JP3778060B2 - Battery remaining capacity calculation method - Google Patents

Battery remaining capacity calculation method Download PDF

Info

Publication number
JP3778060B2
JP3778060B2 JP2001352033A JP2001352033A JP3778060B2 JP 3778060 B2 JP3778060 B2 JP 3778060B2 JP 2001352033 A JP2001352033 A JP 2001352033A JP 2001352033 A JP2001352033 A JP 2001352033A JP 3778060 B2 JP3778060 B2 JP 3778060B2
Authority
JP
Japan
Prior art keywords
soc
battery
electromotive voltage
voltage
remaining capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001352033A
Other languages
Japanese (ja)
Other versions
JP2003149307A (en
Inventor
晃生 石下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001352033A priority Critical patent/JP3778060B2/en
Priority to US10/284,319 priority patent/US6845332B2/en
Publication of JP2003149307A publication Critical patent/JP2003149307A/en
Application granted granted Critical
Publication of JP3778060B2 publication Critical patent/JP3778060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、電池の残存容量算出方法の改良に関する。
【0002】
【従来の技術】
二次電池は、種々の分野に使用されているが、この二次電池の効率的な運用のためには、二次電池の充放電制御を的確に行う必要がある。このために、二次電池の残存容量(SOC)を高い精度で算出する方法が必要となる。
【0003】
従来、このような二次電池のSOCの算出方法としては、充放電電流の電流積算による方法が知られていた。しかし、このような電流積算による方法では、例えば満充電、フル放電をしない様な電池の使用形態の場合、SOCを演算するためのCPUのLSBケタ落ちや自己放電による容量低下による誤差が大きく影響し、あるいは電流センサ精度への依存度が高い等の理由により、二次電池のSOCの算出精度が高くできないという問題があった。
【0004】
このため、PCT国際公開WO99/61929号に開示されたように、電池の推定電圧によりSOCを補正する方法が提案されている。
【0005】
【発明が解決しようとする課題】
しかし、上記従来の推定電圧によりSOCを補正する方法においては、SOCの領域によって電圧からのSOCの推定精度が低くなる場合があった。このため、電池のSOCの算出精度が電池の充放電パターンに依存し、充放電パターンによってはSOCの算出精度が悪化するという問題があった。このようなSOCの推定精度が低くなるSOC領域は、電池の通常使用領域である場合が多いので、この問題は重大である。
【0006】
本発明は、上記従来の課題に鑑みなされたものであり、その目的は、電池の充放電パターンに依存せず、SOCの高い推定精度を確保できる電池残存容量算出方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、満充電、フル放電をしない使用形態の電池の起電圧と電流積算値とにより電池の残存容量(SOC)を推定する方法であって、電池電圧から起電圧を求め、前記起電圧から第1の推定SOCを求め、前記電流積算値から第2の推定SOCを求め、前記電池の起電圧によりSOCの補正パラメータを、電池の起電圧からのSOCの推定精度が低くなるSOC領域では、起電圧によるSOCの補正量が小さくなり、起電圧からのSOCの推定精度が高くなるSOC領域においては、起電圧による補正量が大きくなるように決定し、前記第1の推定SOCと第2の推定SOCとの差に基づいて、前記補正パラメータを使用してPI制御により補正量を求め、前記補正量により前記第2の推定SOCを補正することを特徴とする。
【0010】
上記電池残存容量算出方法において、前記補正パラメータは、あらかじめ起電圧と補正パラメータとのマップが作成され、前記マップにより決定されることを特徴とする。
【0011】
上記電池残存容量算出方法において、前記マップには、電池温度のファクターを入れることを特徴とする。
【0012】
上記各構成によれば、電池の起電圧によりSOCの補正パラメータを決定する際に、電圧からのSOCの推定精度が高いSOC領域では、電圧による補正量が大きくなり、電圧からのSOCの推定精度が低いSOC領域では、電圧による補正量が小さくなるように上記補正パラメータを決定するので、電池の充放電パターンに依存せず、高い精度で電池のSOCを算出することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)を、図面に従って説明する。
【0014】
図1には、本発明に係る電池残存容量算出方法の説明図が示される。図1において、電池の充放電電流Iを測定し(S1)、これを積算して電流積算値を求め(S2)、この値から電池の残存容量(SOC)を算出する(S3)。このSOCが、本発明にかかる第2の推定SOCに相当する。また、充放電電流Iの測定値から、過去の充放電履歴の影響を受ける電圧変動分として、充放電分極電圧が算出される(S4)。さらに、充放電電流Iから、電池の内部抵抗によるドロップ電圧(電圧降下分)も算出される(S5)。
【0015】
次に、電池電圧Vを測定し(S6)、この電池電圧Vと上記充放電分極電圧と内部抵抗ドロップ電圧とから電池の起電圧が算出される(S7)。具体的には、電池電圧Vから充放電分極電圧と内部抵抗ドロップ電圧とを差し引いたものが電池の起電圧となる。
【0016】
このようにして算出された起電圧と電池容量との関係から電池の推定容量を算出する(S8)。この推定容量が、本発明にかかる第1の推定SOCに相当する。なお、上記起電圧と電池容量との関係は、あらかじめ電池毎に求めておけばよい。
【0017】
次に、上記第1の推定SOC(S8)と電流積算値から求めておいた第2の推定SOC(S3)との差に基づいてPI(比例、積分)制御により、電池の残存容量の補正量を算出する(S9)。この補正量を上記第2の推定SOCに加えて補正し、SOCの推定値を算出する。
【0018】
上記PI制御に使用するSOCの補正用のパラメータは、上述した電池の起電圧から決定することができる(S10)。すなわち、あらかじめ起電圧と補正パラメータとのマップを作成しておき、このマップによって補正パラメータが決定される。なお、このマップには、図1に示されるように、電池温度のファクターを入れることも好適である(S11)。これにより、より精度の高い補正パラメータを決定することができる。
【0019】
上記補正パラメータは、電池の起電圧からSOCの補正量を決定する場合の推定精度が高くなるSOC領域と低くなるSOC領域とがあることに基づいて決定される。すなわち、電池の起電圧からのSOCの推定精度が低くなるSOC領域では、起電圧によるSOCの補正量が小さくなり、その影響が小さくなるように補正パラメータが決定される。また、起電圧からのSOCの推定精度が高くなるSOC領域においては、起電圧による補正量を大きくし、その影響が高くなるように補正パラメータが決定される。これにより、電池のSOCがどのような領域にあっても、電池のSOCの推定精度を高く維持することができる。この結果、充放電パターンに左右されず、常に高いSOCの推定精度を確保できる。
【0020】
【発明の効果】
以上説明したように、本発明によれば、電流積算値から求めた電池のSOCを電池の起電圧から補正する際に、起電圧からのSOCの推定精度が高いSOC領域では、補正量が大きくなるように、推定精度が低くなるSOC領域では補正量が小さくなるように補正パラメータが決定される。これにより、全てのSOC領域においてSOC推定精度を向上でき、充放電パターンによらず、高精度の電池残存容量算出方法を提供することができる。
【図面の簡単な説明】
【図1】 本発明に係る電池残存容量算出方法の説明図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a battery remaining capacity calculation method.
[0002]
[Prior art]
Secondary batteries are used in various fields. For efficient operation of the secondary battery, it is necessary to accurately perform charge / discharge control of the secondary battery. For this reason, a method for calculating the remaining capacity (SOC) of the secondary battery with high accuracy is required.
[0003]
Conventionally, as a method for calculating the SOC of such a secondary battery, a method based on current integration of charge / discharge current has been known. However, in such a method based on current integration, for example, in the case of a battery usage mode in which full charge and full discharge are not performed, errors due to a drop in the LSB digit of the CPU for calculating the SOC and a capacity drop due to self-discharge are greatly affected. However, there is a problem that the SOC calculation accuracy of the secondary battery cannot be increased due to high dependency on the current sensor accuracy.
[0004]
For this reason, as disclosed in PCT International Publication No. WO 99/61929, a method for correcting the SOC with the estimated voltage of the battery has been proposed.
[0005]
[Problems to be solved by the invention]
However, in the conventional method of correcting the SOC using the estimated voltage, the SOC estimation accuracy from the voltage may be lowered depending on the SOC region. For this reason, the calculation accuracy of the SOC of the battery depends on the charge / discharge pattern of the battery, and the calculation accuracy of the SOC deteriorates depending on the charge / discharge pattern. This problem is serious because the SOC region where the estimation accuracy of the SOC is low is often the normal use region of the battery.
[0006]
The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a battery remaining capacity calculation method capable of ensuring high estimation accuracy of SOC without depending on the charge / discharge pattern of the battery.
[0007]
[Means for Solving the Problems]
To achieve the above object, the present invention is fully charged, a method of estimating a battery use forms without full discharge electromotive voltage and the current integrated value and the remaining capacity of the battery (SOC), the battery voltage An electromotive voltage is obtained, a first estimated SOC is obtained from the electromotive voltage, a second estimated SOC is obtained from the integrated current value, and an SOC correction parameter is determined by the battery electromotive voltage, and an SOC value from the battery electromotive voltage is calculated. In the SOC region where the estimation accuracy is low, the SOC correction amount due to the electromotive voltage is small, and in the SOC region where the SOC estimation accuracy from the electromotive voltage is high, the correction amount due to the electromotive voltage is determined to be large, based on the difference between the first estimated SOC and the second estimated SOC, the calculated amount of correction by the PI control using the correction parameters, corrects the second estimated SOC by the correction amount And wherein the door.
[0010]
In the battery remaining capacity calculation method, the correction parameter is determined in advance by creating a map of an electromotive voltage and a correction parameter.
[0011]
In the battery remaining capacity calculation method, a battery temperature factor is included in the map.
[0012]
According to each of the above configurations, when determining the SOC correction parameter based on the electromotive voltage of the battery, in the SOC region where the SOC estimation accuracy from the voltage is high, the correction amount due to the voltage increases, and the SOC estimation accuracy from the voltage In the SOC region where the battery voltage is low, the correction parameter is determined so that the correction amount due to the voltage is small. Therefore, the SOC of the battery can be calculated with high accuracy without depending on the charge / discharge pattern of the battery.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
[0014]
FIG. 1 is an explanatory diagram of a battery remaining capacity calculation method according to the present invention. In FIG. 1, the charge / discharge current I of the battery is measured (S1), and this is integrated to obtain a current integrated value (S2), and the remaining capacity (SOC) of the battery is calculated from this value (S3). This SOC corresponds to the second estimated SOC according to the present invention. Further, from the measured value of the charge / discharge current I, the charge / discharge polarization voltage is calculated as the voltage fluctuation affected by the past charge / discharge history (S4). Further, a drop voltage (voltage drop) due to the internal resistance of the battery is also calculated from the charge / discharge current I (S5).
[0015]
Next, the battery voltage V is measured (S6), and the electromotive voltage of the battery is calculated from the battery voltage V, the charge / discharge polarization voltage, and the internal resistance drop voltage (S7). Specifically, the battery voltage V is obtained by subtracting the charge / discharge polarization voltage and the internal resistance drop voltage from the battery voltage V.
[0016]
The estimated capacity of the battery is calculated from the relationship between the electromotive voltage calculated in this way and the battery capacity (S8). This estimated capacity corresponds to the first estimated SOC according to the present invention. The relationship between the electromotive voltage and the battery capacity may be obtained for each battery in advance.
[0017]
Next, the remaining capacity of the battery is corrected by PI (proportional, integral) control based on the difference between the first estimated SOC (S8) and the second estimated SOC (S3) obtained from the current integrated value. The amount is calculated (S9). This correction amount is corrected in addition to the second estimated SOC, and an estimated value of SOC is calculated.
[0018]
The SOC correction parameter used for the PI control can be determined from the above-described electromotive voltage of the battery (S10). That is, a map of the electromotive voltage and the correction parameter is created in advance, and the correction parameter is determined based on this map. In this map, as shown in FIG. 1, it is also preferable to include a factor of the battery temperature (S11). Thereby, a correction parameter with higher accuracy can be determined.
[0019]
The correction parameter is determined based on the fact that there are an SOC region where the estimation accuracy is high and a SOC region where the estimation accuracy is low when determining the SOC correction amount from the electromotive voltage of the battery. That is, in the SOC region where the estimation accuracy of the SOC from the electromotive voltage of the battery is low, the correction amount of the SOC due to the electromotive voltage is small, and the correction parameter is determined so that the influence is small. Further, in the SOC region where the estimation accuracy of the SOC from the electromotive voltage is high, the correction amount by the electromotive voltage is increased, and the correction parameter is determined so as to increase the influence. As a result, the estimation accuracy of the SOC of the battery can be maintained high regardless of the region where the SOC of the battery is. As a result, high SOC estimation accuracy can always be ensured regardless of the charge / discharge pattern.
[0020]
【The invention's effect】
As described above, according to the present invention, when the SOC of the battery obtained from the integrated current value is corrected from the electromotive voltage of the battery, the correction amount is large in the SOC region where the estimation accuracy of the SOC from the electromotive voltage is high. Thus, the correction parameter is determined so that the correction amount is small in the SOC region where the estimation accuracy is low. Thereby, SOC estimation accuracy can be improved in all SOC regions, and a highly accurate battery remaining capacity calculation method can be provided regardless of the charge / discharge pattern.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a battery remaining capacity calculation method according to the present invention.

Claims (3)

満充電、フル放電をしない使用形態の電池の起電圧と電流積算値とにより電池の残存容量(SOC)を推定する方法であって、
電池電圧から起電圧を求め、
前記起電圧から第1の推定SOCを求め、
前記電流積算値から第2の推定SOCを求め、
前記電池の起電圧によりSOCの補正パラメータを、電池の起電圧からのSOCの推定精度が低くなるSOC領域では、起電圧によるSOCの補正量が小さくなり、起電圧からのSOCの推定精度が高くなるSOC領域においては、起電圧による補正量が大きくなるように決定し、
前記第1の推定SOCと第2の推定SOCとの差に基づいて、前記補正パラメータを使用してPI制御により補正量を求め、
前記補正量により前記第2の推定SOCを補正することを特徴とする電池残存容量算出方法。
A method of estimating a remaining capacity (SOC) of a battery from an electromotive voltage and a current integrated value of the battery in a usage pattern in which full charge and full discharge are not performed ,
Obtain the electromotive voltage from the battery voltage,
A first estimated SOC is obtained from the electromotive voltage,
A second estimated SOC is obtained from the current integrated value,
In the SOC region in which the SOC correction parameter is reduced by the electromotive voltage of the battery and the SOC estimation accuracy from the battery electromotive voltage is low, the SOC correction amount by the electromotive voltage is small, and the SOC estimation accuracy from the electromotive voltage is high. In the SOC region, the correction amount due to the electromotive voltage is determined to be large,
Based on the difference between the first estimated SOC and the second estimated SOC, a correction amount is obtained by PI control using the correction parameter;
The battery remaining capacity calculation method, wherein the second estimated SOC is corrected by the correction amount .
請求項1記載の電池残存容量算出方法において、前記補正パラメータは、あらかじめ起電圧と補正パラメータとのマップが作成され、前記マップにより決定されることを特徴とする電池残存容量算出方法。2. The battery remaining capacity calculation method according to claim 1, wherein a map of an electromotive voltage and a correction parameter is created in advance and the correction parameter is determined based on the map. 請求項記載の電池残存容量算出方法において、前記マップには、電池温度のファクターを入れることを特徴とする電池残存容量算出方法。 3. The battery remaining capacity calculation method according to claim 2 , wherein a factor of a battery temperature is entered in the map.
JP2001352033A 2001-11-16 2001-11-16 Battery remaining capacity calculation method Expired - Lifetime JP3778060B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001352033A JP3778060B2 (en) 2001-11-16 2001-11-16 Battery remaining capacity calculation method
US10/284,319 US6845332B2 (en) 2001-11-16 2002-10-31 State of charge calculation device and state of charge calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001352033A JP3778060B2 (en) 2001-11-16 2001-11-16 Battery remaining capacity calculation method

Publications (2)

Publication Number Publication Date
JP2003149307A JP2003149307A (en) 2003-05-21
JP3778060B2 true JP3778060B2 (en) 2006-05-24

Family

ID=19164265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001352033A Expired - Lifetime JP3778060B2 (en) 2001-11-16 2001-11-16 Battery remaining capacity calculation method

Country Status (1)

Country Link
JP (1) JP3778060B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075762B2 (en) 2003-10-10 2008-04-16 トヨタ自動車株式会社 Apparatus and method for calculating remaining capacity in secondary battery
JP4583765B2 (en) * 2004-01-14 2010-11-17 富士重工業株式会社 Remaining capacity calculation device for power storage device
JP4571000B2 (en) * 2005-03-29 2010-10-27 富士重工業株式会社 Remaining capacity calculation device for power storage device
JP4967362B2 (en) 2006-02-09 2012-07-04 トヨタ自動車株式会社 Secondary battery remaining capacity estimation device
US7750640B2 (en) 2006-12-27 2010-07-06 Panasonic Ev Energy Co., Ltd. Electromotive force computing device and state of charge estimating device
JP4687654B2 (en) * 2007-01-04 2011-05-25 トヨタ自動車株式会社 Storage device control device and vehicle
JP5310054B2 (en) * 2009-02-12 2013-10-09 トヨタ自動車株式会社 Remaining capacity calculation device, vehicle equipped with the same, and remaining capacity calculation method
JP4772137B2 (en) 2009-06-02 2011-09-14 トヨタ自動車株式会社 Control device for battery-powered equipment
JP2012057998A (en) * 2010-09-07 2012-03-22 Calsonic Kansei Corp Charge rate calculation apparatus for secondary battery and charge rate calculation method
KR101191624B1 (en) 2010-10-13 2012-10-17 삼성에스디아이 주식회사 BATTERY MANAGEMENT SYSTEM AND METHOD OF ESTIMATING BATTERY SOCstate of charge USING THE SAME
DE102011007460A1 (en) * 2011-04-15 2012-10-18 Continental Automotive Gmbh Method for cyclically determining the state of charge of an electrical energy store
JPWO2012169061A1 (en) * 2011-06-10 2015-02-23 日立ビークルエナジー株式会社 Battery control device, battery system
US20140184236A1 (en) * 2011-06-10 2014-07-03 Hitachi Vehicle Energy, Ltd. Battery control apparatus and battery system
CN103765721B (en) * 2011-09-08 2016-04-06 日立汽车系统株式会社 Battery system monitoring arrangement
EP2765436A1 (en) * 2011-10-07 2014-08-13 Calsonic Kansei Corporation Battery state-of-charge estimation device and state-of-charge estimation method
JP5863603B2 (en) * 2012-08-24 2016-02-16 日立オートモティブシステムズ株式会社 Battery state estimation device, battery control device, battery system, battery state estimation method
KR101646730B1 (en) * 2014-12-24 2016-08-08 포스코에너지 주식회사 System and method for estimating soc of sodium rechargeable battery
CN111190109B (en) * 2020-01-07 2021-01-05 西北工业大学 Current-sensor-free lithium battery state of charge estimation method

Also Published As

Publication number Publication date
JP2003149307A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP3778060B2 (en) Battery remaining capacity calculation method
JP4692246B2 (en) Secondary battery input / output possible power estimation device
JP3430264B2 (en) Charging device
US10310025B2 (en) Control device and control method for electric vehicle
JP4793332B2 (en) Battery charge state estimation method
US6943528B2 (en) Method and arrangement for determination of the state of charge of a battery
US7471067B2 (en) Battery remaining capacity detection method and power supply apparatus
JP5324196B2 (en) Battery degradation estimation method and apparatus
JP3714321B2 (en) Secondary battery charge rate estimation device
WO2007010691A1 (en) Method and device for detecting charged state of battery
EP2439550B1 (en) Battery state of charge calculation device
JP2002189066A (en) Method for estimating remaining capacity of secondary battery
CN107045108A (en) A kind of charging process alignment lithium battery group SOC method
KR20090122470A (en) Quick charging method of lithium based secondary battery and electronic apparatus employing it
JP2019070621A (en) Secondary battery system
US20220365139A1 (en) Method for estimating an operating parameter of a battery unit
JP5163542B2 (en) Secondary battery input / output possible power estimation device
US20200341072A1 (en) Management system, battery, and management method for energy storage device
JP2012225713A (en) Charge rate estimation device
JP2010203854A (en) Device of estimating internal state of secondary battery
JPH0659003A (en) Remaining capacity meter for battery
JP2000306613A (en) Battery state monitoring device
JP2013208034A (en) Open-circuit voltage estimation device
JP2000268886A (en) Residual capacity estimating method for secondary battery
JP3432463B2 (en) Battery capacity measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Ref document number: 3778060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

EXPY Cancellation because of completion of term