JP3778345B2 - Accuracy control method for moisture measuring device - Google Patents

Accuracy control method for moisture measuring device Download PDF

Info

Publication number
JP3778345B2
JP3778345B2 JP2001147001A JP2001147001A JP3778345B2 JP 3778345 B2 JP3778345 B2 JP 3778345B2 JP 2001147001 A JP2001147001 A JP 2001147001A JP 2001147001 A JP2001147001 A JP 2001147001A JP 3778345 B2 JP3778345 B2 JP 3778345B2
Authority
JP
Japan
Prior art keywords
measured
capacitance
moisture measuring
accuracy
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001147001A
Other languages
Japanese (ja)
Other versions
JP2002340835A (en
Inventor
時春 古谷
貴浩 菅野
淳一 木野
千暁 豊田
亨 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2001147001A priority Critical patent/JP3778345B2/en
Publication of JP2002340835A publication Critical patent/JP2002340835A/en
Application granted granted Critical
Publication of JP3778345B2 publication Critical patent/JP3778345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【発明の属する技術分野】
本発明は、生コンクリート、モルタル、砂等の水分を測定する水分測定装置の精度管理方法に関するものである。
【従来の技術】
従来、生コンクリート、モルタル、砂等の水分測定装置として被測定物の静電容量を計測することによりその水分含有率を測定するものが提案されている(例えば特開2000−314712)。
【発明が解決しようとする課題】
通常、従来における上記水分測定装置における精度管理は、水分測定装置による被測定物の測定値と加熱乾燥法による測定値を比較して、水分測定装置の精度の如何を確認しており、モルタル等の被測定物の製作に手間と時間がかかることと相俟って精度管理の簡略容易化が困難であった。また、前記加熱乾燥法による水分測定装置の精度管理の場合には、乾燥機等大掛かりな設備が必要であり、且つ、精度管理のために多くの時間を要し、加熱乾燥法による測定値に誤差を包含するという問題があった。
本発明は、上記事情に鑑みてなされたものであり、日常的に、精度の良い状態のものであるか否かを、簡単にいつでも正確に確認できるようにし、精度管理の簡略容易化を図った水分測定装置の精度管理方法を提供することを目的とする。
【課題を解決するための手段】
請求項1記載の発明は、生コンクリート又はモルタル、砂等の被測定物を試料ケースに収容し、この試料ケースに設けた測定電極を装置本体の接点アッセンブリに装着して装置本体に設けた高周波ブリッジ方式で静電容量を計測する手段により前記被測定物の静電容量を計測し、当該被測定物の水分含有率を求める水分測定装置の精度管理方法において、前記装置本体の接点アッセンブリに対して、静電容量が既知でその基準値を明示した物質を収納した校正基準体に設けた接点を装着し、前記静電容量を計測する手段により前記物質の静電容量を測定し、その測定値と基準値とを比較し装置精度を確認するとともに、前 記装置本体に備えた表示部に、前記測定値の表示、前記測定値と基準値との差が一定の範囲内である場合の装置が正常であることの表示を行うことを特徴とするものである。
請求項1記載の発明によれば、被測定物の静電容量を計測する手段により、生コンクリート、モルタル、砂等の被測定物の水分含有率を求める水分測定装置において、静電容量が既知の物質を使用することにより短時間でいつでも簡略に正確な精度管理を行うことができ、また、装置本体の表示部に測定値が表示され、静電容量が既知の物質にはその基準値が明示されているので、容易に測定値と基準値を比較することができ、更に、表示部に装置が正常であることも表示されるので、数値等で表すよりもわかりやすく、使用者が正常か否かの判断を極めて容易に行うことができ、全体として精度管理の簡略容易化を図ることができる水分測定装置の精度管理方法を提供することができる。
請求項2記載の発明の水分測定装置の精度管理方法は、生コンクリート又はモルタル、砂等の被測定物を試料ケースに収容し、この試料ケースに設けた測定電極を装置本体の接点アッセンブリに装着して装置本体に設けた高周波ブリッジ方式で静電容量を計測する手段により前記被測定物の静電容量を計測し、当該被測定物の水分含有率を求める任意台数の水分測定装置と、任意台数の水分測定装置と通信回線により接続された管理手段とを備え、前記各装置本体の接点アッセンブリに対して、静電容量が既知でその基準値を明示した物質を収納した校正基準体に設けた接点を装着し、前記静電容量を計測する手段により測定される前記物質の静電容量の測定値、各装置本体による正常、異常等の管理結果を前記通信回線を介して管理手段により各々受信し、この管理手段により各水分測定装置の精度管理を一元的に行うことを特徴とするものである。
請求項2記載の発明の水分測定装置の精度管理方法は、請求項1記載の発明の作用に加えて、任意台数の水分測定装置それぞれが設置されている現場で各水分測定装置の精度管理が適正に行われているか否かを管理手段により一元的に管理することが可能な水分測定装置の精度管理方法を提供することができる。
【発明の実施の形態】
以下に、本発明の実施の形態に係る水分測定装置の精度管理方法を詳細に説明する。まず、精度管理方法の説明に先立ち、本発明の実施の形態に係る水分測定装置の精度管理方法の対象となりこの精度管理方法が適用される水分測定装置について図1乃至図6を参照して説明する。
本発明の精度管理方法の対象となりこの精度管理方法が適用される水分測定装置は、生コンクリート、モルタル、砂等の水分を測定する水分測定装置で、生コンクリート、モルタル、砂等の静電容量を測定することにより、その水分率を推定するものである。
また、静電容量は嵩密度の影響を受けるため、サンプルの質量を測定し、静電容量を補正することによって、より精度の高い水分率推定が可能となる。一般に水分量Wと静電容量Cとは、W=K・Cの式で表すことができる。
ここにいうKは材質による定数である。また、水分測定装置により測定する静電容量の変化は、主として測定電極間に存在する被測定物である生コンクリート等の水分量Wに依存するものと考えられる。
従って、被測定物の静電容量Cを測定することにより、その水分量Wを求めることが可能となる。
この水分測定装置は、上記原理に基づくものであり、以下に当該水分測定装置について詳細に説明する。
図1、図2は、この水分測定装置の構成を示すものであり、水分測定装置本体を構成する箱形状の下ケース13と、パッキン19と、上ケース14とを具備している。前記下ケース13と、上ケース14との間には、電池収納部50、支持基板21及びLCD(液晶)からなる表示部60、この水分測定装置の制御プログラムを格納し、静電容量計算等の各種の演算、表示部60の表示制御等を行うCPU80を含むCPU基板アッセンブリ2、操作部70を構成する操作スイッチ基板アッセンブリ3が組み込まれるようになっている。
更に、装置本体内には、後述するLCR直列共振回路、又は高周波ブリッジ回路を搭載している。前記操作部70は、操作スイッチ基板アッセンブリ3上にパネルシート4及びフィルタ17を積層配置して、数値、項目入力等を行う多数の操作キー3aを上ケース14上で操作可能に構成している。
また、各種の測定結果等を表示する表示部60の表示画面60aは、パネルシート4及びフィルタ17に各々設けた穴部4a、透明部17aから上ケース14上に表出するように構成し上ケース14の上方から視認可能としている。
このような操作部70、表示部60を備えることにより、操作の容易化、表示内容の確認の容易化を図っている。
また、上ケース14上には、試料ケース40用の収容領域90が形成され、この収容領域90を形成する垂直壁部14aに、試料ケース40との電気的接続をとる接点アッセンブリ1を着脱可能に取り付けている。接点アッセンブリ1を着脱可能としているので、接点アッセンブリ1の保守や取り換えが容易であるという利点がある。
前記試料ケース40の収容領域90の内面は、開口面側が大きく、底部にいくほど小さくなる傾斜面形状に形成されており、これにより、生コンクリート100等の被測定物の出入を容易としている。
また、上ケース14上には、試料ケース40の底面に設けた装着案内溝40aに係合する例えば垂直壁部14a側が広幅で、挿入端側が狭幅の装着ガイド40bを設け、図3に示すように、試料ケース40の装着案内溝40aに装着ガイド40bを係合しつつ図1に示す矢印方向に試料ケース40を装着することで、接点アッセンブリ1との位置関係を気にすることなく、試料ケース40を上ケース14上において前記接点アッセンブリ1と正確に位置決めして測定状態とすることができるようになっている。
前記装着案内溝40a、装着ガイド40bは、試料ケース及び本体装置に設ける場合だけでなく、試料ケース又は本体装置のいずれか一方にのみ設けるようにしても良い。
前記表示部60は、上固定具7、下固定具8及びネジ200を用いて定位置に固定されるようになっている。前記電池収納部50は、下ケース13の下部に、電池下ホルダー16a、電池上ホルダー16bを備えるとともに、第1、第2の電池接点10、11間に例えば単1型の乾電池等を収容するようになっている。
また、前記下ケース13の側壁部には、電池蓋パッキン20、第2の電池接点10、電池蓋15、電池蓋止めネジ9が配置されるようになっている。
前記下ケース13の裏面側には、通信用コネクタ22が配され、プリンタやコンピュータへのデータ出力が可能であり、ACジャック12が配されることにより、2電源での使用が可能となっている。通信用コネクタ22及びACジャック12には、それぞれ通信用コネクタカバー23及びACジャックカバー18が取り付けられていて、防水構造となっている。
添付する図4は、試料ケース40に設けた測定電極41、42との電気的接続をとる接点アッセンブリ1を示すものである。前記接点アッセンブリ1は、図4に示すように、プレート33に設けた一対構成のコネクタ受体36に対して、一対構成からなる接点バネ32、接点カバー34、接点固定具35をネジ200等を用いて組み付けている。アナログ基板31はプレート33の背面に取り付けられている。
そして、図1に示すように、試料ケース40に設けた測定電極41、42を一対構成の接点バネ32に各々接続することで、試料ケース40の内部に設けた試料収容部45に露出する測定電極41、42の露出面41a、42a間に、例えば生コンクリート100等を収納することで、この生コンクリート100の水分量をこの水分測定装置により測定しその静電容量を算出可能としている。
なお、上述した水分測定装置においては、前記試料ケース40を具備することを必須とするものではなく、試料ケース40と代替して、被測定物に挿入された電極をケーブル等でこの水分測定装置に接続して静電容量を測定することも可能である。
添付する図5、図6は、前記水分測定装置に搭載した静電容量を測定するLCR直列共振回路、高周波ブリッジ回路の構成を示すものである。
図5に示すLCR直列共振回路は、高周波電源150から周波数fの高周波電力を、抵抗R、r、コイル(インダクタ)L、可変コンデンサCからなる直列共振回路に供給し、可変コンデンサCの容量を可変して共振をとり、次に、生コンクリート100を収容した試料ケース40を装置本体に装着して、共振状態とした可変コンデンサCの両端に等価的に生コンクリート100の電気特性を示す抵抗Rx、コンデンサCxの並列回路を接続して、可変コンデンサCの容量を再度可変して共振をとり各共振時の可変コンデンサCの容量変化値から生コンクリート100の静電容量を測定するものである。
なお、図5中の符号Vは電圧計である。これにより、LCR直列共振回路の中では最も簡略に構成した回路構成で、その共振を利用し、可変コンデンサVCの容量変化値から被測定物の静電容量を正確に求めることができる。
図6に示す高周波ブリッジ回路は、高周波電源150から周波数fの高周波電力、検出器DETを備え、抵抗R1、R2、R3、可変コンデンサVC1、VC2、コンデンサC3をブリッジ接続した高周波ブリッジ回路に供給し、2個の可変コンデンサVC1、VC2の容量を可変して高周波ブリッジ回路の平衡をとり、次に、生コンクリート100を収容した試料ケース40を装置本体に装着した状態で、可変コンデンサVC2の両端に、等価的に表される抵抗Rx、コンデンサCxの並列回路を接続して、2個の可変コンデンサVC1、VC2の容量を再度可変して高周波ブリッジ回路の平衡をとる。
そして、一方の可変コンデンサVC2の容量変化値から前記被測定物である生コンクリート100の静電容量を求めるものである。これにより、L(インダクタンス)分が不要で、回路構成がLCR直列共振回路に比べより簡略化し、また、高周波ブリッジ回路の中では最も簡略に構成した高周波ブリッジ回路の平衡を利用し、前記一方の可変コンデンサVC2の容量変化値から前記被測定物である生コンクリートの静電容量を正確に求めることができる。
なお、金属等の測定値に影響する導電体を、前記装置本体における試料ケース40の設置箇所の周辺に配置しない構造とすることで、この水分測定装置の組立時に、金属部品等の取り付け位置が多少ずれても、器差を生じることがなく、被測定物の特性をより忠実に測定値に反映させることが可能となって、測定結果の正確性を期すことができる。
次に、本発明の実施の形態に係る水分測定装置の精度管理方法について、図7、図8を参照して説明する。本実施の形態に係る水分測定装置の精度管理方法は、図7に示すように、前記接点アッセンブリ1の一対構成の接点バネ32に対して、例えば直方体状に形成されて、内部に高分子樹脂又はセラミック材料からなる静電容量が既知の物質を収納した校正基準体140に設けている一対の接点101を装着し、水分測定装置による当該物質の測定値と、基準値とを比較することにより、図1乃至図6に示す前述した水分測定装置の精度を簡易に確認するものである。
前記物質として、温度特性などの物理的特性、化学的特性の安定している高分子樹脂又はセラミックからなる物質を使用しているため、周囲の環境に左右されることなく精度管理が可能となり、また、前記物質の電気特性が安定しているので前記物質自身の電気特性の確認期間も長くすることができる。
更にまた、本実施の形態に係る水分測定装置の精度管理方法は、前記物質の測定値と基準値との差が一定の範囲内であれば、水分測定装置本体に備えた表示部60に装置自体が正常であることを例えば「正常」等の文字により表示する。
これにより、装置本体が正常であることを直ちに把握でき、数値等で表すよりもわかりやすく、使用者が正常か否かの判断を極めて容易に行うことができ、精度管理の簡略化、容易化を図ることができる。
次に、図8を参照して、任意台数(例えば異なる場所に設置されている3台)の前述した水分測定装置の精度管理を、一箇所で一元的に行う精度管理方法に関する実施の形態を説明する。
この図8に示す構成を使用する精度管理方法においては、各々異なる工場等に設置されている例えば3台の識別ナンバーNO.1乃至NO.3からなる水分測定装置121A乃至121Cを、例えばモデム122、通信回線としての電話回線123、管理手段であるホストコンピュータ130側のモデム124を介して相互にデータ通信可能に接続し、各水分測定装置121A乃至121Cにより各々測定される静電容量が既知の前記物質の静電容量の測定値、正常、異常等の精度管理結果等を前記モデム122、電話回線123、モデム124を介してホストコンピュータ130により受信し、ホストコンピュータ130によりデータ処理してその画面131に例えば識別ナンバーNO.1乃至NO.3の水分測定装置121A乃至121C毎に、例えば「正常」、「異常」等の文字を表示して、各水分測定装置121A乃至121Cの精度管理データの一元的な管理を実行する。
即ち、水分測定装置121A乃至121Cがそれぞれ設置されている現場で各々精度管理が適正に行われているか否かをホストコンピュータ130にて一元的に管理することが可能となる。
【発明の効果】
以上詳述した本発明によれば、以下の各効果を奏する。請求項1記載の発明によれば、被測定物の静電容量を計測する手段により、生コンクリート又はモルタル、砂等の被測定物の水分含有率を求める水分測定装置において、静電容量が既知の物質を使用することにより、短時間でいつでも簡略に精度管理を行うことができ、また、装置本体の表示部に測定値が表示され、静電容量が既知の物質にはその基準値が明示されているので、容易に測定値と基準値を比較することができ、更に表示部に装置が正常であることが表示されるので、数値等で表すよりもわかりやすく、使用者が正常か否かの判断を極めて容易に行うことができ、全体として精度管理の簡略容易化を測ることができる。
請求項2記載の発明によれば、請求項1記載の発明の効果に加え、水分測定装置それぞれが設置されている現場で各水分測定装置の精度管理が適正に行われていることを一元的に管理することが可能な水分測定装置の精度管理方法を提供することができる。
【図面の簡単な説明】
【図1】 本発明の精度管理方法が適用される水分測定装置の外観斜視図である。
【図2】 本発明の精度管理方法が適用される水分測定装置の分解斜視図である。
【図3】 本発明の精度管理方法が適用される水分測定装置における収容ケースの底部分の斜視図である。
【図4】 本発明の精度管理方法が適用される水分測定装置のコネクタ部分の分解斜視図である。
【図5】 本発明の精度管理方法が適用される水分測定装置に搭載したLCR共振回路を示す回路図である。
【図6】 本発明の精度管理方法が適用される水分測定装置に搭載した高周波ブリッジ回路を示す回路図である。
【図7】 本発明の実施の形態に係る水分測定装置の精度管理に使用する校正基準体を含む水分測定装置の外観斜視図である。
【図8】 本発明の実施の形態に係る水分測定装置の一元的な精度管理を行うための構成を示す概略ブロック図である。
【符号の説明】
1 接点アッセンブリ
2 CPU基板アッセンブリ
3 操作スイッチ基板アッセンブリ
3a 操作キー
4 パネルシート
13 下ケース
14 上ケース
15 電池蓋
22 通信用コネクタ
40 試料ケース
41 測定電極
42 測定電極
50 電池収納部
60 表示部
70 操作部
90 収容領域
100 生コンクリート
121A乃至121C 水分測定装置
122 モデム
123 電話回線
124 モデム
130 ホストコンピュータ
140 校正基準体
150 高周波電源
Rx 抵抗
Cx コンデンサ
VC1 可変コンデンサ
VC2 可変コンデンサ
C 可変コンデンサ
DET 検出器
L コイル
BACKGROUND OF THE INVENTION
The present invention relates to an accuracy management method for a moisture measuring device that measures moisture such as ready-mixed concrete, mortar, sand and the like.
[Prior art]
Conventionally, as a moisture measuring device such as ready-mixed concrete, mortar, and sand, a device that measures the moisture content by measuring the capacitance of an object to be measured has been proposed (for example, Japanese Patent Laid-Open No. 2000-314712).
[Problems to be solved by the invention]
Usually, the accuracy control in the conventional moisture measuring device is to check the accuracy of the moisture measuring device by comparing the measured value of the measured object by the moisture measuring device and the measured value by the heat drying method, such as mortar This makes it difficult to simplify the accuracy control due to the time and effort required to manufacture the object to be measured. In addition, in the case of accuracy control of the moisture measuring device by the heat drying method, a large facility such as a dryer is required, and it takes a lot of time for accuracy control, and the measured value by the heat drying method is obtained. There was a problem of including errors.
The present invention has been made in view of the above circumstances, and it is possible to easily and accurately confirm whether or not it is in a highly accurate state on a daily basis, thereby simplifying accuracy management. It is an object of the present invention to provide a method for controlling the accuracy of a moisture measuring apparatus.
[Means for Solving the Problems]
According to the first aspect of the present invention, an object to be measured such as ready-mixed concrete, mortar, or sand is accommodated in a sample case, and a measurement electrode provided on the sample case is attached to a contact assembly of the apparatus main body, and is provided on the apparatus main body. In the accuracy control method of the moisture measuring device for measuring the capacitance of the object to be measured by means of measuring the capacitance by a bridge method and obtaining the moisture content of the object to be measured, A contact provided on a calibration reference body containing a substance whose capacitance is known and whose reference value is clearly specified is attached, and the capacitance of the substance is measured by means of measuring the capacitance, and the measurement is performed. reaffirmed comparison device accuracy value and the reference value, the display unit provided in the prior Symbol apparatus main body, a display of the measured values, the difference between the measured value and the reference value when it is within a predetermined range Device is normal It is characterized in that the display of Rukoto.
According to the first aspect of the present invention, in the moisture measuring device for determining the moisture content of a measured object such as ready-mixed concrete, mortar, sand, etc. by means of measuring the capacitance of the measured object, the capacitance is known. By using this material, accurate accuracy control can be performed easily at any time in a short time, and the measured value is displayed on the display unit of the main body of the device. Since it is clearly shown, the measured value can be easily compared with the reference value, and it is also displayed on the display that the device is normal. It is possible to provide an accuracy management method for a moisture measuring apparatus that can determine whether or not it is extremely easy and can simplify the accuracy management as a whole.
According to a second aspect of the present invention, there is provided a method for controlling the accuracy of a moisture measuring apparatus, comprising: measuring a specimen such as ready-mixed concrete, mortar, or sand in a sample case; and attaching the measurement electrode provided on the sample case to a contact assembly of the apparatus main body. An arbitrary number of moisture measuring devices for measuring the capacitance of the object to be measured by means of measuring the capacitance with a high-frequency bridge method provided in the apparatus body, and determining the moisture content of the object to be measured, and an arbitrary Provided on a calibration reference body containing a substance whose capacitance is known and whose reference value is clearly specified for the contact assembly of each apparatus body, comprising a number of moisture measuring devices and management means connected by communication lines. The measured value of the capacitance of the substance measured by the means for measuring the capacitance and the management results of normality and abnormality by each device body are sent to the management means via the communication line. Ri respectively received, is characterized in that centrally control the accuracy of the moisture measuring device by the management means.
In addition to the operation of the invention according to claim 1, the accuracy management method for the moisture measuring device according to the second aspect of the present invention allows the accuracy management of each moisture measuring device to be performed at a site where any number of moisture measuring devices are installed. It is possible to provide an accuracy management method for a moisture measuring apparatus capable of centrally managing whether or not it is properly performed by a management means.
DETAILED DESCRIPTION OF THE INVENTION
Below, the quality control method of the moisture measuring device which concerns on embodiment of this invention is demonstrated in detail. First, prior to the description of the accuracy management method, a moisture measurement device that is an object of the accuracy management method of the moisture measurement device according to the embodiment of the present invention and to which this accuracy management method is applied will be described with reference to FIGS. 1 to 6. To do.
The moisture measuring device to which the accuracy controlling method of the present invention is applied is a moisture measuring device that measures moisture of ready-mixed concrete, mortar, sand, etc., and has a capacitance of ready-mixed concrete, mortar, sand, etc. The moisture content is estimated by measuring.
In addition, since the capacitance is affected by the bulk density, it is possible to estimate the moisture content with higher accuracy by measuring the mass of the sample and correcting the capacitance. In general, the water content W and the capacitance C can be expressed by the equation W = K · C.
Here, K is a constant depending on the material. Moreover, it is thought that the change in the capacitance measured by the moisture measuring device mainly depends on the moisture content W of the ready-mixed concrete or the like to be measured existing between the measurement electrodes.
Therefore, the water content W can be obtained by measuring the capacitance C of the object to be measured.
This moisture measuring device is based on the above principle, and the moisture measuring device will be described in detail below.
FIG. 1 and FIG. 2 show the configuration of the moisture measuring device, which includes a box-shaped lower case 13, a packing 19, and an upper case 14 that constitute the moisture measuring device main body. Between the lower case 13 and the upper case 14, a battery storage unit 50, a support substrate 21 and a display unit 60 comprising an LCD (liquid crystal), a control program for this moisture measuring device, are stored, and a capacitance calculation, etc. The CPU board assembly 2 including the CPU 80 for performing various calculations of the above, display control of the display unit 60, and the like, and the operation switch board assembly 3 constituting the operation unit 70 are incorporated.
Furthermore, an LCR series resonance circuit or a high-frequency bridge circuit described later is mounted in the apparatus main body. The operation unit 70 is configured such that the panel sheet 4 and the filter 17 are stacked on the operation switch board assembly 3 so that a large number of operation keys 3a for inputting numerical values and items can be operated on the upper case 14. .
Further, the display screen 60a of the display unit 60 for displaying various measurement results and the like is configured to be exposed on the upper case 14 from the hole 4a and the transparent part 17a provided in the panel sheet 4 and the filter 17, respectively. Visible from above the case 14.
By providing the operation unit 70 and the display unit 60 as described above, the operation is facilitated and the confirmation of display contents is facilitated.
An accommodation region 90 for the sample case 40 is formed on the upper case 14, and the contact assembly 1 that makes electrical connection with the sample case 40 can be attached to and detached from a vertical wall portion 14 a that forms the accommodation region 90. It is attached to. Since the contact assembly 1 is detachable, there is an advantage that maintenance and replacement of the contact assembly 1 are easy.
The inner surface of the accommodation region 90 of the sample case 40 is formed in an inclined surface shape having a large opening surface side and becoming smaller toward the bottom, thereby facilitating entry / exit of an object to be measured such as ready-mixed concrete 100.
Further, on the upper case 14, a mounting guide 40b having a wide width on the side of the vertical wall 14a and a narrow width on the insertion end side is provided, which is engaged with a mounting guide groove 40a provided on the bottom surface of the sample case 40, as shown in FIG. Thus, by mounting the sample case 40 in the direction of the arrow shown in FIG. 1 while engaging the mounting guide 40b in the mounting guide groove 40a of the sample case 40, without worrying about the positional relationship with the contact assembly 1, The sample case 40 can be accurately positioned on the upper case 14 with the contact assembly 1 to be in a measurement state.
The mounting guide groove 40a and the mounting guide 40b may be provided not only in the sample case and the main body device but also in either the sample case or the main body device.
The display unit 60 is fixed in place using the upper fixture 7, the lower fixture 8 and the screw 200. The battery storage unit 50 includes a lower battery holder 16a and an upper battery holder 16b at the lower part of the lower case 13, and stores, for example, a single-type dry battery between the first and second battery contacts 10 and 11. It is like that.
A battery lid packing 20, a second battery contact 10, a battery lid 15, and a battery lid set screw 9 are arranged on the side wall of the lower case 13.
A communication connector 22 is arranged on the back side of the lower case 13 so that data can be output to a printer or a computer. The AC jack 12 is arranged so that it can be used with two power sources. Yes. A communication connector cover 23 and an AC jack cover 18 are attached to the communication connector 22 and the AC jack 12, respectively, and have a waterproof structure.
FIG. 4 attached herewith shows the contact assembly 1 that is electrically connected to the measurement electrodes 41 and 42 provided on the sample case 40. As shown in FIG. 4, the contact assembly 1 has a pair of contact springs 32, a contact cover 34, and a contact fixture 35 with a screw 200 or the like with respect to a pair of connector receivers 36 provided on the plate 33. It is assembled using. The analog substrate 31 is attached to the back surface of the plate 33.
As shown in FIG. 1, the measurement electrodes 41 and 42 provided on the sample case 40 are connected to the pair of contact springs 32, respectively, so that the measurement exposed to the sample storage portion 45 provided inside the sample case 40. By storing, for example, ready-mixed concrete 100 between the exposed surfaces 41a, 42a of the electrodes 41, 42, the moisture content of the ready-mixed concrete 100 can be measured by the moisture measuring device, and the capacitance can be calculated.
In the above-described moisture measuring device, it is not essential to provide the sample case 40. Instead of the sample case 40, an electrode inserted into the object to be measured is connected with a cable or the like. It is also possible to measure capacitance by connecting to
FIG. 5 and FIG. 6 attached show the configurations of an LCR series resonance circuit and a high-frequency bridge circuit that measure the capacitance mounted on the moisture measuring device.
The LCR series resonance circuit shown in FIG. 5 supplies high-frequency power having a frequency f from a high-frequency power source 150 to a series resonance circuit including resistors R, r, a coil (inductor) L, and a variable capacitor C, and the capacitance of the variable capacitor C is increased. A sample case 40 accommodating the ready-mixed concrete 100 is attached to the apparatus main body, and the resistance Rx equivalently shows the electrical characteristics of the ready-mixed concrete 100 at both ends of the variable capacitor C brought into the resonance state. Then, the parallel circuit of the capacitor Cx is connected, the capacitance of the variable capacitor C is varied again, resonance is performed, and the capacitance of the ready-mixed concrete 100 is measured from the capacitance change value of the variable capacitor C at each resonance.
In addition, the code | symbol V in FIG. 5 is a voltmeter. As a result, the capacitance of the device under test can be accurately obtained from the capacitance change value of the variable capacitor VC using the resonance with the simplest circuit configuration among the LCR series resonance circuits.
The high-frequency bridge circuit shown in FIG. 6 is supplied from a high-frequency power source 150 to a high-frequency bridge circuit including a high-frequency power having a frequency f and a detector DET, and connecting resistors R1, R2, R3, variable capacitors VC1, VC2, and capacitor C3 in a bridge connection. The capacitance of the two variable capacitors VC1 and VC2 is varied to balance the high-frequency bridge circuit. Next, the sample case 40 containing the ready-mixed concrete 100 is mounted on the main body of the apparatus, and is attached to both ends of the variable capacitor VC2. The parallel circuit of the resistor Rx and the capacitor Cx expressed equivalently is connected, and the capacitances of the two variable capacitors VC1 and VC2 are changed again to balance the high-frequency bridge circuit.
And the electrostatic capacitance of the ready-mixed concrete 100 which is the said to-be-measured object is calculated | required from the capacity | capacitance change value of one variable capacitor VC2. As a result, the L (inductance) component is unnecessary, the circuit configuration is more simplified than that of the LCR series resonance circuit, and the balance of the high-frequency bridge circuit that is the simplest among the high-frequency bridge circuits is utilized. From the capacitance change value of the variable capacitor VC2, it is possible to accurately obtain the capacitance of the ready-mixed concrete that is the object to be measured.
It should be noted that a conductor that affects the measured value of metal or the like is configured not to be disposed around the installation location of the sample case 40 in the apparatus main body, so that the mounting position of the metal parts or the like can be adjusted when the moisture measuring apparatus is assembled. Even if there is a slight deviation, there is no instrumental error, and the characteristics of the object to be measured can be reflected more faithfully in the measurement value, so that the accuracy of the measurement result can be expected.
Next, an accuracy management method for the moisture measuring apparatus according to the embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 7, the accuracy management method of the moisture measuring device according to the present embodiment is formed in, for example, a rectangular parallelepiped shape with respect to the pair of contact springs 32 of the contact assembly 1, and has a polymer resin inside. Alternatively, by attaching a pair of contacts 101 provided on a calibration reference body 140 containing a substance made of a ceramic material and having a known capacitance, and comparing the measured value of the substance with a moisture measuring device and the reference value The accuracy of the above-described moisture measuring device shown in FIGS. 1 to 6 is simply confirmed.
Since the substance is made of a polymer resin or ceramic that is stable in physical characteristics, such as temperature characteristics and chemical characteristics, the accuracy can be controlled without being influenced by the surrounding environment. In addition, since the electrical characteristics of the substance are stable, the confirmation period of the electrical characteristics of the substance itself can be extended.
Furthermore, the method for managing the accuracy of the moisture measuring device according to the present embodiment can be applied to the display unit 60 provided in the moisture measuring device main body if the difference between the measured value of the substance and the reference value is within a certain range. The fact that it is normal is displayed by characters such as “normal”.
As a result, it is possible to immediately grasp that the device body is normal, it is easier to understand than the numerical value, etc., it is very easy to judge whether the user is normal, and accuracy management is simplified and facilitated Can be achieved.
Next, referring to FIG. 8, an embodiment relating to an accuracy management method for performing the accuracy management of the above-described moisture measuring devices in an arbitrary number (for example, three units installed in different places) in one place. explain.
In the quality control method using the configuration shown in FIG. 8, for example, three identification numbers NO. 1 to NO. 3 are connected to each other through, for example, a modem 122, a telephone line 123 as a communication line, and a modem 124 on the host computer 130 side which is a management means so that data can be communicated with each other. The host computer 130 sends the measured value of the capacitance of the substance whose capacitance measured by 121A to 121C is known, the accuracy control result of normality, abnormality, etc. via the modem 122, telephone line 123, and modem 124. Received by the host computer 130 and processed by the host computer 130, the identification number NO. 1 to NO. For example, characters such as “normal” and “abnormal” are displayed for each of the three moisture measuring devices 121A to 121C, and unified management of the accuracy management data of each of the moisture measuring devices 121A to 121C is executed.
That is, it is possible to centrally manage whether or not the accuracy management is properly performed at the site where the moisture measuring devices 121A to 121C are installed, respectively.
【The invention's effect】
According to the present invention described above in detail, the following effects can be obtained. According to the first aspect of the present invention, in the moisture measuring device for obtaining the moisture content of the measured object such as ready-mixed concrete, mortar, sand, or the like by means of measuring the capacitance of the measured object, the capacitance is known. By using this material, accuracy control can be easily performed at any time in a short time, and the measured value is displayed on the display of the main body of the device, and the reference value is clearly indicated for the substance with known capacitance. Therefore, the measured value can be easily compared with the reference value, and the display unit displays that the device is normal. Such determination can be made very easily, and the simplification of accuracy management can be measured as a whole.
According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, it is unified that the accuracy management of each moisture measuring device is appropriately performed at the site where each moisture measuring device is installed. It is possible to provide a method for managing the accuracy of a moisture measuring device that can be managed easily.
[Brief description of the drawings]
FIG. 1 is an external perspective view of a moisture measuring device to which an accuracy management method of the present invention is applied.
FIG. 2 is an exploded perspective view of a moisture measuring device to which the quality control method of the present invention is applied.
FIG. 3 is a perspective view of a bottom portion of a storage case in a moisture measuring device to which the accuracy management method of the present invention is applied.
FIG. 4 is an exploded perspective view of a connector portion of a moisture measuring device to which the accuracy management method of the present invention is applied.
FIG. 5 is a circuit diagram showing an LCR resonance circuit mounted on a moisture measuring device to which the quality control method of the present invention is applied.
FIG. 6 is a circuit diagram showing a high-frequency bridge circuit mounted on a moisture measuring device to which the quality control method of the present invention is applied.
FIG. 7 is an external perspective view of a moisture measuring device including a calibration reference body used for accuracy management of the moisture measuring device according to the embodiment of the present invention.
FIG. 8 is a schematic block diagram showing a configuration for performing unified accuracy management of the moisture measuring apparatus according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Contact assembly 2 CPU board assembly 3 Operation switch board assembly 3a Operation key 4 Panel sheet 13 Lower case 14 Upper case 15 Battery cover 22 Communication connector 40 Sample case 41 Measurement electrode 42 Measurement electrode 50 Battery storage part 60 Display part 70 Operation part 90 Housing area 100 Ready-mixed concrete 121A to 121C Moisture measuring device 122 Modem 123 Telephone line 124 Modem 130 Host computer 140 Calibration reference body 150 High frequency power supply Rx Resistance Cx Capacitor VC1 Variable capacitor VC2 Variable capacitor C Variable capacitor DET Detector L Coil

Claims (2)

生コンクリート又はモルタル、砂等の被測定物を試料ケースに収容し、この試料ケースに設けた測定電極を装置本体の接点アッセンブリに装着して装置本体に設けた高周波ブリッジ方式で静電容量を計測する手段により前記被測定物の静電容量を計測し、当該被測定物の水分含有率を求め、前記装置本体に備えた表示部に、前記測定値の表示を行うようにした水分測定装置の精度管理方法であって、
前記装置本体の接点アッセンブリに対して、高分子樹脂又はセラミック材料からなる静電容量が既知でその基準値を明示した物質を収納した校正基準体に設けた一対の接点を装着し、前記静電容量を計測する手段により前記物質の静電容量を測定し、その測定値と基準値とを比較し装置の精度確認をできるようにしたとともに、前記装置本体に備えた表示部に、前記測定値の表示、前記測定値と基準値との差が一定の範囲内である場合、装置が正常であることの表示を行い、その差が一定の範囲外である場合、装置が異常であることの表示を行うようにしたことを特徴とし、装置周囲の環境に左右されることなく短時間で簡略に正確な装置の精度管理を行うことができ、しかも電気的特性の確認期間も長くすることができ、装置の精度管理の簡略容易化を可能にしたことを特徴とする水分測定装置の精度管理方法。
The measured object such as ready-mixed concrete, mortar, sand, etc. is stored in the sample case, and the measurement electrode provided in this sample case is attached to the contact assembly of the device body, and the capacitance is measured by the high frequency bridge method provided in the device body. The moisture measuring device is configured to measure the capacitance of the object to be measured by means for obtaining the moisture content of the object to be measured, and to display the measured value on a display unit provided in the apparatus body. A quality control method,
A pair of contacts provided on a calibration reference body containing a substance having a known electrostatic capacity made of a polymer resin or a ceramic material and clearly indicating the reference value is attached to the contact assembly of the apparatus body, The capacitance of the substance is measured by means for measuring the capacitance, and the measurement value is compared with a reference value so that the accuracy of the device can be confirmed. If the difference between the measured value and the reference value is within a certain range, the device is displayed as normal. If the difference is outside the certain range, the device is abnormal. It is characterized by the fact that it can be displayed, and it can easily and accurately manage the accuracy of the device in a short time without being influenced by the environment around the device, and it can also lengthen the confirmation period of the electrical characteristics Of equipment quality control Quality control method of the moisture measuring apparatus is characterized in that to allow substantially facilitated.
生コンクリート又はモルタル、砂等の被測定物を試料ケースに収容し、この試料ケースに設けた測定電極を装置本体の接点アッセンブリに装着して装置本体に設けた高周波ブリッジ方式で静電容量を計測する手段により前記被測定物の静電容量を計測し、当該被測定物の水分含有率を求め、前記装置本体に備えた表示部に、前記測定値の表示を行うようにした任意台数の水分測定装置と、
任意台数の水分測定装置と通信回線により接続された管理手段とを備え、
任意台数の水分測定装置において、前記装置本体の接点アッセンブリに対して、高分子樹脂又はセラミック材料からなる静電容量が既知でその基準値を明示した物質を収納した校正基準体に設けた一対の接点を装着し、前記静電容量を計測する手段により前記物質の静電容量を測定し、その測定値と基準値とを比較し各装置の精度確認をできるようにしたとともに、前記各装置本体に備えた表示部に、前記測定値の表示、前記測定値と基準値との差が一定の範囲内である場合、装置が正常であることの表示を行い、その差が一定の範囲外である場合、装置が異常であることの表示を行うようにしたことを特徴とし、各装置周囲の環境に左右されることなく短時間で簡略に正確な各装置の精度管理を行うことができ、しかも電気的特性の確認期間も長くすることができ、各装置の精度管理の簡略容易化を可能にしたことを特徴とし、
前記各装置本体による正常、異常等の装置精度の管理結果を、前記通信回線を介して管理手段により各々受信し、この管理手段により各水分測定装置の精度管理を一元的に行うようにしたことを特徴とする水分測定装置の精度管理方法。
The measured object such as ready-mixed concrete, mortar, sand, etc. is stored in the sample case, and the measurement electrode provided in this sample case is attached to the contact assembly of the device body, and the capacitance is measured by the high frequency bridge method provided in the device body. Measuring the capacitance of the object to be measured by the means to determine the moisture content of the object to be measured, and displaying the measured value on the display unit provided in the apparatus body. A measuring device;
With an arbitrary number of moisture measuring devices and management means connected by a communication line,
In an arbitrary number of moisture measuring devices, a pair of calibration reference bodies that contain a substance that has a known electrostatic capacitance made of a polymer resin or a ceramic material and that clearly indicates the reference value for the contact assembly of the device body . A contact is mounted, the capacitance of the substance is measured by means for measuring the capacitance, and the accuracy of each device can be confirmed by comparing the measured value with a reference value. When the difference between the measured value and the reference value is within a certain range, the display unit provided for the display indicates that the device is normal, and the difference is outside the certain range. In some cases, it is characterized by displaying that the device is abnormal, and can accurately and accurately manage each device in a short time without being influenced by the environment around each device, And the confirmation period of electrical characteristics Can also be lengthened, characterized in that to allow a simplified ease of quality control of each device,
Management results of normality and abnormality of each device main body are received by the management means via the communication line, and the accuracy management of each moisture measuring device is centrally performed by this management means. A quality control method for a moisture measuring device.
JP2001147001A 2001-05-16 2001-05-16 Accuracy control method for moisture measuring device Expired - Lifetime JP3778345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001147001A JP3778345B2 (en) 2001-05-16 2001-05-16 Accuracy control method for moisture measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001147001A JP3778345B2 (en) 2001-05-16 2001-05-16 Accuracy control method for moisture measuring device

Publications (2)

Publication Number Publication Date
JP2002340835A JP2002340835A (en) 2002-11-27
JP3778345B2 true JP3778345B2 (en) 2006-05-24

Family

ID=18992551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001147001A Expired - Lifetime JP3778345B2 (en) 2001-05-16 2001-05-16 Accuracy control method for moisture measuring device

Country Status (1)

Country Link
JP (1) JP3778345B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154282B1 (en) * 2005-09-19 2006-12-26 United States Gypsum Company System and method for calibrating moisture meters with associated settable slurry products for determining relative dryness
NL1033148C2 (en) * 2006-12-29 2008-07-01 Univ Delft Tech Electric measuring device, method and computer program product.
KR100872168B1 (en) * 2008-01-21 2008-12-09 대윤계기산업 주식회사 The unit water content meter which uses a power failure dosage
JP5779972B2 (en) * 2011-05-16 2015-09-16 富士通株式会社 Soil sensor and soil sensing method

Also Published As

Publication number Publication date
JP2002340835A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
US8587949B2 (en) Electronic meter having user-interface and central processing functionality on a single printed circuit board
CN105021941B (en) Gauging fixture, base board checking device and substrate inspecting method
JP2000338074A (en) Device and method for measuring state of oil or fat
US8269510B2 (en) Apparatus for measuring dielectric properties of parts
US3753092A (en) Liquid testing device for measuring changes in dielectric properties
US20060105467A1 (en) MEMS-based sensor for lubricant analysis
JP6666117B2 (en) Method and apparatus for measuring the density of a liquid medium
CA2526543A1 (en) Portable medical diagnostic apparatus
US8289037B2 (en) Method and apparatus to measure current in power switchers
CN101410690A (en) Capacitive distance sensing in semiconductor processing tools
PH12015500245B1 (en) Grain bin capacitive moisture sensor system and method
CN108107273B (en) Device and method for testing capacitance and resistance value
JP3778345B2 (en) Accuracy control method for moisture measuring device
Rahman et al. A novel application of the cross-capacitive sensor in real-time condition monitoring of transformer oil
JP4060008B2 (en) Moisture measuring device for ready-mixed concrete, mortar, sand, etc. and measuring method thereof
JP2002148323A (en) Inspection device and inspection method for measuring device
RU105437U1 (en) CAPACITIVE LEVEL MEASURER WITH DISCRETE MEASUREMENT OF THE LEVEL OF LIGHT OIL PRODUCTS AND BASED WATER
JP2001083115A (en) Moisture measuring instrument for ready-mixed concrete, mortar, sand, or the like
JP4387603B2 (en) Measuring apparatus and measuring method
US6741083B2 (en) Oscillating device for the determination of the purity of single or multi-component liquids from their dielectric permittivity, in a continuous way and through frequency changes in the static permittivity region and an associated measurement procedure
JPH05126781A (en) Electrochemical measuring apparatus
CN209432914U (en) SMD components test module
JP6338944B2 (en) Magnetic core holder for power distribution equipment
CN109459634A (en) SMD components test module
CN218956540U (en) Wireless PH value detection equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050908

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060222

R150 Certificate of patent or registration of utility model

Ref document number: 3778345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term