defects such as pinholes although an insulating oxide film is formed, an insulator layer 7 having a thickness similar to that of the heating resistor film is formed on the entire surface of the heater. It was confirmed that it was effective when coated on (see FIG. 4). As the thin insulator layer 7, SiO 2 layer by RF sputtering, Ta 2 O 5 layer, Si 3 N 4 layers, Si 3 N 4 layer by plasma CVD method, or Zorugeruko - Al 2 O 3 layer by preparative method Any insulator having good adhesion and covering properties, such as an SOG film often used in a semiconductor process, can be used. Even in this case, the applied power necessary for fluctuation nucleate boiling may be about 1.5 times that in the case of a bare heater when the pulse width is 2 μS, which is that of the prior art having a thick two-layer protective layer. It will be understood that the thermal efficiency is 1/7 to 1/10 of the applied energy in the case of a heater. With this excellent thermal efficiency, the drive circuit can be integrated at a high density on the same Si substrate as the head, and a high-speed full-color ink jet printer can be made with the highly integrated head produced by this. This is as described in Japanese Patent Application No. 06-201985 and other applications.
[0036]
If the thickness of the orifice plate 11 is 80 μm or more, the replenishing ink may be completely restored onto the heating resistor before the ejected ink is detached from the nozzle. In this case, it has been confirmed that a shock wave of cavitation is generated and the life of the heating resistor is shortened, which is a restriction on the design of the head.
[0037]
【The invention's effect】
According to the present invention, the heating resistor is isolated from the electrolyte ink by a very thin thermal oxide layer or further a thin insulating layer thereon, all the individual electrodes are isolated from the electrolyte ink by a heat-resistant partition wall, and the core is separated. By adopting a nozzle structure that does not extinguish bubbles generated by boiling, the thin insulating layer can be protected from cavitation destruction, and these can completely prevent heater corrosion due to almost no decrease in heating efficiency. did it. This indicates that a highly integrated head with high reliability can be manufactured, and that a high-speed full-color ink jet printer can be constructed even if electrolyte ink is used.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view of an ink discharge nozzle of an ink jet recording head which is an example of an ink jet recording head of the present invention.
FIGS. 2A and 2B are cross-sectional views including the peripheral portion of the nozzle shown in FIG.
FIGS. 3A and 3B are the results of observing the movement of bubbles and water droplets due to the difference in nozzle structure. FIGS.
4 is an enlarged cross-sectional view of an ink discharge nozzle in which the heating resistor shown in FIG. 1 is coated with an insulating layer having a thickness similar to that of a thin film resistor.
FIG. 5 is a graph showing a change in resistance of a Ta—Si—SiO alloy thin film resistor in the atmosphere at 500 ° C.
[Explanation of symbols]
1, silicon substrate 2, driving LSI device region 3, thin film heating resistor 4, individual thin film conductor 5, common thin film conductor (ground)
6, through-hole connection portion 7, insulator layer 8, partition wall 9, individual ink passage 10, common ink passage 11, orifice plate 12, ink discharge nozzle 13, discharge ink 14, ink groove 15, ink meniscus 16, bubble 17 Insulation layer

Claims (4)

Si基板上に形成されたTa−Si−SiO合金薄膜抵抗体とこのTa−Si−SiO合金薄膜抵抗体上に部分的に形成された薄膜導体とからなり、前記Ta−Si−SiO合金薄膜抵抗体が、前記薄膜導体の形成されない前記Ta−Si−SiO合金薄膜抵抗体の表面に、自らの表面が熱酸化処理されて形成された電気絶縁性被膜を有するインク噴射記録ヘッド用発熱抵抗体であって、
前記電気絶縁性被膜の形成されたTa−Si−SiO合金薄膜抵抗体は、パルス加熱で自ら350度に加熱しても抵抗値が変化しないことを特徴とするインク噴射記録ヘッド用発熱抵抗体。
A Ta-Si-SiO alloy thin film resistor formed on a Si substrate and a thin film conductor partially formed on the Ta-Si-SiO alloy thin film resistor, the Ta-Si-SiO alloy thin film resistor A heating resistor for an ink jet recording head, wherein the body has an electrically insulating coating formed on the surface of the Ta-Si-SiO alloy thin film resistor on which the thin film conductor is not formed by thermally oxidizing the surface of the resistor. There,
The heating resistor for an ink jet recording head, wherein the Ta—Si—SiO alloy thin film resistor having the electrically insulating film formed thereon does not change in resistance even when heated to 350 degrees by pulse heating.
前記電気絶縁性被膜は、ピンホールのない均質な被膜であることを特徴とする請求項に記載のインク噴射記録ヘッド用発熱抵抗体。The heating resistor for an ink jet recording head according to claim 1 , wherein the electrically insulating film is a homogeneous film having no pinholes. 請求項1又は2に記載の、複数個のインク噴射記録ヘッド用発熱抵抗体と、
この発熱抵抗体と垂直方向または略垂直方向にインク滴を吐出する複数個の吐出ノズルと、
この複数個の吐出ノズルの各々に対応して前記Si基板上に設けられた複数個の個別インク通路と、
この複数個の個別インク通路と連通する前記Si基板上に設けられた共通インク通路とを備えたことを特徴とするインク噴射記録ヘッド。
A plurality of heating resistors for ink jet recording heads according to claim 1 or 2 ,
A plurality of ejection nozzles that eject ink droplets in a direction perpendicular to or substantially perpendicular to the heating resistor;
A plurality of individual ink passages provided on the Si substrate corresponding to each of the plurality of discharge nozzles;
An ink jet recording head comprising: a common ink passage provided on the Si substrate communicating with the plurality of individual ink passages.
請求項に記載のインク噴射記録ヘッドを搭載することを特徴とする記録装置。A recording apparatus comprising the ink jet recording head according to claim 3 .
JP2001151340A 2001-05-21 2001-05-21 Heat generating resistor for ink jet recording head, ink jet recording head, and recording apparatus Expired - Lifetime JP3778488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151340A JP3778488B2 (en) 2001-05-21 2001-05-21 Heat generating resistor for ink jet recording head, ink jet recording head, and recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151340A JP3778488B2 (en) 2001-05-21 2001-05-21 Heat generating resistor for ink jet recording head, ink jet recording head, and recording apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04396895A Division JP3573515B2 (en) 1992-05-29 1995-03-03 Ink jet recording head, recording apparatus, and method of manufacturing ink jet recording head

Publications (2)

Publication Number Publication Date
JP2001322280A JP2001322280A (en) 2001-11-20
JP3778488B2 true JP3778488B2 (en) 2006-05-24

Family

ID=18996210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151340A Expired - Lifetime JP3778488B2 (en) 2001-05-21 2001-05-21 Heat generating resistor for ink jet recording head, ink jet recording head, and recording apparatus

Country Status (1)

Country Link
JP (1) JP3778488B2 (en)

Also Published As

Publication number Publication date
JP2001322280A (en) 2001-11-20

Similar Documents

Publication Publication Date Title
JPH03202353A (en) Thermal ink jet printing head
US5831648A (en) Ink jet recording head
US5710583A (en) Ink jet image recorder
JP3408292B2 (en) Print head
JP2016210070A (en) Substrate for ink jet recording head
JP5525519B2 (en) Print head with separated heater
US8191998B2 (en) Liquid ejecting head
KR20050000601A (en) Inkjet printhead
JP2002079679A (en) Ink jet printing head and method of fabricating the same
JP3812485B2 (en) Liquid ejection apparatus and printer
JP2804303B2 (en) Thermal ink jet print head with high drop generation rate
JPH10109421A (en) Heating substrate for liquid jetting recording head
JPH0911470A (en) Ink-jet recording head and ink-jet recording device
US6315398B1 (en) Thermal ink jet heater design
JP3573515B2 (en) Ink jet recording head, recording apparatus, and method of manufacturing ink jet recording head
JP2005022402A (en) Ink-jet printhead
JP3778488B2 (en) Heat generating resistor for ink jet recording head, ink jet recording head, and recording apparatus
KR100828362B1 (en) Heater of inkjet printhead, inkjet printhead having the heater
JPH09300623A (en) Ink-jet recording head and its device
JP2001341309A (en) Thermal ink jet head
KR20090058225A (en) Inkjet printhead and method of manufacturing the same
US6012804A (en) Ink jet recording head
JPH07153603A (en) Manufacture of heating resistor for ink jet and ink jet printer
KR100497389B1 (en) Inkjet printhead and method of manufacturing thereof
JP2000006414A (en) Ink-jet recording head and ink-jet recording apparatus using the head

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term