JP3777659B2 - Method and apparatus for determining refractive index and birefringence by measuring interference spectrum - Google Patents

Method and apparatus for determining refractive index and birefringence by measuring interference spectrum Download PDF

Info

Publication number
JP3777659B2
JP3777659B2 JP16706396A JP16706396A JP3777659B2 JP 3777659 B2 JP3777659 B2 JP 3777659B2 JP 16706396 A JP16706396 A JP 16706396A JP 16706396 A JP16706396 A JP 16706396A JP 3777659 B2 JP3777659 B2 JP 3777659B2
Authority
JP
Japan
Prior art keywords
sample
wavelength
interference spectrum
birefringence
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16706396A
Other languages
Japanese (ja)
Other versions
JPH1010041A (en
Inventor
仁 新田
Original Assignee
仁 新田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 仁 新田 filed Critical 仁 新田
Priority to JP16706396A priority Critical patent/JP3777659B2/en
Publication of JPH1010041A publication Critical patent/JPH1010041A/en
Application granted granted Critical
Publication of JP3777659B2 publication Critical patent/JP3777659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【産業上の利用分野】
本発明は干渉スペクトルから物質の屈折率及び複屈折率を決定する方法並びにその装置に関する。
【0002】
【従来の技術】
従来の干渉法による決定法(例えばW.KUCZYNSKIらの方法:Mol.Cryst.Liq.Cryst.,1975,Vol.31,pp.267−273)では、ピ−クとなる条件式に含まれる整数値mを消去することによって複屈折率を決定している。この方法をもう少し詳しく述べると、干渉法において、数式7:
【数7】
の様にピ−クとなる条件式にはパラメータとして、任意な値である整数値mが含まれている。従って、条件式から得られる複屈折率の値はパラメータである任意の整数値mの数だけ存在することになる。言い換えるならば、整数値mは一意的な値ではない。しかし前記の論文の筆者らは2つのピ−クから条件式を導き出して、複屈折率と整数値mを2つの未知数として、連立方程式を解くことによって複屈折率を一意的に決定することを提案している。確かに二つの未知数を二つの連立方程式を解けば、二つの未知数は一意的に決定できるが、数式7における整数値mはパラメータでしかないので一意的には決定されているものではない。本来、方程式の解は元の方程式を同値変形することによって導き出されるものであるので、方程式として表現されている時点ではパラメータである任意の整数値mが、方程式を変形して解いた時に一意的な整数値mになることは矛盾する。従って、この方法では原理的に複屈折率の値を決定することは不可能である。
【0003】
まず、この事実を反例に挙げて説明する。ここでの例では複屈折率の波長分散特性を考慮するので、未知数は4つとなり、用いるピ−ク数も4つ必要とするが、任意の整数値mを消去して複屈折率を求めるという操作自体は同じである。まず数式5:
【数5】
と数式6:
【数6】
において、A=3.228×109,B=−2.978×103,C=0.211,d=10(μm)とすると、図1の様な干渉スペクトルが得られる。図1におけるピ−ク値は410、437、475、534、638(nm)である。数式5においてピ−ク値になるのは数式7:
【数7】
の場合である。数式6と数式7から数式8:
【数8】
が得られて、数式8における未知数はA,B,C,mの4つである。従って図1の様な干渉スペクトルが得られたら4つのピ−クを選んで、
数式9、
【数9】
数式10、
【数10】
数式11、
【数11】
数式12
【数12】
なる連立方程式が得られる。4つのピ−クとして437、475、534、638(nm)を選んで、前記の連立方程式を解くと、数式6は図2の▲2▼の様に決定された。図2の▲1▼が図1の干渉スペクトルを得るのに用いられたものであり、数式6においてA=3.228×109,B=−2.978×103,C=0.211として得られるものであるから、図2の▲2▼は明らかに異なる値となってしまう。この様に従来の方法では正確な複屈折率は求められない。このことは図3により更にはっきりする。次に示す実例では、同じ図1の干渉ピ−クを用いるが、先に整数値mの値を決めてから連立方程式を解く。すなわち未知数は3つとなるので、解くべき連立方程式の数は3つとなり、この時選択したピ−クは前記の4つの中から437、475、534(nm)の3つを選択した。図3において、▲1▼はm=1としてから数式9から数式11までの連立方程式を解いた場合であり、▲3▼はm=2としてから前記の連立方程式を解いた場合、▲4▼はm=5とした場合である。▲2▼は図2の▲2▼を比較のために載せたものである。図3における▲4▼は図2における▲1▼に一致する。図3から分かることは、整数値mを未知数のままで連立方程式を解いても正確な値は求まらないが、整数値mを決めてから連立方程式を解けば正確な値が求められる。従って、mを決定せずには正確な複屈折率は求められないので、従来の干渉法からの決定法では複屈折率の値は求められないことになる。
【0004】
そもそも従来の方法で、正確な値が求められないのは、数式7から分かるように干渉スペクトルがピ−クとなる条件には、任意な整数値mが含まれている為に、本来物理的には唯一である複屈折率の値は、その候補が無数に存在することになる。それは用いるピ−クの数を増やして連立方程式を立てた場合でも、整数値mを含んでいれば同じである。つまり、整数値mは任意な値であるから、mの値を決める度に数式9から数式11の定数項が変化する。すなわち解くべき連立方程式が無数に存在することになる。ところが従来の方法では整数値mが一意のものであるとして連立方程式を解いている。言い換えると、連立方程式を解くと、一意的に整数値mが決定できるとしている。これは数式7における任意な整数値mの導入に矛盾している。その為に現実とは異なる値が求まってしまうと言う問題が生じる。先に述べたように、方程式の解は元の方程式を同値変形することによって導き出されるものであるので、方程式を解く前はパラメータである任意の整数値mが、方程式を解いた時に一意的な整数値mになることは矛盾するのである。
【0005】
【発明が解決しようとする課題】
従来の干渉スペクトルを用いた複屈折率等の決定法では正確な値は得られないという問題点があった。それは、条件式として、単なるパラメータである任意の整数値mに付随して変化する複屈折率という関係式から物理的に一意的な値を決定しようとしたからである。
【0006】
本発明は、本来測定法としては非常に簡単であり、干渉スペクトルが得られさえすれば、どんな材料にでも適用できるという利点を持つ干渉法により、物質の複屈折率等を正確に決定する方法を提供することと、その方法を実行するための装置を得ることを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明ではある波長域において、厚さL1とL2の透明な物質がそれとは異なる種類の透明な物質に上下から挟まれたサンドイッチ構造の2つの試料である試料1と試料2があり、前記サンドイッチ構造の試料に前記波長域に渡って連続なスペクトルを有する光が照射されて干渉スペクトルが得られた場合、前記干渉スペクトルのピ−クに短波長側から順に整数値n=1,2,3・・・を割り当てることと、さらに適当な整数値mを決めて数式1:

Figure 0003777659
により前記干渉ピ−クの各波長に於ける試料1から得られたNの値の集合F1(λ):
Figure 0003777659
と試料2から得られたNの値の集合F2(λ):
Figure 0003777659
を求めて、前記F1(λ)とF2(λ)の値から波長と屈折率の関係、すなわち波長分散を示す式である数式3:
Figure 0003777659
に従うように最小二乗法によって試料1の干渉スペクトルのピークから未知の係数A,B,Cが決定されて得られた波長分散曲線G1(p)と、同様に試料2の干渉スペクトルのピークから得られた波長分散曲線G2(q)を適当な整数値pとqをそれぞれ適当に変化させた毎に得ることと、前記波長分散曲線G1(p)とG2(q)の試料1と試料2の干渉スペクトルのピーク各波長における距離の総和が最小となる場合の組み合わせであるG1(p1:整数値)とG2(q2:整数値)を選び出すことと、選び出された前記波長分散曲線G1(p1)とG2(q2)の中間値によって波長と屈折率の関係を示す式である前記数式3を決定することを特徴とする干渉スペクトル測定による屈折率決定方法と、この屈折率決定方法の実行及びデ−タ処理するためのコンピュ−タと光源装置と分光装置とにより構成されていることを特徴とする干渉スペクトル測定による屈折率決定装置。
【0008】
また、ある波長域において、厚さL1とL2の透明な物質がそれとは異なる種類の透明な物質に上下から挟まれた2つのサンドイッチ構造の2つの試料である試料1と試料2があり、さらに前記サンドイッチ構造の試料を偏光方向が互いに垂直となっている2つの偏光子の間に配置して、前記波長域に渡って連続なスペクトルを有する光を照射して干渉スペクトルが得られた場合において、前記干渉スペクトルのピ−クに短波長側から順に整数値nを割り当てることと、さらに適当な整数値mを決めて数式2:
Figure 0003777659
により前記干渉ピ−クの各波長に於ける試料1から得られたΔnの値の集合P1(λ1):
Figure 0003777659
と試料2から得られたΔnの値の集合P2(λ2):
Figure 0003777659
が求まり、前記P1(λ1)とP2(λ2)の値から波長と複屈折率の関係を示す式、すなわち波長分散式である数式4:
Figure 0003777659
に従うように最小二乗法によって試料1の干渉スペクトルのピークから未知の係数A,B,Cが決定されて得られた波長分散曲線Q1(p)と同様に試料2から得られたQ2(q)を適当な整数値pとqをそれぞれ適当に変化させた毎に得ることと、前記波長分散曲線Q1(p)とQ2(q)の試料1と試料2の干渉スペクトルのピーク各波長における距離の総和が最小となる場合の組み合わせであるQ1(p1:整数値)とQ2(q2:整数値)を選び出すことと、選び出された前記波長分散曲線Q1(p1)とQ2(q2)の中間値によって波長と複屈折率の関係を示す式である数式4を決定することを特徴とする干渉スペクトル測定による複屈折率決定方法と、この複屈折率決定方法の実行及びデ−タ処理するためのコンピュ−タと光源装置と分光装置とにより構成されていることを特徴とする干渉スペクトル測定による複屈折率決定装置。
【0009】
また、2つ以上の試料を用意して屈折率あるいは複屈折率の決定方法の操作を繰り返して、その結果の平均を取ることによっても干渉スペクトル測定による屈折率あるいは複屈折率の決定方法が提供される。
【0010】
さらに、前記サンドイッチ構造の試料の両端の前記透明な物質間の距離が可変になっていていれば、中間の透明な物質が液体などの場合には、試料を1つだけ用意すれば良い様な干渉スペクトル測定による屈折率及び複屈折率の決定方法が提供される。
【0011】
【作用】
上記の方法では、干渉スペクトルを測定するだけで物質の屈折率及び複屈折率の波長依存性が正確に決定できる。従来のアッベの屈折計で何種類かの単色光源で屈折角の違いを精密に測定しようとすると装置的に複雑になるが、本発明では連続スペクトルの白色光源の光強度変化だけ測定すれば良く、自動測定の装置を実現するには有利である。
【0012】
【実施例】
以下、本発明の1実施例を図によって詳細に説明する。
【0013】
まず干渉法における測定装置の基本構成を図4に示す。良好な測定を行うためのレンズなどの部品は省略してある。1が光源装置で、2が試料台、3が分光装置であり、これらは4のコンピュ−タによって制御されている。試料台2は2つの試料を次々に測定したり、試料を偏光子で挟んだ状態で、あるいはそのままの状態で測定することがコンピュ−タ4の制御で自動で行われる。また測定操作を手動で行う様な従来の測定装置の組み合わせの場合は、デ−タ処理のみをフロピ−デスクの様な情報媒体5をコンピュ−タに組み込むことにより行うこともできる。
【0014】
測定される試料としては、例えば液晶材料がある。図5(a)は試料の構成を示している。6が液晶材料であり、7は液晶セルを作成する基板である。例えば液晶材料にはネマティック液晶のチッソ社製GR−41を用いることができ、液晶セルを作成する基板にはガラスなどを用いることができる。もちろん液晶セルを作成する基板は液晶材料が均一な配向をするような処理が施されている。図5(a)の様にホモジニアス配向とすると液晶材料の複屈折率、常光屈折率及び異常光屈折率を決定できるので都合がよい。次にそれらについて述べる。
【0015】
さて試料を図5(b)の様なクロスニコルの配置の偏光子8に挟んで、液晶の光軸を偏光子の偏光軸に対して45°の位置に設定して干渉スペクトルを測定すると、液晶材料の複屈折率を導出することができる。その方法を順を追って説明する。まずセル厚の異なる2つの液晶セルを用意して干渉法により、可視光領域で図6の様な干渉スペクトルが得られたとする。図6(a)はセル厚が12.08μmの液晶セル(1)の干渉スペクトル(ピーク:415、440、472、522、597nm)であり、図6(b)はセル厚が28.2μmの液晶セル(2)の干渉スペクトル(ピ−ク:410、421、433、447、463、483、507、537、574、621、682nm)である。測定温度は25℃である。図6の干渉スペクトルには短波長側からそれぞれ1から始まる整数値を付ける(例として図6(a)に付けてある)。そして各干渉スペクトルのピ−クに対して数式2を適用して各ピ−クにおける△nの値を算出する。この時のmは△n>0となる様な適当な値を代入する。次に各ピ−クの△nの値から波長と複屈折率の関係を表す一般式である数式4を決定する。通常は数式4にはコ−シ−の分散式である数式6が適用される。数式6は第3項までを採用している。本実施例では、各ピ−クの△nの値を用いて最小二乗法により数式6の係数A、B、Cを決定することによって複屈折率の波長分散曲線を算出した。
【0016】
次はmの値を適当に選んで、前記と同様な操作を行うと図7のような波長分散曲線のグル−プができる。図7(a)は液晶セル(1)のm=7〜11までの波長分散曲線を▲1▼から▲5▼に対応するように示してある。図7(b)は液晶セル(2)のm=16〜23までの波長分散曲線が▲1▼から▲5▼に対応するように同様に示してある。
【0017】
そして液晶セル(1)と液晶セル(2)の波長分散曲線のグル−プを重ね合わせて、数式17:
【数17】
に従って液晶セル(1)のそれぞれの波長分散曲線に対する液晶セル(2)のそれぞれの波長分散曲線間の各波長に対する距離の総和を算出する。その過程の様子を図に示すと、図8の様になっている。▲1▼〜▲3▼は液晶セル(1)のm=8〜10の波長分散曲線であり、▲4▼〜▲6▼は液晶セル(2)のm=19〜21の波長分散曲線である。その中から液晶セル(1)からのm=9の波長分散曲線(図8の▲2▼)と液晶セル(2)からのm=20の波長分散曲線(図8の▲5▼)の距離の総和が最小なので、この両者を抜き出す。その結果が図9の▲1▼と▲2▼である。
【0018】
液晶セル(1)と液晶セル(2)からそれぞれの代表の波長分散曲線が選び抜かれたので、数式18:
【数18】
に従って両者の中間値であるような波長分散曲線を算出する。その結果が図10である。従来用いられているアッベの屈折計(波長:589.3nm)での値は0.24であり、図10から求めた値は0.23(波長:589nm)であるので、両者はほぼ一致している。
【0019】
さらに液晶材料の常光屈折率は偏光子を用いずに、図5(a)の様に液晶セルを単独のままで干渉スペクトルを測定すればよい。手順は複屈折率を求めたときと同じであるが、干渉ピ−クの条件式はもちろん偏光子で挟んだ場合とは異なるので、単独のままの条件式である数式1を用いなくてはならない。さらに波長と屈折率の関係を表す一般式は数式3であり、具体的にコ−シ−の分散式とすると数式13:
【数13】
となる。そして異常光屈折率は常光屈折率と複屈折率の和で表されるので、複屈折率と常光屈折率が測定で求められれば、液晶材料の複屈折率、常光屈折率及び異常光屈折率が決定されることになる。
【0020】
ここでは本決定方法の原理について述べる。原理の説明には複屈折率の決定について説明するが、同様にして屈折率の決定も説明できる。さて、異なるセル厚の2つの液晶セルの干渉スペクトルを同じ座標軸に書くと何箇所かの交点が存在する。今、スペクトルの一つの交点に着目する。この干渉スペクトルの交点において、複屈折率はピ−クからの位相差φを用いると数式14:
【数14】
で表される。従って、数式14をセル厚の異なる2つの干渉スペクトルに適用すると数式15:
【数15】
と数式16:
【数16】
と表現できる。数式15と数式16の表現で重要なのは共通のmで表現されていることである。セル厚は異なっていても物理的に唯一なΔnは、共通のmと適当な位相差φ1、φ2により表すことができるはずである。ここで△nは複屈折率、λは交点での光の波長、d1、d2はそれぞれの液晶セルのセル厚、さらにφ1はセル厚d1、φ2はセル厚d2の場合の干渉スペクトルのピ−ク点からの位相差である。さて、数式15と数式16は共通の整数値mに関する直線であることが分かる。従って2つの直線の交点はただ一つであるので、その時のmの値が真の複屈折率を与える。その他のmの値における両者の直線の距離は、真の複屈折率を与えるmから離れるに従ってどんどん大きくなる。この性質は波長分散曲線の場合にも当てはまる。なぜならピ−ク値から求めた波長分散曲線上には、当然交点に相当する波長での複屈折率も含まれているので、波長分散曲線同士の距離を比較することは、数式15と数式16を用いて説明した交点における複屈折率の距離を比較することと同じである。従って距離が最小となる2つの波長分散曲線が真の波長分散曲線に最も近いのである。完全に一致しないのは、測定誤差などの影響があるからである。
【0021】
さらに、本決定方法の実施例として、強誘電性液晶に当てはめた場合について述べる。強誘電性液晶や反強誘電性液晶は通常作成される液晶セルの場合は、その捻れ構造と2値動作性により複屈折率等の測定が困難である。しかし本決定方法を用いるとネマテック液晶同様に決定することができる。例として、強誘電性液晶の場合について述べる。強誘電性液晶材料にはチッソ社製のCS−1024を用いて、測定温度は25℃である。液晶セルには周期が1ms、電圧が10Vの方形波を印可する。この時液晶セルは捻れ構造は消失して、等価的に図5(a)の様なホモジニアス配向となる。セル厚を24μmとして、クロスニコル下での干渉スペクトルを図11に示す。ネマテック液晶と同様な干渉スペクトルが得られる。更にもう一つセル厚の異なる試料を用意して、ネマテック液晶の場合と同じ手順によって求められた複屈折率の波長分散曲線を図12に示す。常光屈折率と異常光屈折率の決定も既に述べたようにすれば決定できる。
【0022】
ここまでの実施例では、試料を2つ用意してきたが、図13の様に液晶セルを作成する基板間7の距離を可変できるようなセル厚可変装置9を設けることによって1つの試料で屈折率等を決定できる。さらに、測定値の信頼性を上げるには、できるだけ多くの試料を用意して、それぞれの結果の平均を取ればよい。
【0023】
以上、本決定方法の手順等を液晶材料に当てはめて示したが、光源の波長域の選択により干渉スペクトルが得られるならば通常の光学材料は勿論のこと、半導体などの材料にでも薄膜化するなどして適用できるはずである。最後に用いた数式を列挙するが本文中の数式番号は以下の【数番号】表記に対応させてある。
【0024】
【数1】
Figure 0003777659
【0025】
【数2】
Figure 0003777659
【0026】
【数3】
Figure 0003777659
【0027】
【数4】
Figure 0003777659
【0028】
【数5】
Figure 0003777659
【0029】
【数6】
Figure 0003777659
【0030】
【数7】
Figure 0003777659
【0031】
【数8】
Figure 0003777659
【0032】
【数9】
Figure 0003777659
【0033】
【数10】
Figure 0003777659
【0034】
【数11】
Figure 0003777659
【0035】
【数12】
Figure 0003777659
【0036】
【数13】
Figure 0003777659
【0037】
【数14】
Figure 0003777659
【0038】
【数15】
Figure 0003777659
【0039】
【数16】
Figure 0003777659
【0040】
【数17】
Figure 0003777659
【0041】
【数18】
Figure 0003777659
【0042】
【発明の効果】
本発明の効果は次のようになる。干渉法による複屈折率等の波長分散曲線の正しい値が得られる。干渉法も含めて、屈折角の測定などの従来の方法では求めることが困難であった強誘電性液晶や反強誘電性液晶の複屈折率等の波長分散曲線を決定できる。これによって強誘電性液晶や反強誘電性液晶の配向特性などを光学的に解析する場合、4×4行列法を用いるが、常光屈折率と異常光屈折率の波長分散曲線が分かるので、配向特性などの解析がより正確に分かるようになる。また強誘電性液晶や反強誘電性液晶を用いたデバイスの光学的設計に適用できる。これは高速な応答特性を有する強誘電性液晶及び反強誘電性液晶の応用分野の拡大に大きな意味を持つと考えられる。さらに干渉法は一軸性材料の液晶に限らず等方性材料など薄膜化して干渉スペクトルが得られさえすればよいので、光学材料のさらなる応用範囲を開くことが期待できる。
【図面の簡単な説明】
【図1】計算で求めた干渉スペクトルの図
【図2】元の複屈折率の波長分散曲線と連立方程式を解いて求めた複屈折率の波長分散曲線の比較の図
【図3】元の複屈折率の波長分散曲線と整数値mを決めてから連立方程式を解いて求めた複屈折率の波長分散曲線との関係を表した図
【図4】干渉スペクトルの測定装置の概略と情報媒体を示した図
【図5】液晶セルの構成及び偏光子との配置を示した図
【図6】実験により求められた干渉スペクトルの図
【図7】整数値mを変化させて求められた複屈折率の波長分散曲線のグル−プの図
【図8】2つの液晶セルから求められた複屈折率の波長分散曲線のグル−プを重ね合わせた図
【図9】2つの液晶セルから求められた複屈折率の波長分散曲線のグル−プの中から最も距離が近いもの同士を抜き出した図
【図10】最終的に求められた複屈折率の波長分散曲線の図
【図11】強誘電性液晶セルから実験で求められた干渉スペクトルの図
【図12】強誘電性液晶の複屈折率の波長分散曲線の図
【図13】セル厚可変型の液晶セルの構成図
【符号の説明】
1 光源装置
2 試料台
3 分光装置
4 コンピュ−タ
5 情報媒体
6 液晶材料
7 液晶セルを作成する基板
8 偏光子
9 セル厚可変装置[0001]
[Industrial application fields]
The present invention relates to a method and apparatus for determining the refractive index and birefringence of a substance from an interference spectrum.
[0002]
[Prior art]
In the conventional determination method using the interference method (for example, the method of W. KUCZYNSKI et al .: Mol. Cryst. Liq. Cryst., 1975, Vol. 31, pp. 267-273) The birefringence is determined by erasing the numerical value m. To describe this method in more detail, in the interferometry, Equation 7:
[Expression 7]
Thus, the conditional expression which becomes a peak includes an integer m which is an arbitrary value as a parameter. Accordingly, there are as many birefringence values obtained from the conditional expression as the number of an arbitrary integer value m which is a parameter. In other words, the integer value m is not a unique value. However, the authors of the above paper derive a conditional expression from the two peaks, and determine that the birefringence is uniquely determined by solving the simultaneous equations with the birefringence and the integer value m as two unknowns. is suggesting. If two unknowns are solved by solving two simultaneous equations, the two unknowns can be uniquely determined. However, since the integer value m in Equation 7 is only a parameter, it is not uniquely determined. Originally, the solution of the equation is derived by equivalently transforming the original equation, and therefore, when the equation is expressed as an equation, an arbitrary integer value m that is a parameter is unique when the equation is transformed and solved. It is contradictory to become a large integer value m. Therefore, in principle, it is impossible to determine the birefringence value by this method.
[0003]
First, this fact will be described as a counterexample. In this example, since the wavelength dispersion characteristic of the birefringence is taken into consideration, the number of unknowns is four and the number of peaks to be used is four, but the birefringence is obtained by erasing an arbitrary integer value m. The operation itself is the same. First, Formula 5:
[Equation 5]
And Equation 6:
[Formula 6]
If A = 3.228 × 109, B = −2.978 × 103, C = 0.221, d = 10 (μm), an interference spectrum as shown in FIG. 1 is obtained. The peak values in FIG. 1 are 410, 437, 475, 534, and 638 (nm). The peak value in Formula 5 is Formula 7:
[Expression 7]
This is the case. Formula 6 and Formula 7 to Formula 8:
[Equation 8]
Is obtained, and there are four unknowns A, B, C, and m in Expression 8. Therefore, if the interference spectrum shown in Fig. 1 is obtained, select four peaks,
Formula 9,
[Equation 9]
Formula 10,
[Expression 10]
Formula 11,
[Expression 11]
Formula 12
[Expression 12]
The following simultaneous equations are obtained. When 437, 475, 534, and 638 (nm) were selected as the four peaks and the simultaneous equations were solved, Equation 6 was determined as shown in (2) of FIG. (1) in FIG. 2 is used to obtain the interference spectrum of FIG. 1, and is obtained as A = 3.228 × 109, B = −2.978 × 103, C = 0.221 in Equation 6. Therefore, (2) in FIG. 2 is obviously a different value. Thus, an accurate birefringence cannot be obtained by the conventional method. This is further clarified in FIG. In the following example, the same interference peak of FIG. 1 is used, but the simultaneous equations are solved after the integer value m is determined first. That is, since there are three unknowns, the number of simultaneous equations to be solved is three, and three peaks 437, 475, and 534 (nm) are selected from the above four peaks. In FIG. 3, (1) is a case where simultaneous equations from Equation 9 to Equation 11 are solved after m = 1, and (3) is a case where the simultaneous equations are solved after m = 2. Where m = 5. (2) is a comparison of (2) in FIG. 2 for comparison. (4) in FIG. 3 corresponds to (1) in FIG. It can be seen from FIG. 3 that an accurate value cannot be obtained by solving the simultaneous equations while the integer value m is unknown, but an accurate value can be obtained by solving the simultaneous equations after determining the integer value m. Therefore, since an accurate birefringence cannot be obtained without determining m, the birefringence value cannot be obtained by the conventional determination method from the interferometry.
[0004]
In the first place, the reason why an accurate value cannot be obtained by the conventional method is that, since an arbitrary integer value m is included in the condition for the peak of the interference spectrum as can be seen from Equation 7, it is inherently physical. There are an infinite number of candidates for the birefringence value that is unique to. Even if the simultaneous equations are established by increasing the number of peaks to be used, the same is true if the integer value m is included. That is, since the integer value m is an arbitrary value, each time the value of m is determined, the constant terms of Equation 9 to Equation 11 change. In other words, there are innumerable simultaneous equations to be solved. However, the conventional method solves the simultaneous equations on the assumption that the integer value m is unique. In other words, the integer value m can be uniquely determined by solving the simultaneous equations. This contradicts the introduction of an arbitrary integer value m in Equation 7. Therefore, there arises a problem that a value different from the actual value is obtained. As mentioned earlier, since the solution of the equation is derived by equivalently transforming the original equation, any integer value m that is a parameter is unique when the equation is solved before the equation is solved. The integer value m is contradictory.
[0005]
[Problems to be solved by the invention]
The conventional method of determining the birefringence index using the interference spectrum has a problem that an accurate value cannot be obtained. This is because, as a conditional expression, an attempt is made to determine a physically unique value from a relational expression of a birefringence index that changes accompanying an arbitrary integer value m, which is a mere parameter.
[0006]
The present invention is very simple as a measuring method by nature, and it can be applied to any material as long as an interference spectrum is obtained. And an apparatus for carrying out the method.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, in a certain wavelength range, sample 1 is a sample having two sandwich structures in which transparent materials having thicknesses L1 and L2 are sandwiched from above and below by different types of transparent materials. When the interference spectrum is obtained by irradiating the sandwich structure sample with light having a continuous spectrum over the wavelength range, the peak of the interference spectrum is adjusted in order from the short wavelength side. Assign numerical values n = 1, 2, 3,..., And determine an appropriate integer value m.
Figure 0003777659
A set F1 (λ) of N values obtained from the sample 1 at each wavelength of the interference peak by:
Figure 0003777659
And a set F2 (λ) of N values obtained from the sample 2:
Figure 0003777659
Is calculated from the values of F1 (λ) and F2 (λ), which is an expression showing the relationship between wavelength and refractive index, ie, wavelength dispersion:
Figure 0003777659
And the chromatic dispersion curve G1 (p) obtained by determining the unknown coefficients A, B, C from the peak of the interference spectrum of the sample 1 by the least square method and the peak of the interference spectrum of the sample 2 as well. To obtain the obtained chromatic dispersion curve G2 (q) every time the appropriate integer values p and q are appropriately changed, and the samples 1 and 2 of the chromatic dispersion curves G1 (p) and G2 (q) G1 (p1: integer value) and G2 (q2: integer value), which are combinations when the sum of the distances at the respective wavelengths of the peak of the interference spectrum is minimized, and the selected chromatic dispersion curve G1 (p1) ) And G2 (q2) are determined by the intermediate value between the wavelength and the refractive index, and the refractive index determination method based on interference spectrum measurement, and the execution of the refractive index determination method. - computer for data processing - data and refractive index determination apparatus according to interference spectrum measurement, characterized in that it is constituted by a light source device and a spectrometer.
[0008]
Further, in a certain wavelength region, there are Sample 1 and Sample 2, which are two samples of two sandwich structures in which transparent materials of thickness L1 and L2 are sandwiched from above and below by different types of transparent materials, When the sample having the sandwich structure is arranged between two polarizers whose polarization directions are perpendicular to each other and irradiated with light having a continuous spectrum over the wavelength range, an interference spectrum is obtained. , Assigning an integer value n to the peak of the interference spectrum in order from the short wavelength side, and further determining an appropriate integer value m:
Figure 0003777659
A set P1 (λ1) of values of Δn obtained from the sample 1 at each wavelength of the interference peak:
Figure 0003777659
And a set P2 (λ2) of Δn values obtained from the sample 2:
Figure 0003777659
Equation 4 representing the relationship between wavelength and birefringence from the values of P1 (λ1) and P2 (λ2), that is, a wavelength dispersion equation:
Figure 0003777659
Q2 (q) obtained from the sample 2 in the same manner as the wavelength dispersion curve Q1 (p) obtained by determining the unknown coefficients A, B, C from the peak of the interference spectrum of the sample 1 by the least square method. Is obtained every time the appropriate integer values p and q are appropriately changed, and the distance at each wavelength of the peak of the interference spectrum of the sample 1 and sample 2 of the chromatic dispersion curves Q1 (p) and Q2 (q) is obtained. Selecting Q1 (p1: integer value) and Q2 (q2: integer value), which are combinations when the sum is minimized, and an intermediate value between the selected wavelength dispersion curves Q1 (p1) and Q2 (q2) The method of determining the birefringence by the interference spectrum measurement characterized by determining the formula 4 which is an expression showing the relationship between the wavelength and the birefringence by the method, and for executing the birefringence determination method and data processing Computer and light Device and spectroscopic apparatus and that is constituted by a birefringence determination apparatus according to interference spectrum measurement according to claim.
[0009]
Also, a method for determining the refractive index or birefringence by interference spectrum measurement is provided by preparing two or more samples, repeating the operation of the method for determining the refractive index or birefringence, and taking the average of the results. Is done.
[0010]
Further, if the distance between the transparent substances at both ends of the sample having the sandwich structure is variable, only one sample may be prepared when the intermediate transparent substance is a liquid or the like. A method for determining refractive index and birefringence by interference spectrum measurement is provided.
[0011]
[Action]
In the above method, the wavelength dependence of the refractive index and birefringence of a substance can be accurately determined only by measuring the interference spectrum. Although it would be complicated to use a conventional Abbe refractometer to accurately measure the difference in refraction angle with several types of monochromatic light sources, in the present invention, it is only necessary to measure the light intensity change of a white light source with a continuous spectrum. It is advantageous to realize an automatic measurement device.
[0012]
【Example】
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
[0013]
First, FIG. 4 shows a basic configuration of a measuring apparatus in the interferometry. Parts such as a lens for performing good measurement are omitted. Reference numeral 1 denotes a light source device, 2 denotes a sample stage, 3 denotes a spectroscopic device, and these are controlled by a computer 4. The sample stage 2 automatically measures two samples one after another, or in a state where the sample is sandwiched between polarizers or as it is, under the control of the computer 4. In the case of a combination of conventional measuring apparatuses in which the measurement operation is performed manually, only data processing can be performed by incorporating an information medium 5 such as a floppy desk in the computer.
[0014]
An example of a sample to be measured is a liquid crystal material. FIG. 5A shows the configuration of the sample. Reference numeral 6 denotes a liquid crystal material, and reference numeral 7 denotes a substrate for forming a liquid crystal cell. For example, nematic liquid crystal GR-41 manufactured by Chisso Corporation can be used as a liquid crystal material, and glass or the like can be used as a substrate for forming a liquid crystal cell. Of course, the substrate on which the liquid crystal cell is formed is treated so that the liquid crystal material is uniformly oriented. The homogeneous alignment as shown in FIG. 5A is advantageous because the birefringence, ordinary light refractive index and extraordinary light refractive index of the liquid crystal material can be determined. These are described next.
[0015]
Now, when the interference spectrum is measured by sandwiching the sample between the polarizers 8 having the crossed Nicols arrangement as shown in FIG. 5B and setting the optical axis of the liquid crystal at a position of 45 ° with respect to the polarization axis of the polarizer, The birefringence of the liquid crystal material can be derived. The method will be explained step by step. First, it is assumed that two liquid crystal cells having different cell thicknesses are prepared and an interference spectrum as shown in FIG. 6 is obtained in the visible light region by the interference method. 6A shows an interference spectrum (peaks: 415, 440, 472, 522, 597 nm) of the liquid crystal cell (1) having a cell thickness of 12.08 μm, and FIG. 6B shows a cell thickness of 28.2 μm. It is an interference spectrum (peaks: 410, 421, 433, 447, 463, 483, 507, 537, 574, 621, 682 nm) of the liquid crystal cell (2). The measurement temperature is 25 ° C. An integer value starting from 1 is added to the interference spectrum of FIG. 6 from the short wavelength side (as shown in FIG. 6A as an example). Then, the value of Δn at each peak is calculated by applying Formula 2 to the peak of each interference spectrum. At this time, an appropriate value such that Δn> 0 is substituted for m. Next, Formula 4 which is a general formula representing the relationship between the wavelength and the birefringence is determined from the value of Δn of each peak. Normally, Formula 6 is applied to Formula 4, which is a dispersion formula of a case. Formula 6 adopts up to the third term. In this example, the birefringence wavelength dispersion curve was calculated by determining the coefficients A, B, and C of Equation 6 by the method of least squares using the value of Δn of each peak.
[0016]
Next, if the value of m is appropriately selected and the same operation as described above is performed, a group of chromatic dispersion curves as shown in FIG. 7 can be obtained. FIG. 7A shows the chromatic dispersion curves of the liquid crystal cell (1) from m = 7 to 11 so as to correspond to (1) to (5). FIG. 7B similarly shows the chromatic dispersion curves of the liquid crystal cell (2) from m = 16 to 23 corresponding to (1) to (5).
[0017]
Then, the group of chromatic dispersion curves of the liquid crystal cell (1) and the liquid crystal cell (2) are overlapped to obtain Equation 17:
[Expression 17]
Thus, the sum of the distances for the respective wavelengths between the respective chromatic dispersion curves of the liquid crystal cell (2) with respect to the respective chromatic dispersion curves of the liquid crystal cell (1) is calculated. The state of the process is shown in FIG. (1) to (3) are chromatic dispersion curves of m = 8 to 10 of the liquid crystal cell (1), and (4) to (6) are chromatic dispersion curves of m = 19 to 21 of the liquid crystal cell (2). is there. The distance between the m = 9 wavelength dispersion curve ((2) in FIG. 8) from the liquid crystal cell (1) and the m = 20 wavelength dispersion curve ((5) in FIG. 8) from the liquid crystal cell (2). Since the sum of is the smallest, both are extracted. The results are (1) and (2) in FIG.
[0018]
Since the representative chromatic dispersion curves are selected from the liquid crystal cell (1) and the liquid crystal cell (2), Equation 18:
[Formula 18]
Then, a chromatic dispersion curve that is an intermediate value between the two is calculated. The result is shown in FIG. The value of Abbe's refractometer (wavelength: 589.3 nm) used in the past is 0.24, and the value obtained from FIG. 10 is 0.23 (wavelength: 589 nm). ing.
[0019]
Further, the ordinary refractive index of the liquid crystal material may be measured without using a polarizer and measuring the interference spectrum with the liquid crystal cell alone as shown in FIG. The procedure is the same as that for obtaining the birefringence, but the conditional expression of the interference peak is different from the case where it is sandwiched between the polarizers. Don't be. Further, the general formula representing the relationship between the wavelength and the refractive index is Formula 3, and specifically, the dispersion formula of the case is expressed by Formula 13:
[Formula 13]
It becomes. The extraordinary refractive index is represented by the sum of the ordinary refractive index and the birefringent index. Therefore, if the birefringent index and the ordinary refractive index are obtained by measurement, the birefringence index, the ordinary refractive index, and the extraordinary refractive index of the liquid crystal material are obtained. Will be determined.
[0020]
Here, the principle of this determination method will be described. In the explanation of the principle, the determination of the birefringence will be described, but the determination of the refractive index can be explained in the same manner. When the interference spectra of two liquid crystal cells having different cell thicknesses are written on the same coordinate axis, there are several intersections. Now, focus on one intersection of the spectra. At the intersection of the interference spectrum, the birefringence is expressed by the following equation 14 using the phase difference φ from the peak:
[Expression 14]
It is represented by Therefore, when Equation 14 is applied to two interference spectra having different cell thicknesses, Equation 15:
[Expression 15]
And Equation 16:
[Expression 16]
Can be expressed. What is important in the expressions of Expression 15 and Expression 16 is that they are expressed by a common m. Even if the cell thicknesses are different, the physically unique Δn can be expressed by a common m and appropriate phase differences φ1 and φ2. Where Δn is the birefringence, λ is the wavelength of light at the intersection, d1 and d2 are the cell thicknesses of the respective liquid crystal cells, φ1 is the cell thickness d1, and φ2 is the peak of the interference spectrum when the cell thickness is d2. The phase difference from the point. Now, it turns out that Numerical formula 15 and Numerical formula 16 are the straight lines regarding the common integer value m. Therefore, since the intersection of the two straight lines is only one, the value of m at that time gives a true birefringence. The distance between the two straight lines at other values of m becomes larger as the distance from m giving the true birefringence increases. This property also applies to the case of a chromatic dispersion curve. This is because the birefringence at the wavelength corresponding to the intersection is naturally included on the chromatic dispersion curve obtained from the peak value. This is the same as comparing the birefringence distances at the intersections described using. Therefore, the two chromatic dispersion curves having the smallest distance are closest to the true chromatic dispersion curve. The reason for not being completely in agreement is that there is an influence such as measurement error.
[0021]
Furthermore, as an example of this determination method, a case where the present invention is applied to a ferroelectric liquid crystal will be described. In the case of a liquid crystal cell in which a ferroelectric liquid crystal and an antiferroelectric liquid crystal are usually produced, it is difficult to measure a birefringence or the like due to its twisted structure and binary operability. However, when this determination method is used, it can be determined in the same manner as nematic liquid crystal. As an example, the case of a ferroelectric liquid crystal will be described. CS-1024 manufactured by Chisso Corporation is used as the ferroelectric liquid crystal material, and the measurement temperature is 25 ° C. A square wave having a period of 1 ms and a voltage of 10 V is applied to the liquid crystal cell. At this time, the twisted structure of the liquid crystal cell disappears, and equivalently the homogeneous alignment as shown in FIG. FIG. 11 shows an interference spectrum under crossed Nicols with a cell thickness of 24 μm. An interference spectrum similar to that of nematic liquid crystal is obtained. FIG. 12 shows the wavelength dispersion curve of the birefringence obtained by preparing another sample with a different cell thickness and obtaining the same procedure as in the case of nematic liquid crystal. The determination of the ordinary light refractive index and the extraordinary light refractive index can also be made as described above.
[0022]
In the embodiments so far, two samples have been prepared. However, as shown in FIG. 13, by providing a cell thickness variable device 9 that can change the distance between the substrates 7 on which the liquid crystal cell is formed, a single sample is refracted. Rate, etc. can be determined. Furthermore, in order to increase the reliability of the measured value, it is only necessary to prepare as many samples as possible and to average the results.
[0023]
In the above, the procedure of this determination method is applied to the liquid crystal material. However, if an interference spectrum can be obtained by selecting the wavelength range of the light source, it is possible to reduce the film thickness to a material such as a semiconductor as well as a normal optical material. Etc. should be applicable. The last used formulas are listed, but the formula numbers in the text correspond to the following [Numerical number] notation.
[0024]
[Expression 1]
Figure 0003777659
[0025]
[Expression 2]
Figure 0003777659
[0026]
[Equation 3]
Figure 0003777659
[0027]
[Expression 4]
Figure 0003777659
[0028]
[Equation 5]
Figure 0003777659
[0029]
[Formula 6]
Figure 0003777659
[0030]
[Expression 7]
Figure 0003777659
[0031]
[Equation 8]
Figure 0003777659
[0032]
[Equation 9]
Figure 0003777659
[0033]
[Expression 10]
Figure 0003777659
[0034]
[Expression 11]
Figure 0003777659
[0035]
[Expression 12]
Figure 0003777659
[0036]
[Formula 13]
Figure 0003777659
[0037]
[Expression 14]
Figure 0003777659
[0038]
[Expression 15]
Figure 0003777659
[0039]
[Expression 16]
Figure 0003777659
[0040]
[Expression 17]
Figure 0003777659
[0041]
[Formula 18]
Figure 0003777659
[0042]
【The invention's effect】
The effects of the present invention are as follows. The correct value of the wavelength dispersion curve such as the birefringence by the interferometry can be obtained. It is possible to determine a wavelength dispersion curve such as a birefringence of a ferroelectric liquid crystal or an antiferroelectric liquid crystal that has been difficult to obtain by a conventional method such as measurement of a refraction angle including an interference method. In this way, when optically analyzing the orientation characteristics of ferroelectric liquid crystal and antiferroelectric liquid crystal, the 4 × 4 matrix method is used, but the wavelength dispersion curves of ordinary light refractive index and extraordinary light refractive index can be understood. Analysis of characteristics etc. can be understood more accurately. It can also be applied to the optical design of devices using ferroelectric liquid crystals and antiferroelectric liquid crystals. This is considered to have a great significance in expanding the application fields of ferroelectric liquid crystals and antiferroelectric liquid crystals having high-speed response characteristics. Furthermore, the interference method is not limited to a liquid crystal of a uniaxial material, and it is only necessary to obtain an interference spectrum by forming a thin film such as an isotropic material.
[Brief description of the drawings]
FIG. 1 is a diagram of an interference spectrum obtained by calculation. FIG. 2 is a comparison between a wavelength dispersion curve of an original birefringence and a wavelength dispersion curve of a birefringence obtained by solving simultaneous equations. FIG. 4 is a diagram showing the relationship between the wavelength dispersion curve of the birefringence and the wavelength dispersion curve of the birefringence obtained by solving the simultaneous equations after determining the integer value m. FIG. FIG. 5 is a diagram showing a configuration of a liquid crystal cell and an arrangement with a polarizer. FIG. 6 is a diagram of an interference spectrum obtained by experiment. FIG. 7 is a diagram showing a complex obtained by changing the integer value m. FIG. 8 is a diagram showing a group of birefringence wavelength dispersion curves obtained from two liquid crystal cells. FIG. 9 is a diagram obtained from two liquid crystal cells. Select the closest birefringence group of chromatic dispersion curves. FIG. 10 is a diagram of a wavelength dispersion curve of a birefringence index finally obtained. FIG. 11 is a diagram of an interference spectrum obtained from an experiment using a ferroelectric liquid crystal cell. Diagram of wavelength dispersion curve of refractive index [FIG. 13] Configuration diagram of liquid crystal cell with variable cell thickness [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light source device 2 Sample stand 3 Spectrometer 4 Computer 5 Information medium 6 Liquid crystal material 7 Substrate 8 which produces a liquid crystal cell Polarizer 9 Cell thickness variable device

Claims (6)

ある波長域において、厚さL1とL2の透明な物質がそれとは異なる種類の透明な物質に上下から挟まれたサンドイッチ構造の2つの試料である試料1と試料2があり、前記サンドイッチ構造の試料に前記波長域に渡って連続なスペクトルを有する光が照射されて干渉スペクトルが得られた場合、前記干渉スペクトルのピ−クに短波長側から順に整数値n=1,2,3・・・を割り当てることと、さらに適当な整数値mを決めて数式1:
Figure 0003777659
により前記干渉ピークの各波長に於ける試料1から得られたNの値の集合F1(λ):
Figure 0003777659
と試料2から得られたNの値の集合F2(λ):
Figure 0003777659
を求めて、前記F1(λ)とF2(λ)の値から波長と屈折率の関係、すなわち波長分散を示す式である数式3:
Figure 0003777659
に従うように最小二乗法によって試料1の干渉スペクトルのピークから未知の係数A,B,Cが決定されて得られた波長分散曲線G1(p)と、同様に試料2の干渉スペクトルのピークから得られた波長分散曲線G2(q)を適当な整数値pとqをそれぞれ適当に変化させた毎に得ることと、前記波長分散曲線G1(p)とG2(q)の試料1と試料2の干渉スペクトルのピーク各波長における距離の総和が最小となる場合の組み合わせであるG1(p1:整数値)とG2(q2:整数値)を選び出すことと、選び出された前記波長分散曲線G1(p1)とG2(q2)の中間値によって波長と屈折率の関係を示す式である前記数式3を決定することを特徴とする干渉スペクトル測定による屈折率決定方法。
In a certain wavelength region, there are two samples of a sandwich structure in which a transparent material of thickness L1 and L2 is sandwiched from above and below by a different type of transparent material. When an interference spectrum is obtained by irradiating light having a continuous spectrum over the wavelength range, integer values n = 1, 2, 3,... In order from the short wavelength side to the peak of the interference spectrum. And an appropriate integer value m is determined, and Equation 1:
Figure 0003777659
A set F1 (λ) of N values obtained from the sample 1 at each wavelength of the interference peak:
Figure 0003777659
And a set F2 (λ) of N values obtained from the sample 2:
Figure 0003777659
Is calculated from the values of F1 (λ) and F2 (λ), which is an expression showing the relationship between wavelength and refractive index, ie, wavelength dispersion:
Figure 0003777659
And the chromatic dispersion curve G1 (p) obtained by determining the unknown coefficients A, B, C from the peak of the interference spectrum of the sample 1 by the least square method and the peak of the interference spectrum of the sample 2 as well. To obtain the obtained chromatic dispersion curve G2 (q) every time the appropriate integer values p and q are appropriately changed, and the samples 1 and 2 of the chromatic dispersion curves G1 (p) and G2 (q) G1 (p1: integer value) and G2 (q2: integer value), which are combinations when the sum of the distances at the respective wavelengths of the peak of the interference spectrum is minimized, and the selected chromatic dispersion curve G1 (p1) ) And G2 (q2) are used to determine Formula 3 which is a formula indicating the relationship between wavelength and refractive index based on an intermediate value between G2 (q2) and a refractive index determination method by interference spectrum measurement.
ある波長域において、厚さL1とL2の透明な物質がそれとは異なる種類の透明な物質に上下から挟まれた2つのサンドイッチ構造の2つの試料である試料1と試料2があり、さらに前記サンドイッチ構造の試料を偏光方向が互いに垂直となっている2つの偏光子の間に配置して、前記波長域に渡って連続なスペクトルを有する光を照射して干渉スペクトルが得られた場合において、前記干渉スペクトルのピ−クに短波長側から順に整数値nを割り当てることと、さらに適当な整数値mを決めて数式2:
Figure 0003777659
により前記干渉ピ−クの各波長に於ける試料1から得られたΔnの値の集合P1(λ1):
Figure 0003777659
と試料2から得られたΔnの値の集合P2(λ2):
Figure 0003777659
が求まり、前記P1(λ1)とP2(λ2)の値から波長と複屈折率の関係を示す式、すなわち波長分散式である数式4:
Figure 0003777659
に従うように最小二乗法によって試料1の干渉スペクトルのピークから未知の係数A,B,Cが決定されて得られた波長分散曲線Q1(p)と同様に試料2から得られたQ2(q)を適当な整数値pとqをそれぞれ適当に変化させた毎に得ることと、前記波長分散曲線Q1(p)とQ2(q)の試料1と試料2の干渉スペクトルのピーク各波長における距離の総和が最小となる場合の組み合わせであるQ1(p1:整数値)とQ2(q2:整数値)を選び出すことと、選び出された前記波長分散曲線Q1(p1)とQ2(q2)の中間値によって波長と複屈折率の関係を示す式である数式4を決定することを特徴とする干渉スペクトル測定による複屈折率決定方法。
In a certain wavelength region, there are two samples of two sandwich structures in which transparent materials of thickness L1 and L2 are sandwiched from above and below by different types of transparent materials, and sample 1 and sample 2, and the sandwich In the case where an interference spectrum is obtained by arranging a sample having a structure between two polarizers whose polarization directions are perpendicular to each other and irradiating light having a continuous spectrum over the wavelength range, Assigning an integer value n to the peak of the interference spectrum in order from the short wavelength side, and further determining an appropriate integer value m, Equation 2:
Figure 0003777659
A set P1 (λ1) of values of Δn obtained from the sample 1 at each wavelength of the interference peak:
Figure 0003777659
And a set P2 (λ2) of Δn values obtained from the sample 2:
Figure 0003777659
Equation 4 representing the relationship between wavelength and birefringence from the values of P1 (λ1) and P2 (λ2), that is, a wavelength dispersion equation:
Figure 0003777659
Q2 (q) obtained from the sample 2 in the same manner as the wavelength dispersion curve Q1 (p) obtained by determining the unknown coefficients A, B, C from the peak of the interference spectrum of the sample 1 by the least square method. Is obtained every time the appropriate integer values p and q are appropriately changed, and the distance at each wavelength of the peak of the interference spectrum of the sample 1 and sample 2 of the chromatic dispersion curves Q1 (p) and Q2 (q) is obtained. Selecting Q1 (p1: integer value) and Q2 (q2: integer value), which are combinations when the sum is minimized, and an intermediate value between the selected wavelength dispersion curves Q1 (p1) and Q2 (q2) A method for determining a birefringence index by measuring an interference spectrum, wherein Formula 4 is determined to determine a relationship between a wavelength and a birefringence index.
ある波長域において、厚さL1とL2の透明な物質がそれとは異なる種類の透明な物質に上下から挟まれたサンドイッチ構造の2つの試料である試料1と試料2があり、前記サンドイッチ構造の試料に前記波長域に渡って連続なスペクトルを有する光が照射されて干渉スペクトルが得られた場合、前記干渉スペクトルのピ−クに短波長側から順に整数値n=1,2,3・・・を割り当てることと、さらに適当な整数値mを決めて数式1:
Figure 0003777659
により前記干渉ピ−クの各波長に於ける試料1から得られたNの値の集合F1(λ):
Figure 0003777659
と試料2から得られたNの値の集合F2(λ):
Figure 0003777659
を求めて、前記F1(λ)とF2(λ)の値から波長と屈折率の関係、すなわち波長分散を示す式である数式3:
Figure 0003777659
に従うように最小二乗法によって試料1の干渉スペクトルのピークから未知の係数A,B,Cが決定されて得られた波長分散曲線G1(p)と、同様に試料2の干渉スペクトルのピークから得られた波長分散曲線G2(q)を適当な整数値pとqをそれぞれ適当に変化させた毎に得ることと、前記波長分散曲線G1(p)とG2(q)の試料1と試料2の干渉スペクトルのピーク各波長における距離の総和が最小となる場合の組み合わせであるG1(p1:整数値)とG2(q2:整数値)を選び出すことと、選び出された前記波長分散曲線G1(p1)とG2(q2)の中間値によって波長と屈折率の関係を示す式である前記数式3を決定することを特徴とする干渉スペクトル測定による屈折率決定方法と、この屈折率決定方法の実行及びデ−タ処理するためのコンピュ−タと光源装置と分光装置とにより構成されていることを特徴とする干渉スペクトル測定による屈折率決定装置。
In a certain wavelength region, there are two samples of a sandwich structure in which a transparent material of thickness L1 and L2 is sandwiched from above and below by a different type of transparent material. When an interference spectrum is obtained by irradiating light having a continuous spectrum over the wavelength range, integer values n = 1, 2, 3,... In order from the short wavelength side to the peak of the interference spectrum. And an appropriate integer value m is determined, and Equation 1:
Figure 0003777659
A set F1 (λ) of N values obtained from the sample 1 at each wavelength of the interference peak by:
Figure 0003777659
And a set F2 (λ) of N values obtained from the sample 2:
Figure 0003777659
Is calculated from the values of F1 (λ) and F2 (λ), which is an expression showing the relationship between wavelength and refractive index, ie, wavelength dispersion:
Figure 0003777659
And the chromatic dispersion curve G1 (p) obtained by determining the unknown coefficients A, B, C from the peak of the interference spectrum of the sample 1 by the least square method and the peak of the interference spectrum of the sample 2 as well. To obtain the obtained chromatic dispersion curve G2 (q) every time the appropriate integer values p and q are appropriately changed, and the samples 1 and 2 of the chromatic dispersion curves G1 (p) and G2 (q) G1 (p1: integer value) and G2 (q2: integer value), which are combinations when the sum of the distances at the respective wavelengths of the peak of the interference spectrum is minimized, and the selected chromatic dispersion curve G1 (p1) ) And G2 (q2) are determined by the intermediate value between the wavelength and the refractive index, and the refractive index determination method based on interference spectrum measurement, and the execution of the refractive index determination method. - computer for data processing - data and refractive index determination apparatus according to interference spectrum measurement, characterized in that it is constituted by a light source device and a spectrometer.
ある波長域において、厚さL1とL2の透明な物質がそれとは異なる種類の透明な物質に上下から挟まれた2つのサンドイッチ構造の2つの試料である試料1と試料2があり、さらに前記サンドイッチ構造の試料を偏光方向が互いに垂直となっている2つの偏光子の間に配置して、前記波長域に渡って連続なスペクトルを有する光を照射して干渉スペクトルが得られた場合において、前記干渉スペクトルのピ−クに短波長側から順に整数値nを割り当てることと、さらに適当な整数値mを決めて数式2:
Figure 0003777659
により前記干渉ピ−クの各波長に於ける試料1から得られたΔnの値の集合P1(λ1):
Figure 0003777659
と試料2から得られたΔnの値の集合P2(λ2):
Figure 0003777659
が求まり、前記P1(λ1)とP2(λ2)の値から波長と複屈折率の関係を示す式、すなわち波長分散式である数式4:
Figure 0003777659
に従うように最小二乗法によって試料1の干渉スペクトルのピークから未知の係数A,B,Cが決定されて得られた波長分散曲線Q1(p)と同様に試料2から得られたQ2(q)を適当な整数値pとqをそれぞれ適当に変化させた毎に得ることと、前記波長分散曲線Q1(p)とQ2(q)の試料1と試料2の干渉スペクトルのピーク各波長における距離の総和が最小となる場合の組み合わせであるQ1(p1:整数値)とQ2(q2:整数値)を選び出すことと、選び出された前記波長分散曲線Q1(p1)とQ2(q2)の中間値によって波長と複屈折率の関係を示す式である数式4を決定することを特徴とする干渉スペクトル測定による複屈折率決定方法と、この複屈折率決定方法の実行及びデ−タ処理するためのコンピュ−タと光源装置と分光装置とにより構成されていることを特徴とする干渉スペクトル測定による複屈折率決定装置。
In a certain wavelength region, there are two samples of two sandwich structures in which transparent materials of thickness L1 and L2 are sandwiched from above and below by different types of transparent materials, and sample 1 and sample 2, and the sandwich In the case where an interference spectrum is obtained by arranging a sample having a structure between two polarizers whose polarization directions are perpendicular to each other and irradiating light having a continuous spectrum over the wavelength range, Assigning an integer value n to the peak of the interference spectrum in order from the short wavelength side, and further determining an appropriate integer value m, Equation 2:
Figure 0003777659
A set P1 (λ1) of values of Δn obtained from the sample 1 at each wavelength of the interference peak:
Figure 0003777659
And a set P2 (λ2) of Δn values obtained from the sample 2:
Figure 0003777659
Equation 4 representing the relationship between wavelength and birefringence from the values of P1 (λ1) and P2 (λ2), that is, a wavelength dispersion equation:
Figure 0003777659
Q2 (q) obtained from the sample 2 in the same manner as the wavelength dispersion curve Q1 (p) obtained by determining the unknown coefficients A, B, C from the peak of the interference spectrum of the sample 1 by the least square method. Is obtained every time the appropriate integer values p and q are appropriately changed, and the distance at each wavelength of the peak of the interference spectrum of the sample 1 and sample 2 of the chromatic dispersion curves Q1 (p) and Q2 (q) is obtained. Selecting Q1 (p1: integer value) and Q2 (q2: integer value), which are combinations when the sum is minimized, and an intermediate value between the selected wavelength dispersion curves Q1 (p1) and Q2 (q2) The method of determining the birefringence by the interference spectrum measurement characterized by determining the formula 4 which is an expression showing the relationship between the wavelength and the birefringence by the method, and for executing the birefringence determination method and data processing Computer and light Device and spectroscopic apparatus and that is constituted by a birefringence determination apparatus according to interference spectrum measurement according to claim.
請求項1から請求項4までに記載の干渉スペクトル測定による屈折率及び複屈折率の決定方法において、2つ以上の試料を用意して請求項1あるいは請求項2の操作を繰り返して、その結果の平均を取ることによって屈折率あるいは複屈折率を決定することを特徴とする干渉スペクトル測定による屈折率及び複屈折率の決定方法。In the method of determining refractive index and birefringence by interference spectrum measurement according to claim 1 to claim 4, two or more samples are prepared, and the operation of claim 1 or claim 2 is repeated, and the result A method of determining a refractive index and a birefringence by measuring an interference spectrum, wherein the refractive index or the birefringence is determined by taking an average of 請求項1から請求項5までに記載の干渉スペクトル測定による屈折率及び複屈折率の決定方法において、前記サンドイッチ構造の試料の両端の前記透明な物質間の距離が可変になっていていることを特徴とする干渉スペクトル測定による屈折率及び複屈折率の決定方法。6. The method for determining refractive index and birefringence by interference spectrum measurement according to claim 1, wherein the distance between the transparent materials at both ends of the sample having the sandwich structure is variable. A method for determining a refractive index and a birefringence by measuring a characteristic interference spectrum.
JP16706396A 1996-06-27 1996-06-27 Method and apparatus for determining refractive index and birefringence by measuring interference spectrum Expired - Fee Related JP3777659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16706396A JP3777659B2 (en) 1996-06-27 1996-06-27 Method and apparatus for determining refractive index and birefringence by measuring interference spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16706396A JP3777659B2 (en) 1996-06-27 1996-06-27 Method and apparatus for determining refractive index and birefringence by measuring interference spectrum

Publications (2)

Publication Number Publication Date
JPH1010041A JPH1010041A (en) 1998-01-16
JP3777659B2 true JP3777659B2 (en) 2006-05-24

Family

ID=15842720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16706396A Expired - Fee Related JP3777659B2 (en) 1996-06-27 1996-06-27 Method and apparatus for determining refractive index and birefringence by measuring interference spectrum

Country Status (1)

Country Link
JP (1) JP3777659B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101443058B1 (en) 2008-06-25 2014-09-24 삼성전자주식회사 equipment for manufacturing semiconductor device analyzed layered media dimension and used the same
CN106198455A (en) * 2015-10-13 2016-12-07 北京信息科技大学 A kind of solution refractive index measurement method based on thin-core fibers Mach-Zehnder interferometer
CN111044490B (en) * 2019-12-18 2022-06-03 中山大学 Method for measuring axial refractive index of anisotropic semiconductor optical film
JP7483423B2 (en) * 2020-03-12 2024-05-15 大塚電子株式会社 OPTICAL MEASUREMENT METHOD, OPTICAL MEASUREMENT DEVICE, AND OPTICAL MEASUREMENT PROGRAM

Also Published As

Publication number Publication date
JPH1010041A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
Geday et al. Images of absolute retardance L. Δn, using the rotating polariser method
US20060215159A1 (en) Method and apparatus for determining liquid crystal cell parameters from full Mueller matrix measurements
US7808637B2 (en) Method and apparatus for determining liquid crystal cell parameters from full mueller matrix measurements
Harrick Transmission spectra without interference fringes
JPH04307312A (en) Measuring method of thickness of gap of liquid crystal cell
JP2008256590A (en) Phase difference measuring method and instrument
KR100195397B1 (en) Method and apparatus for measuring thickness of birefringence layer
Shabana Determination of film thickness and refractive index by interferometry
Jellison Jr Generalized ellipsometry for materials characterization
JP3777659B2 (en) Method and apparatus for determining refractive index and birefringence by measuring interference spectrum
Bruyneel et al. Method for measuring the cell gap in liquid-crystal displays
Li et al. Model-free determination of the birefringence and dichroism in c-cut crystals from transmission ellipsometry measurements
US5434671A (en) Birefringent member cell gap measurement method and instrument
Friedman et al. Spatially resolved phase imaging of a programmable liquid-crystal grating
Chindaudom et al. Determination of the optical function n (λ) of vitreous silica by spectroscopic ellipsometry with an achromatic compensator
Urban III et al. Numerical ellipsometry: Use of parameter sensitivity to guide measurement selection for transparent anisotropic films
JP2898298B2 (en) Liquid crystal layer thickness measuring apparatus and liquid crystal layer thickness measuring method using the liquid crystal layer thickness measuring apparatus
Ozaki et al. Simultaneous determination of ordinary and extraordinary refractive index dispersions of nematic liquid crystals in the visible and near-infrared regions from an interference spectrum
Zhou et al. An improved stokes parameter method for determination of the cell thickness and twist angle of twisted nematic liquid crystal cells
JP3875116B2 (en) Method for measuring wavelength dispersion of birefringence of birefringent body, program, and recording medium
Sanaâ et al. Channelled spectrum method for birefringence dispersion measurement of anisotropic Mylar film
Izdebski et al. Application of the Jones calculus for a modulated double-refracted light beam propagating in a homogeneous and nondepolarizing electro-optic uniaxial crystal
Tkachenko et al. Study of nematic liquid crystals by spectroscopic ellipsometry
Beccherelli et al. Characterisation of photoalignment materials for photonic applications at visible and infrared wavelengths
Shopa et al. Application of two-dimensional intensity maps in high-accuracy polarimetry

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150310

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees