JP3775672B2 - Deformable mirror - Google Patents

Deformable mirror Download PDF

Info

Publication number
JP3775672B2
JP3775672B2 JP2002298083A JP2002298083A JP3775672B2 JP 3775672 B2 JP3775672 B2 JP 3775672B2 JP 2002298083 A JP2002298083 A JP 2002298083A JP 2002298083 A JP2002298083 A JP 2002298083A JP 3775672 B2 JP3775672 B2 JP 3775672B2
Authority
JP
Japan
Prior art keywords
flexible member
radius
curved surface
deformable mirror
surface portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002298083A
Other languages
Japanese (ja)
Other versions
JP2003139928A (en
Inventor
▲頼▼成 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002298083A priority Critical patent/JP3775672B2/en
Publication of JP2003139928A publication Critical patent/JP2003139928A/en
Application granted granted Critical
Publication of JP3775672B2 publication Critical patent/JP3775672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、反射面の変形が可能な変形可能ミラーに関し、より詳しくは、例えば、記録再生装置に搭載され、CD(コンパクト ディスク)、DVD(デジタル ビデオ ディスク)といった異なる基板厚さの光ディスクに対して正確な情報の記録・再生動作を可能にする変形可能ミラーに関する。
【0002】
【従来の技術】
光ディスクは多量の情報信号を高密度で記録することができるため、近年、オーディオ、ビデオ、コンピュータ等の多くの分野において利用が進められている。図30は、これらの装置に用いられている光ピックアップ装置(以下では光ピックアップと称する)の一従来例を示す。以下に、この光ピックアップ100の構成を動作とともに説明する。
【0003】
半導体レーザー101から出射した光はコリメータレンズ102により平行光103になる。平行光103は偏光ビームスプリッター104に入射することにより直進して、4分の1波長板105を通り、反射ミラー106で光路を曲げられ、対物レンズ107に入射する。対物レンズ107に入射した光は絞り込まれ、回転モータ113によって指示された光ディスク108の情報記憶媒体面上に光スポット109を形成する。
【0004】
一方、光ディスク108で反射した反射光110は、再び、対物レンズ107と反射ミラー106及び4分の1波長板105を通って、偏光ビームスプリッター104に入射する。この反射光110は4分の1波長板105の作用により、偏光ビームスプッリター104で反射して、絞りレンズ111を通り、光検出器112に受光される。光検出器112は、反射光線の光強度を検出することによって再生信号を検出する。
【0005】
ここで、上記の対物レンズ107は光ディスク108の厚みを考慮して設計されている。しかしながら、この設計値と異なる厚みの光ディスクに対しては、球面収差が生じて結像性能が劣化するため、記録再生を精度よく行うことができない。
【0006】
従来、CDやビデオディスクあるいはデータ用のIS0規格光磁気ディスク装置等に用いられる光ディスクの厚みは、ほぼ同一規格(約1.2mm)であった。このため、一つの光ピックアップで種類の異なる光ディスク(CD、ビデオディスク、光磁気ディスク等)を記録再生することが可能であった。
【0007】
ところで、近年、光ディスクのより高密度化を図るために、以下の方法が検討されている。
(1)対物レンズの開口数(NA)を大きくして、光学的な分解能を向上させる方法。
(2)記録層を多層に設ける方法。
【0008】
ここで、上記(1)の方法では、対物レンズのNAを大きくすると、集光ビーム径は比例して小さくなるが、ディスクの傾きの許容誤差を同程度に収めるためには、ディスクの基板厚さを薄くする必要がある。例えば、対物レンズのNAを0.5から0.6にすると、基板厚さを1.2mmから0.6mmに減少させなければ、同程度のディスク傾き許容誤差を有することができない。
【0009】
しかしながら、このようにディスクの基板厚さを薄くした場合は、その基板厚さの薄い光ディスクに対応する対物レンズを使用して、従来の光ディスクを記録再生すると、球面収差が増大して結像点が広がってしまい、記録再生が困難となる。したがって、従来の光ディスクとの間で互換性を保つことができなくなり、光ピクアップを2個使い薄型光ディクスと従来型光ディスクを別々の光ピックアップで記録再生せざるを得なくなる。
【0010】
また、上記(2)の方法のように、記録層をある程度の厚さの透明基板を介して複数設けた多層ディスクを用いる場合は、1枚のディスクで記録容量が大幅に増加する。
【0011】
しかしながら、各記録層で対物レンズから見た基板厚さが異なるため、上記同様の理由により、1つの光ピックアップでは正確な情報の記録再生ができない。
【0012】
このような問題点を解決するものとして、特開平5−151591号公報に開示された方法があり、そこでは、変形可能ミラーにより基板厚さを補正する手法を採用している。
【0013】
図31は、この変形可能ミラーを用いたディスク装置の光学系を示す。以下にその構成を動作とともに説明する。半導体レーザー101から出射した光103はコリメータレンズ102、偏光ビームスプリッター104、4分の1波長板105を透過し、ビームスプリッター202に到達する。ここで、光103は、ビームスプリッタ202及び4分の1波長板105を透過して変形可能ミラー200に達するような偏光で配向している。
【0014】
変形可能ミラー200は、ミラー表面が変形可能に構成されており、光ディスクの基板厚みが厚くなったときに変形可能ミラー駆動回路203によりミラー表面が変形されて、光103に基板が厚くなったことによって発生する球面収差を打ち消すような球面収差を与える。光103は4分の1波長板201を通って戻り、ビームスプリター202で反射されて対物レンズ107に達する。対物レンズ107に入射した光は絞り込まれ、光ディスク108の情報記録媒体面上に光スポット109を形成する。
【0015】
一方、光ディスク108で反射した反射光110は、再び対物レンズ107とビームスプリッター202、4分の1波長板201、変形可能ミラー200及び4分の1波長板105を通って、偏光ビームスプリッター104に入射する。この反射光110は偏光ビームスプリッター104で反射して、絞りレンズ111を通り、光検出器112に受光される。光検出器112は、反射光線の光強度を検出することによって再生信号を検出する。
【0016】
図32は、上記変形可能ミラー200の具体的な構成を示す。これは、「”Adaptive optics for optimization of image resolution”(Applide Optics”,vol.26,pp.3772−3777,(1987),J.P.Gaffarel
等)」に記載されたものである。
【0017】
この変形可能ミラー200は、表面にミラー面300を形成した変形プレート301と、変形プレート301の裏側の複数箇所を加圧する圧電アクチュエータ302と、変形プレート301、圧電アクチュエータ302、変形プレート301を固定するベース基板等から構成され、各圧電アクチュエータ302に印加する電圧を変えることにより、変形プレート301上が初望の量だけ変位し、全体として変形プレート上のミラー面300を初望の形状に変形させる。
【0018】
また、変形可能ミラーの他の従来例として、本願出願人が、特願平5−205282号で先に提案したものがある。この変形可能ミラーは、後述の本発明と同様の参照面基板を備え、この参照面基板の曲面部(凹凸面部)の形状を特定し、これにより、変形可能ミラーの変形に要するエネルギーの低減を図る手法を採用している。
【0019】
【発明が解決しようとする課題】
しかしながら、図32に示した従来の圧電アクチュエータ302を用いた変形可能ミラーでは、駆動電圧が変動すると、その変位も変動してしまう、特に、各圧電アクチュエータ302間に電圧変動があると変形ミラー300が所望の面から大きく外れてしまう。
【0020】
また、環境温度の変化によっても熱膨張の影響によって各電圧アクチュエータ302の加圧力が変動し、ミラー面300が所望のミラー面からはずれてしまうという問題がある。
【0021】
更に、収差補正を行う光ビームの直径は4mm程度であり、変形可能ミラーの正確な変形形状を実現するには多数の圧電アクチュエータ302を直径4mmの中に備えることが必要であり、組み立てが複雑になると共に、全体として変形可能ミラーのサイズが大きくなる。このため、光ピックアップの装置構成が大型化するという問題もある。
【0022】
また、本願出願人が先に提案した変形可能ミラーは、必ず特定の収差を発生して収差補償しなければならない部分の形状として、非球面である比較的凹凸が浅いものを用いているため、組立て時の軸ずれに対して非常に敏感であり、不安定である。このため、組立に時間を要する結果、光ピックアップの低コスト化を図る上での制約となっていた。
【0023】
本発明は、上記課題を解決するためになされたものであって、環境温度の変動や電気回路の変動の影響を受けにくく、高精度にミラー面を保持することが可能であると共に、小型、かつ簡単な構造で、安価に製造可能な変形可能ミラーを提供することを目的とする。
【0024】
本発明の他の目的は、変形性を向上でき、結果的に弾性変形に要するエネルギーを低減でき、記録再生装置のランニングコスト等を低減できる変形可能ミラーを提供することにある。
【0025】
また、本発明の他の目的は、局部的に大きな応力が発生することがなく、その寿命を向上できる変形可能ミラーを提供することにある。
【0026】
【課題を解決するための手段】
本発明の変形可能ミラーは、表面に入射光を反射する反射面を有する弾性変形可能な可撓性部材と、該可撓性部材の裏面側に、該裏面と対向する形に設置され、該可撓性部材の変形を許す空間を形成するように中心部が可撓性部材側に突出した曲面部及び該曲面部の周縁部に該可撓性部材を平面性が維持された状態で支持する平面部が形成された参照面基板とを備え、該可撓性部材を該曲面部の表面に吸着させて変形させる変形可能ミラーであって、該参照面基板の曲面部表面には、該可撓性部材が変形する際に必ず接触する第1領域と、該第1領域から曲面部の最深部までの第2領域と、該最深部から該周縁部の該平面部へ遷移する第3領域とが設けられており、該曲面部の該参照面基板の中心部に対する片側断面の表面形状は、該曲面部の中心部から該最深部までが、半径rに対する深さを示す関数f(r)で表され、該曲面部の中心から最深部までの間であって該第1領域外に変曲点が1つ存在し、該変曲点から曲面の最深部がf”(r)>0となる曲線で形成されており、そのことにより上記目的が達成される。
【0027】
以下に本発明の作用を説明する。
【0028】
上記構成の変形可能ミラーにおいては、参照面基板の曲面部の断面形状に倣って可撓性部材、つまりこの表面に形成された反射面が変形する。このため、曲面部の形状精度を高く維持しておけば、反射面の変形精度を精度よく決定できるので、収差補償を精度よく行うことができる。
【0029】
また、本発明が対象とする変形可能ミラーは、例えば記録再生装置に搭載されるが、この場合に、収差補償を要する領域は可撓性部材の中心部から対物レンズのNAに相当する領域であればよい。そのような領域は半径r1内の領域となる。従って、半径r1より外の領域は可撓性部材が変形しやすい任意の形状に設定することが可能である。
【0030】
このような考えに基づき、曲面部の断面形状を、中心部から半径r2までの部分が球面で形成され、かつ半径r1から半径r3までの部分がrの関数f(r)で表され、半径r1から半径r3までの間に変曲点が1つ存在し、該変曲点から半径r3までの部分がf”(r)>0となる曲線で構成すると、可撓性部材に無理な応力がかかることなく、スムーズに変形し、変形のためのエネルギーも少なくてすむ。なお、具体的な理由については、後述の実施形態で説明する。
【0031】
また、必ず特定の収差を発生して収差補償しなければならない部分の形状が球面であり、組立て時の軸ずれに対して敏感でなくなるため、組立てが容易であり、その分コストダウンに寄与できる。
【0032】
ここで、本発明が対象とする変形可能ミラーは、後述の実施形態で明かなように、例えば、可撓性部材の一部を形成する上部電極層と参照面基板に形成される下部電極層との間に駆動回路により電圧を印加することにより弾性変形される。このため、弾性変形に要するエネルギー、つまり駆動電圧を低減することが可能となる。この結果、記録再生装置のランニングコストを低減することができる。また、駆動電圧が低くなることにより、絶縁膜の絶縁破壊の可能性が低減されるので、装置の信頼性も向上できる。
【0033】
また、参照面基板の平面部における水平部分の距離に相当するr5−r4の部分は、後述のように、変形には影響しにくい。従って、この部分を小さくして全体の寸法を小さくするか、若しくは、半径r4までの部分をその代わりに大きくするほうが、小型化若しくは駆動電圧の低電圧化の観点からは好ましい。このような要件を満足するr5−r4の長さは、後述の本発明者等のシミュレーション結果によれば、r5−r4≦0.2mmであることが確認できた。
【0034】
また、曲面部の周縁部分で可撓性部材と下部電極の間隙がより小さくなるような構造にすると、比較的低電圧でも比較的大きな静電気力の発生が可能となり、低電圧化の観点から好ましい。このような構造は、参照面基板の半径r3から半径r4までの部分がrの関数g(r)で表され、半径r3から半径r4までの間に変曲点が1つ存在し、変曲点から半径r4までの部分をg”(r)<0となる曲線で形成することにより達成できる。
【0035】
また、参照面基板の中心部から半径r5までの部分が全て微分可能な断面曲線である構成にすると、このような形状は、より一層滑らかな形状であるため、角部での応力集中がなくなるうえ、更に、可撓性部材と参照面基板との密着性が向上するので、静電気力の伝達の観点から好ましいものになる。
【0036】
また、参照面基板の前記中心部から半径r4までの部分が、下記(2)式の条件を満足し、
r4≧2×r2 …(2)
かつ、r3がその中間点、若しくは、中間点より中心部寄りに位置する構成にすると、本発明者等の後述のシミュレーション結果によれば、可撓性部材がより一層変形しやすくなることを確認できた。従って、このような構成によれば、弾性変形に要するエネルギー、つまり駆動電圧をより一層低減できる。
【0037】
また、参照面基板の半径r1の部分の深さd1と、最深部に相当する半径r3の部分の深さd3との差d3−d1が、下記(3)式の条件
0.5μm≦d3−d1≦1.5μm …(3)
を満足する構成にすると、本発明者等の後述のシミュレーション結果によれば、静電気力と可撓性部材の曲げによる反力の釣り合いがとれ、弾性変形に要するエネルギー、つまり駆動電圧をより一層低減できることを確認できた。
【0038】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づき具体的に説明する。
(実施形態1)
図1〜図12は本発明変形可能ミラーの実施形態1を示す。まず、図1〜図4に従い本発明変形可能なミラーの概略構成について説明する。但し、図1は変形可能ミラーの平面図、図2は図1のX−X線による断面図、図3は底面図、図4は分解斜視図を示す。
【0039】
この変形可能ミラー1は、シリコン基板50、このシリコン基板50の裏面側に取り付けられた可撓性部材2及びその下方に配置された参照面基板6を有する基本構成になっている。ここで、シリコン基板50は内側が正方形状に開口53された枠体状に形成されている。この開口部53の中心はシリコン基板50の形状中心から図上左側に少し偏位している。
【0040】
可撓性部材2は、図4に示すように、平面視前記開口部53よりも少し大型の正方形状をなし、その外周部がシリコン基板50の平坦になった外周縁部に固着されている。より具体的には、シリコン熱酸化膜51aを介してシリコン基板50の外周縁部に固着されている。なお、可撓性部材2は引張応力が付加された状態でシリコン基板50に固着されている。
【0041】
ここで、図2に示すように、可撓性部材2は上部電極層8とその上に積層された反射膜10で構成されている。上部電極層8は、例えば8μm程度の厚みを有するNi膜で作製されている。また、反射膜10は、例えば1μm程度の厚みを有するAu、Al等の薄膜で作製されている。
【0042】
なお、反射膜10を無くして、上部電極層8の表面をそのまま反射面として利用する実施形態をとることも可能である。このような構成によれば、部品点数を削減でき、製造コストを低減に寄与できる利点がある。
【0043】
参照面基板6は、図4に示すように円筒状をなし、例えばガラスモールド法で作製されている。参照面基板6の表面、すなわち可撓性部材2と対向する表面には、下部電極層12、配線部55、配線パッド56及びスペーサー層54が形成され、これらの上に絶縁層9が形成されている(図2参照)。ここで、下部電極層12、配線部55及び配線パッド56は連接されている。
【0044】
図2等に示すように、参照面基板6の表面の外周縁部は平坦になっており、その内側には曲面部(凹凸部)3が形成され、ここに上記下部電極層12が形成されている。また、平坦になった外周縁部の外周端には面取り部59が設けられており、平坦部に配線部55が形成され、面取り部59には絶縁層9は設けられていない。従って面取り部59上の配線パッド56には絶縁層9は付着していない(図2参照)。
【0045】
下部電極層12とスペーサー層54は、例えば0.1μm程度の厚みを有するAlで作製され、絶縁層9は、例えば0.5μm程度の厚みを有する酸化シリコンで作製されている。
【0046】
ここで、上記の配線パッド56は、下部電極層12へ電圧を印可するための配線部55と後述する下部電極用パッド58とを電気的に接続す為に設けられている。なお、配線部55及び配線パッド56は下部電極層12と同じ厚み・材料で形成されている。
【0047】
可撓性部材2が固着されたシリコン基板50と、下部電極層12と絶縁層9が設けられた参照面基板6は、シリコン基板50側の上部電極層8と参照面基板6側の下部電極層12が互いに対向するように接着剤で接着されている(図2参照)。より具体的には、平坦になった外周縁部同士が密着して接着されている。可撓性部材2は、スペーサ54上の絶縁層9の上面と下部電極層12、配線部55上の絶縁層9の上面で同じ高さで接触し、平面性を維持する。
【0048】
前記接着剤には、例えば導電性のエポキシ系接着剤が用いられ、図2に示すように、接着剤57aは参照面基板6の面取り部59上の配線パッド56と、シリコン基板50の裏面上に熱酸化膜51aを介して設けられた下部電極用パッド58とを電気的に接続する機能も兼ねている。
【0049】
参照面基板6の面取り部分59は、シリコン基板50との参照面基板6が接着された時に配線パッド56を外部に露出させるとともに、接着剤57a、57b、がこの面取り部分に入り込むことにより、接着の信頼性を向上させ、かつ配線パッド56と下部電極用パッド58との電気的な接続を確実にする機能を有する。
【0050】
可撓性部材2の露出部分2b(図3参照)と下部電極用パッド58は、例えば半田等の手段により駆動回路7に接続されている。これにより、駆動回路7は可撓性部材2の露出部分2bと下部電極層12との間に電圧を印加したり、印加を中止したりする。
【0051】
具体的には、可撓性部材2の反射膜10に入射する光ビームに収差を与えることなく反射させる場合は、駆動回路7は電圧を印加しない。この結果、可撓性部材2は付加された引張応力の作用で平坦のまま維持される為、入射してくる光ビームに収差を与えず、そのまま反射させる。これに対して、入射する光ビームに収差を与えるときには、駆動回路7は上部電極層8と下部電極層12の間に電圧を印加する。これにより、両者間には静電気力が作用するので、可撓性部材2は参照面基板6側に変形し、結果的に凹凸面3に吸着し、入射してくる光ビームに所定の収差を与える。
【0052】
次に、変形可能ミラーを記録再生装置に組み込んだ一構成例を図5及び図6に従い説明する。尚、ここでは厚み0.6mm(例えば、DVD)と1.2mm(例えば、CD)の2種類の光ディスクに対応できる記録再生装置を例にとって説明する。
【0053】
光ピックアップの光源である半導体レーザー500から出たビーム504は、コリメータレンズ502、ビームスプリッター503、4分の1波長板507を通過して、ビームスプリッター506に到達する。このビーム504は、ビームスプリッター506及び4分の1波長板507を通過して、変形可能ミラー1に達する。
【0054】
そして、この変形可能ミラー1で反射された光が4分の1波長板を通過し、ビームスプリッター506で反射され、対物レンズ508に入射する。そして、対物レンズ508で集光されて光ディスク509を照射する。この対物レンズ508は、ディスクの厚みが0.6mmの光ディスクに対応するように焦点距離、NA等が設定されている。
【0055】
ここで、本実施形態1では、装着された光ディスク509の厚みに応じて、変形可能ミラー1の状態を変えて、対物レンズ508の焦点をその光ディスク509に合致したものとする。即ち、ディスクの厚みが1.2mmの時に変形可能ミラー1を変形させて、入射光に収差を与えて、ディスクに焦点が合うようにする。尚、この変形可能ミラー1は、無変形時には、平面ミラーを形成するものである。以下、その動作について説明する。
【0056】
まず、光ディスク509の上側に設けられたディスクの厚み検知装置515により、その厚みが0.6mmか1.2mmかを検知する。このディスク厚み検知装置515は、例えば図6に示すような構成になっている。ディスク厚み検知装置515は、光源600から光ビーム602を射出し、光ディスク509の上面で反射させる。この反射光は、光ディスク509の厚みが0.6mmの場合は光路604をたどって光位置検出器601に入射する。一方、光ディスク509の厚みが1.2mmの場合は、光路603をたどって光位置検出器601に入射する。従って、この反射光の位置を光位置検出器601で検出することにより、そのディスク509の厚みを判定することができる。
【0057】
次に、システム制御装置516が、この基板厚み検知装置515から基板厚み情報を受け、変形可能ミラー1の駆動回路7を動作させる。このとき、駆動回路7は、光ディスク厚みが0.6mmの場合は、変形可能ミラー1を変形させない。一方、ディスクの厚み1.2mmの場合には、変形可能ミラー1を変形させる。即ち、変形可能ミラー1の可撓性部材2を参照面基板6の参照面に吸着させる。これにより変形可能ミラー1による反射光には所定の収差が与えられ、対物レンズ508の焦点をディスク厚み1.2mmの光ディスクに合うようにする。
【0058】
逆に、対物レンズ508に、収差が与えられていない光が入射した時に、ディスクの厚みが1.2mmの光ディスク509に焦点の合うものを使用し、ディスクの厚みが0.6mmの光ディスク509を使用した時に、変形可能ミラー1により収差を与えても良いが、ディスク厚みが0.6mmの光ディスクは記録容量が大きいため、ディスクの厚みが1.2mmのCD等の光ディスクを再生する場合よりも、使用する光学部品に高い位置精度が要求される。
【0059】
本発明者等のシミュレーション結果によると、ディスク厚みが1.2mmの基板を再生するときに収差を与えた光を入射させた方が光学部品の位置精度がゆるくてすむ。従って、変形可能ミラー1が平面ミラーとなっているときに、ディスクの厚みが0.6mmの光ディスクを再生し、変形可能ミラー1を変形させたときに、ディスクの厚みが1.2mmの光ディスクを再生する方が望ましい。
【0060】
この場合、変形可能ミラー1が平面ミラーとして働くときは、ミラー面深さ=0μmの位置に沿った状態であり、収差補償ミラーとして働くときは、図7の曲線で示すような凹凸面、即ち曲面部3に沿った断面形状になる。
【0061】
ここで、曲面部3は、これに吸着した可撓性部材2のミラー面2aが、前記所定の収差を発生するものであれば良い。
【0062】
所定の収差を発生する曲面部3の断面形状をシミュレーションで求めた結果の一例を図7に示すが、実際のデバイスとして用いる場合、中心部分が多少軸ずれを生じても問題ないよう、前記曲面部3の断面形状が球面となるものを用いるのが良い。即ち、曲面部3を球面にすると、軸ずれに対し安定であるうえ、更に焦点距離の補正もある程度可能であるため、本願出願人が先に提案した、曲面部が非球面である上記従来の変形可能ミラーに比べて、組立に要する時間を低減でき、その分、光ピックアップ装置等のコストダウンが可能になるからである。
【0063】
ここで、一般に、例えば0.6mm基板厚のDVD等を再生するときは、例えば0.45等の大きいNAが必要であるが、例えば1.2mm基板厚のCD等を再生するときは、例えば0.38等の小さいNAで良い。対物レンズの焦点距離を、例えば3.3mm、対物レンズのNAを前記と同じ、例えば0.38とし、その範囲を収差補正するとすると、実際はミラーの変形により光線が曲げられるため、上記の数値より小さい値となるが、概算で、必要ビーム系は3.3×0.38mmで、半径約1.25mmの範囲が光ビームで照射されることになる。よって、図8(a)に示すような、曲面部3の形状にすればよい。
【0064】
しかしながら、このままの曲面部3の形状で変形可能ミラー1を構成すると、可撓性部材2の変形が同図(b)に示すようになり、可撓性部材2の曲面部3の周縁部に相当する部分において、無理な変形が発生する。このため、可撓性部材2の変形自体に無理が生じ、膨大なエネルギー(印加電圧)が必要となる。また、仮に変形したとしても、可撓性部材2自体に塑性変形等を生じ、その寿命を考慮すると、現実的でない。
【0065】
よって、実際には、図9(a)〜(c)に示すように、NA相当部分は収差補正するような面にし、その周りは可撓性部材2が変形しやすい断面形状にすればよい。
【0066】
ここで、周縁部まで含めた曲面部3全体の形状としては、基本的に図9(a)〜(c)の3種類のタイプのものが考えられる。以下にこれらの詳細を説明する。まず、図9(a)に示すものは、必ず特定の収差を発生して収差補正しなければならない部分の半径(曲面部3の中心からの半径)、即ち、例えば対物レンズのNAに相当する部分の半径をr1、曲面部3において、特定の収差を発生すべく設計された部分の半径をr2、曲面部3の最深部の半径をr3、曲面部3から周縁部の平面部34へ遷移する部分の半径をr4、平面部34の最外側の半径をr5(それぞれ同図(a)中に表示)とすると、中心部35から半径r2までの部分が球面で形成され、かつ半径r1から半径r3までの部分がrの関数f(r)で表され、r1からr3間に変曲点が1つ存在し、この変曲点からr3側の部分では、f”(r)>0となる曲線で表される断面形状に形成されている。
【0067】
また、半径rの位置に相当する最深部より外側では特に形状は問わないが、図9(a)に示すものでは、最深部と周縁部の平面部の入り口までを直線(傾斜面)で接続している。
【0068】
また、図9(b)に示すものは、半径r2の位置より周縁部の平面部34の入り口までを直線(傾斜面)で接続している。
【0069】
また、図9(c)に示すものは、半径r4の位置まで前記球面をそのまま延長している。
【0070】
なお、各部の諸寸法であるが、以降特に断りのない限り、可撓性部材2の厚みは8μm(実用的な範囲は5〜15μm)、絶縁層9は、材質SiO2で、比誘電率は4、SiO2の厚みは0.5μm(実用的な範囲は0.4〜1.5μm)、半径r1が1.1mm(実用的な範囲は0.5〜1.5mm)、半径r5が3mm(実用的な範囲は1.5〜4mm)、特定の収差を発生して収差補正しなければならない部分の球面の曲率半径R=100mm(実用的な範囲は50〜150mm)であり、これを基準にして、駆動電圧25Vで変形可能ミラー1を変形させた場合の計算(評価)を行った。
【0071】
図10(a)〜(c)は、評価結果(シミュレーション結果)を示す。但し、図10(a)〜(c)は、図9の(a)〜(c)に示すタイプの評価結果をそれぞれ示している。
【0072】
図10(a)からわかるように、図9(a)に示すタイプのものでは、可撓性部材2は曲面部3の最深部以外はほぼ接触している。
【0073】
これに対して、図10(b)からわかるように、図9(b)に示すタイプのものでは、最深部付近の可撓性部材2の曲げによる反力が大きいため、特定の収差を発生して収差を補正しなければいけない部分の半径r1内の中心部は問題なく接触しているが、半径r1の周辺部は接触しにくいという現象が生じている。
【0074】
また、図10(c)からわかるように、図9(c)に示すタイプのものでは、曲面部3の周縁部分において、可撓性部材2と下部電極層12との間隙が大きくなったことに起因して、この部分では可撓性部材2に静電気力はほとんど働かない。このため、可撓性部材2は、曲面部3の中心部から受ける静電気力のみで変形させねばならないことになる。
【0075】
よって、静電気力を有効に活用し、できるだけ低い駆動電圧で可撓性部材2を駆動し、目的の収差補正を達成する観点からは、特定の収差を発生して収差を補正しなければならない部分、即ち半径r1の位置から最深部、即ち半径r3の部分までを滑らかな曲線で結ぶのが良いことがわかる。
【0076】
ここで、曲面部3の中心部から最深部までの断面曲線をf(r)とすると、特定の収差を発生する半径r1(若しくは半径r2)までは、球面の上弦であるので、常にf”(r)<0となる。できるだけ滑らかに最深部までつなぐためには、半径r2からr3迄をf”(r)>0となる曲線を含む必要がある。即ち、半径r1からr3間に、少なくともf”(r)=0となる変曲点が1つ以上存在する必要がある。
【0077】
次に、前記変曲点が2つ以上存在する場合を調べた。図11は半径r1〜r3間に変曲点が2つ存在する曲面部3を有する参照面基板6を示す。この場合は、半径r1〜r3間に突起が1つ発生することになる。また、図12はその評価結果を示す。
【0078】
図12に示すように、可撓性部材2の変形がこの突起に邪魔されて、かえって変形しにくくなってしまうことがわかる。変曲点の数が更に増えると、突起もまた増え、より一層好ましくない結果が発生する。
【0079】
よって、上記の考察より、曲面部3において、必ず特定の収差を発生して収差補償しなければならない部分の半径、即ち、例えば対物レンズのNAに相当する部分の半径をr1、曲面部3において、特定の収差を発生すべく設計された部分の半径をr2、曲面部3の最深部の半径をr3とすると、中心部35から半径r2までの部分が球面で形成され、かつ半径r1から半径r3までの部分がrの関数f(r)で表され、半径r1からr3間の部分に変曲点が1つ存在し、その変極点よりr3側ではf”(r)>0となる曲線で曲面部3を形成すると、変形に必要なエネルギーを少なくできることがわかる。
(実施形態2)
図13〜図16は本発明変形可能ミラーの実施形態2を示す。上記の実施形態1では、曲面部3の中心部から最深部までの断面形状が可撓性部材2の変形に与える影響を調べたが、本実施形態2では、曲面部3(中心部〜半径r4まで)と平面部(半径r4〜半径r5まで)34の水平方向の寸法比を変化させた場合の可撓性部材2の変形に与える影響を調べた。
【0080】
具体的には、第1のパターン(タイプ)として、半径r1=1.09、r2=1.1、r3=1.5、半径r2までの収差補正用の球面の曲率半径がR=100mmの参照面基板6を用い、第2のパターンとして、半径r1=1.39、r2=1.4、r3=1.7、半径r2までの収差補正用の球面の曲率半径がR=150mmの参照面基板6を用い、それぞれ半径r4とr5の寸法を変えて、可撓性部材2と下部電極層10間に30Vの駆動電圧を与えて、変形のしやすさを調べた。
【0081】
また、本実施形態2では、半径r3〜r4までの部分は、中心部35から半径r4まで連続となるような2次曲線を用いた。図13〜16にその評価結果を示す。
【0082】
曲率半径Rが100mmと150mmの場合それぞれにつき、図13及び図15では、曲面部3の水平半径を2.6mmで固定して、平面部34の長さを0.4mmを中心に0.2〜0.6mmまで変化させた。また、図14及び図16では、参照面基板6自体の大きさを決定する平面部34の外周半径、即ちr5を3.0mmで固定して、曲面部3の半径を2.6mm(平面部は0.4mm)を中心に2.4〜2.8mm(このとき平面部は0.6〜0.2mm)まで変化させた。
【0083】
上記のシミュレーション結果によれば、曲面部3の水平方向に比べて、平面部の水平方向寸法が変形に与える影響はわずかであることが判明した。例えば、参照面基板6は、当然小型化が要求されるものであり、水平方向寸法には制限がある。この場合、平面部分を大きくすることよりも、曲面部3を大きくする方が可撓性部材2の変形に有利であることが判明した。
【0084】
以上の考察結果より、平面部34はできるだけ小さくして、全体の寸法を小さくするか、若しくは、その分、曲面部3を大きくするほうが良い。但し、平面部は参照面基板6の支持部としての機能も有するので、0〜0.2mm程度は必要な場合もある。よって、平面部34の寸法は0.2mm以下とするのがよい。
(実施形態3)
図17〜図20は本発明変形可能ミラーの実施形態3を示す。本実施形態3では、曲面部3の最深部、即ち半径r3の部分から、曲面部3から平面部34への遷移部分、即ち半径r5の部分までの断面曲線形状が可撓性部材2の変形に与える影響を調べた。
【0085】
上記実施形態2の、例えば図14〜図16では、曲面部3の中央部分では、比較的、可撓性部材2が曲面部3に吸着しているのに対し、曲面部3の周縁部では、ほとんど接触していない。原因として、変形初期の可撓性部材2と曲面部3の間隙、換言すれば、可撓性部材2と下部電極層10との間隙が曲面部3の中心部35に比して周縁部では大きく、これに起因して静電気力が小さくなっているためと考えられる。
【0086】
それ故、曲面部3の周縁部において、上記間隙が小さくなるような断面形状、即ち、参照面基板6の中心部に対する曲面部3の片側断面形状が、その断面曲線において、半径r3から半径r4までの部分がrの関数g(r)で表されるとすると、r3からr4間に変曲点が1つ存在し、その変曲点よりr4側ではg”(r)<0となる曲線で形成される断面曲線にすれば、周縁部においても静電気が有効に働くことが予想される。
【0087】
図17は前記事項を満たす断面形状を有する参照面基板6を用いた場合の評価結果を示し、図18はそれとは逆の形状の断面形状を有する参照面基板6を用いた場合の評価結果を示す。但し、可撓性部材2の厚みは8μm、印加電圧は30Vで行った。
【0088】
図17と図18を比較すればわかるように、曲面部3の周縁部において、可撓性部材2と曲面部3が間隙が小さくなるように構成すると、可撓性部材2の変形にかなり効果的であることが判明した。また、曲面部3から平面部34への遷移部分において、図18のような変形状態であれば、応力集中が発生することが予想されるが、図17の場合は、応力集中も軽減できるので、変形可能ミラーの信頼性の観点からも図17に示す断面形状を有する参照面基板6が実施する上で好ましい。
【0089】
但し、本実施形態3において、半径r3の部分や半径r4の部分では、比較的滑らかではあるが、完全に微分可能な曲線ではない。即ち、角部が存在する場合もある。
【0090】
そこで、図19、図20に示すように、半径r3、若しくは半径r4において、角部が存在する場合と、完全に滑らか、即ち、参照面基板6において、中心部から半径r5の部分までが完全に微分可能な曲線である場合の変形状態の比較を行った。
【0091】
ここで、図19は中心部35から半径r5の部分までが完全に微分可能な場合の評価結果を示し、図20は図17と同一形状で、半径r4の部分が微分可能でなく、角部が存在する場合の評価結果を示す。印加電圧のみ図17、18の場合より下げて25Vで評価した。
【0092】
図19と図20を比較してみればわかるように、全体的に微分可能な断面形状にすると、曲面部3と可撓性部材2の間隙がより小さくなる方向になり、静電気力の有効利用の観点からより効果的であることが判明した。また、半径r3、半径r4の部分での応力集中もより軽減できることが予想されるので、変形可能ミラーの信頼性の観点からも好ましい。よって、図19に示す断面形状を有する参照面基板6が実施する上で好ましい。
(実施形態4)
図21〜図29は本発明変形可能ミラーの実施形態4を示す。本実施形態4では、曲面部3の最深部の位置が、可撓性部材2の変形に与える影響について調査した。即ち、上記実施形態1〜3では、最深部の位置は特に規定していないが、本実施形態4では、最深部、即ち半径r3の部分の水平位置及び垂直位置が可撓性部材2の変形にどのような影響を及ぼすかを調べた。
【0093】
まず、最深部の水平方向の位置に関して、可撓性部材2の厚みを12μm、印加電圧25Vで調査した。また、半径r2までの特定の収差を発生するように設けられた球面の曲率半径R=100mm、r4/r5=2.8/3.0mmとした。
【0094】
そして、最深部の半径r3として、r3=1.2、1.3、1.4、1.42、1.5mmの場合を例にとって評価した。その断面形状及び計算結果をそれぞれ図21〜25に示す。
【0095】
図21〜25に示す計算結果により、r3=1.4mmの位置が曲面部3の片側断面の中間点となるが、その点よりわずかでもr3の位置がr4側に寄ると、可撓性部材2が変形しにくくなること(図24、図25参照)、逆にr3の位置が中間点となるのがベストであるが(図23参照)、仮に中心点寄りになっても可撓性部材2が極度に変形しにくくなることは無い(図21、図22参照)ことが判明した。
【0096】
これは、可撓性部材2の変形が最深部に対し対称的で変形しやすいことや、曲面部3全体で可撓性部材2と曲面部3の間隙が小さくなることによる効果と考えられる。
【0097】
以上の条件が成立するには、半径r4≧2×r2となることが必要であるが、仮にr4<2×r2の場合は、最深部の半径r3はできるだけr2側に設けるのが良い。
【0098】
次に、曲面部3の最深部、即ち半径r3の部分の垂直位置、つまり曲面部3の深さが可撓性部材2の変形に与える影響について調べた。
【0099】
ここで、最深部の深さが深すぎると、前記間隙が大きくなるため、一定電圧で発生する静電気が弱くなり不利である。一方、浅すぎると、可撓性部材2の曲げに無理が生じ、r1付近で接触不良を生じることが予想される。そこで、半径r3の部分の垂直位置がどの位置にあるのが可撓性部材2の変形に効果的であるかを調べた。
【0100】
図26は最深部の深さd3が6.5μmの場合の可撓性部材2の変形状態の評価結果を示す。印加電圧は図23の場合と同じである。図27は最深部の深さd3が7μmであり、それ以外は図26と同一の条件で比較していることになる。図26、図27の評価結果によれば、可撓性部材2の曲げの反力で既に若干収差補正用に特定の収差を発生すべき部分、即ち半径r1内の部分の周辺あたりが既に接触しにくくなっていることがわかる。
【0101】
図28及び図29は最深部の深さが深い場合(それぞれ、d3=7.5μm、d3=8μm)を示す。印加電圧は21Vで行った。図29に相当する8μmの深さ程度から可撓性部材2の変形に悪影響が現れているのがわかる。
【0102】
ここで、最深部の深さ自体は、半径r2迄の曲面部の曲率や、NAによって変動するので、収差補正用の球面の端部、即ち半径r1の垂直位置と最深部の垂直位置の相対関係で表すならば、半径r1の部分とr3の部分の深さ方向の距離の差は、0.5〜1.5μmの間が好ましいことが判明した。
【0103】
なお、本発明と本願出願人が先に提案した変形可能ミラーとの違いは、曲面部の中央部の形状と、深さの違い、特に深さの違いによるところが大きいことによる。例えば、先に提案した変形可能ミラーの場合、曲面部の深さが1μm以下であるため、静電気力の計算において、上下の電極層間の間隔=絶縁層の膜厚として、可撓性部材〜曲面部の間隙を無視しても結果はあまり変わらないため無視しているが、本発明の場合は、可撓性部材〜曲面部の間隙が大きく無視できないため、上下の電極層間の間隔=絶縁層の膜厚+可撓性部材〜曲面部の間隙とし、更に変形により遂次静電気力が変動することを考慮にいれたシミュレーション方法により計算を実行している。
【0104】
【発明の効果】
以上の本発明変形可能ミラーによれば、参照面基板の曲面部の断面形状に倣って可撓性部材、つまりこの表面に形成された反射面が変形する。このため、曲面部の形状精度を高く維持しておけば、反射面の変形精度を精度よく決定できるので、収差補償を精度よく行うことができる。
【0105】
また、本発明が対象とする変形可能ミラーは、例えば記録再生装置に搭載されるが、この場合に、収差補償を要する領域は可撓性部材の中心部から対物レンズのNAに相当する領域であればよく、そのような領域は半径r1内の領域となる。従って、半径r1より外の領域は可撓性部材が変形しやすい任意の形状に設定することが可能である。
【0106】
そこで、本発明では、曲面部の断面形状を、中心部から半径r2までの部分が球面で形成され、かつ半径r1から半径r3までの部分がrの関数f(r)で表され、半径r1から半径r3までの間に変曲点が1つ存在し、該変曲点から半径r3までの部分がf”(r)>0となる曲線で構成しており、可撓性部材に無理な応力がかかることなく、スムーズに変形し、変形のためのエネルギーも少なくてすむ。
【0107】
それ故、本発明によれば、弾性変形に要するエネルギー、つまり駆動電圧を低減することが可能となる。この結果、記録再生装置のランニングコストを低減することができる。また、駆動電圧が低くなることにより、絶縁膜の絶縁破壊の可能性が低減されるので、装置の信頼性も向上できる。
【0108】
加えて、必ず特定の収差を発生して収差補償しなければならない部分の形状が球面であり、組立て時の軸ずれに対して敏感でなくなるため、組立てが容易であり、その分コストダウンに寄与できる。
【0109】
また、特に請求項2記載の変形可能ミラーによれば、r5−r4≦0.2mmの条件を満足するように曲面部を構成するため、装置構成の小型化若しくは駆動電圧の低電圧化を一層図ることができる。
【0110】
また、特に請求項3記載の変形可能ミラーによれば、参照面基板の半径r3から半径r4までの部分がrの関数g(r)で表され、半径r3から半径r4までの間に変曲点が1つ存在し、変曲点から半径r4までの部分をg”(r)<0となる曲線で形成する構成をとるので、曲面部の周縁部分で可撓性部材と下部電極層の間隙がより小さくなり、比較的低電圧でも比較的大きな静電気力の発生が可能となり、低電圧化の観点から好ましいものになる。
【0111】
また、特に請求項4記載の変形可能ミラーによれば、参照面基板の中心部から半径r5までの部分が全て微分可能な断面曲線である構成をとるので、角部での応力集中がなくなるうえ、更に、可撓性部材と参照面基板との密着性が向上するので、静電気力の伝達の観点から好ましいものになる。
【0112】
また、特に請求項5記載の変形可能ミラーによれば、参照面基板の前記中心部から半径r4までの部分が、下記(2)式の条件を満足し、
r4≧2×r2 …(2)
かつ、r3がその中間点、若しくは、中間点より中心部寄りに位置する構成をとるので、可撓性部材がより一層変形しやすくなるので、弾性変形に要するエネルギー、つまり駆動電圧をより一層低減できる利点がある。
【0113】
また、特に請求項6記載の変形可能ミラーによれば、参照面基板の半径r1の部分の深さd1と、最深部に相当する半径r3の部分の深さd3との差d3−d1が、下記(3)式の条件
0.5μm≦d3−d1≦1.5μm …(3)
を満足する構成をとるので、静電気力と可撓性部材の曲げによる反力の釣り合いがとれ、弾性変形に要するエネルギー、つまり駆動電圧をより一層低減できる利点がある。
【図面の簡単な説明】
【図1】本発明の実施形態1を示す、変形可能ミラーの平面図。
【図2】本発明の実施形態1を示す、図1のX−X線による断面図。
【図3】本発明の実施形態1を示す、変形可能ミラーの底面図。
【図4】本発明の実施形態1を示す、変形可能ミラーの分解斜視図。
【図5】本発明の実施形態1を示す、変形可能ミラーが搭載された記録再生装置の構成を示すブロック図。
【図6】本発明の実施形態1を示す、厚み検知装置の検出原理を示す模式図。
【図7】本発明の実施形態1を示す、シミュレーションで求めた収差補償を行うための参照面基板の曲面部の断面形状を示す図。
【図8】(a)は変形可能ミラーの一例を示す、無変形状態の断面図、(b)は(a)の変形可能ミラーの変形状態の断面図。
【図9】本発明の実施形態1を示す、(a)〜(c)は種々の曲面部を有する参照面基板の例を示す断面図。
【図10】本発明の実施形態1を示す、(a)は図9(a)の参照面基板を用いて可撓性部材を変形させた場合の評価結果を示す図、(b)は図9(b)の参照面基板を用いて可撓性部材を変形させた場合の評価結果を示す図、(c)は図9(c)の参照面基板を用いて可撓性部材を変形させた場合の評価結果を示す図。
【図11】本発明の実施形態1を示す、片側に変曲点を2つ有する曲面からなる曲面部を有する参照面基板の断面図。
【図12】図11の参照面基板を用いて可撓性部材を変形させた場合の評価結果を示す図。
【図13】本発明の実施形態2を示す、曲面部(中心部〜半径r4まで)と平面部(半径r4〜半径r5まで)の水平方向の寸法比を変化させた場合の可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図14】本発明の実施形態2を示す、曲面部(中心部〜半径r4まで)と平面部(半径r4〜半径r5まで)の水平方向の寸法比を変化させた場合の可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図15】本発明の実施形態2を示す、曲面部(中心部〜半径r4まで)と平面部(半径r4〜半径r5まで)の水平方向の寸法比を変化させた場合の可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図16】本発明の実施形態2を示す、曲面部(中心部〜半径r4まで)と平面部(半径r4〜半径r5まで)の水平方向の寸法比を変化させた場合の可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図17】本発明の実施形態3を示す、曲面部の最深部から平面部への遷移部分までの断面曲線形状が可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図18】本発明の実施形態3を示す、曲面部の最深部から平面部への遷移部分までの断面曲線形状が可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図19】本発明の実施形態3を示す、曲面部の最深部から平面部への遷移部分までの断面曲線形状が可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図20】本発明の実施形態3を示す、曲面部の最深部から平面部への遷移部分までの断面曲線形状が可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図21】本発明の実施形態4を示す、曲面部の最深部の位置が可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図22】本発明の実施形態4を示す、曲面部の最深部の位置が可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図23】本発明の実施形態4を示す、曲面部の最深部の位置が可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図24】本発明の実施形態4を示す、曲面部の最深部の位置が可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図25】本発明の実施形態4を示す、曲面部の最深部の位置が可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図26】本発明の実施形態4を示す、曲面部の最深部の位置が可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図27】本発明の実施形態4を示す、曲面部の最深部の位置が可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図28】本発明の実施形態4を示す、曲面部の最深部の位置が可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図29】本発明の実施形態4を示す、曲面部の最深部の位置が可撓性部材の変形に与える影響を調査するための評価結果を示す図。
【図30】従来のピックアップの構成を示す図。
【図31】従来の変形可能ミラーを使用した光ピックアップの構成を示す図。
【図32】従来の変形可能ミラーの構成を示す図。
【符号の説明】
1 変形可能ミラー
2 可撓性部材
3 曲面部
6 参照面基板
8 上部電極層
9 絶縁層
12 下部電極層
34 平面部
35 中心部分
50 シリコン基板
508 対物レンズ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deformable mirror capable of deforming a reflecting surface. More specifically, the present invention relates to an optical disc mounted on a recording / reproducing apparatus and having different substrate thicknesses such as a CD (compact disc) and a DVD (digital video disc). The present invention relates to a deformable mirror that enables accurate information recording / reproducing operation.
[0002]
[Prior art]
Since optical disks can record a large amount of information signals at high density, they have been used in many fields such as audio, video, and computers in recent years. FIG. 30 shows a conventional example of an optical pickup device (hereinafter referred to as an optical pickup) used in these devices. Hereinafter, the configuration of the optical pickup 100 will be described together with the operation.
[0003]
Light emitted from the semiconductor laser 101 becomes parallel light 103 by the collimator lens 102. The parallel light 103 travels straight by entering the polarization beam splitter 104, passes through the quarter-wave plate 105, has its optical path bent by the reflection mirror 106, and enters the objective lens 107. The light incident on the objective lens 107 is narrowed down, and a light spot 109 is formed on the information storage medium surface of the optical disk 108 designated by the rotary motor 113.
[0004]
On the other hand, the reflected light 110 reflected by the optical disk 108 is incident on the polarizing beam splitter 104 again through the objective lens 107, the reflecting mirror 106 and the quarter-wave plate 105. The reflected light 110 is reflected by the polarization beam splitter 104 by the action of the quarter-wave plate 105, passes through the aperture lens 111, and is received by the photodetector 112. The photodetector 112 detects the reproduction signal by detecting the light intensity of the reflected light.
[0005]
Here, the objective lens 107 is designed in consideration of the thickness of the optical disk 108. However, for an optical disc having a thickness different from this design value, spherical aberration occurs and the imaging performance deteriorates, so that recording and reproduction cannot be performed with high accuracy.
[0006]
Conventionally, the thickness of an optical disk used for a CD, a video disk, an IS0 standard magneto-optical disk device for data, and the like has been almost the same standard (about 1.2 mm). Therefore, it is possible to record / reproduce different types of optical disks (CD, video disk, magneto-optical disk, etc.) with one optical pickup.
[0007]
By the way, in recent years, the following methods have been studied in order to increase the density of optical disks.
(1) A method for improving the optical resolution by increasing the numerical aperture (NA) of the objective lens.
(2) A method of providing recording layers in multiple layers.
[0008]
Here, in the method (1), when the NA of the objective lens is increased, the diameter of the focused beam decreases in proportion, but in order to keep the tolerance of the tilt of the disk at the same level, the substrate thickness of the disk It is necessary to reduce the thickness. For example, if the NA of the objective lens is changed from 0.5 to 0.6, the same disc tilt tolerance cannot be obtained unless the substrate thickness is reduced from 1.2 mm to 0.6 mm.
[0009]
However, when the substrate thickness of the disk is reduced in this way, if an objective lens corresponding to the optical disk with the smaller substrate thickness is used to record / reproduce a conventional optical disk, the spherical aberration increases and the imaging point is increased. Spreads, making recording and reproduction difficult. Accordingly, compatibility with the conventional optical disc cannot be maintained, and two optical pickups must be used to record and reproduce the thin optical disc and the conventional optical disc with separate optical pickups.
[0010]
Further, when a multi-layer disc in which a plurality of recording layers are provided via a transparent substrate having a certain thickness as in the method (2) above, the recording capacity is greatly increased with one disc.
[0011]
However, since the thickness of the substrate as viewed from the objective lens is different in each recording layer, accurate information recording / reproduction cannot be performed with one optical pickup for the same reason as described above.
[0012]
As a method for solving such a problem, there is a method disclosed in Japanese Patent Laid-Open No. 5-151591, in which a method of correcting the substrate thickness by a deformable mirror is employed.
[0013]
FIG. 31 shows an optical system of a disk device using this deformable mirror. The configuration will be described below together with the operation. The light 103 emitted from the semiconductor laser 101 passes through the collimator lens 102, the polarization beam splitter 104, and the quarter-wave plate 105 and reaches the beam splitter 202. Here, the light 103 is oriented with polarization such that it passes through the beam splitter 202 and the quarter-wave plate 105 and reaches the deformable mirror 200.
[0014]
The deformable mirror 200 is configured so that the mirror surface can be deformed, and when the substrate thickness of the optical disk is increased, the mirror surface is deformed by the deformable mirror drive circuit 203 and the substrate is thickened to the light 103. Gives a spherical aberration that cancels out the spherical aberration generated by. The light 103 returns through the quarter-wave plate 201, is reflected by the beam splitter 202, and reaches the objective lens 107. The light incident on the objective lens 107 is narrowed down to form a light spot 109 on the information recording medium surface of the optical disk 108.
[0015]
On the other hand, the reflected light 110 reflected by the optical disk 108 passes through the objective lens 107 and the beam splitter 202, the quarter-wave plate 201, the deformable mirror 200, and the quarter-wave plate 105 again to the polarization beam splitter 104. Incident. The reflected light 110 is reflected by the polarization beam splitter 104, passes through the diaphragm lens 111, and is received by the photodetector 112. The photodetector 112 detects the reproduction signal by detecting the light intensity of the reflected light.
[0016]
FIG. 32 shows a specific configuration of the deformable mirror 200. This is described in ““ Adaptive optics for optimization of image resolution ”(Applied Optics”, vol. 26, pp. 3772-3777, (1987), J. P. Gafferel.
Etc.) ”.
[0017]
The deformable mirror 200 fixes the deformation plate 301 having a mirror surface 300 formed on the surface thereof, the piezoelectric actuator 302 that pressurizes a plurality of locations on the back side of the deformation plate 301, the deformation plate 301, the piezoelectric actuator 302, and the deformation plate 301. By changing the voltage applied to each piezoelectric actuator 302, which is composed of a base substrate or the like, the deformation plate 301 is displaced by the initial desired amount, and the mirror surface 300 on the deformation plate as a whole is deformed to the initial desired shape. .
[0018]
As another conventional example of the deformable mirror, the applicant previously proposed in Japanese Patent Application No. 5-205282 has been proposed. This deformable mirror includes a reference surface substrate similar to that of the present invention described later, specifies the shape of the curved surface portion (uneven surface portion) of the reference surface substrate, and thereby reduces the energy required for deformation of the deformable mirror. The technique to plan is adopted.
[0019]
[Problems to be solved by the invention]
However, in the deformable mirror using the conventional piezoelectric actuator 302 shown in FIG. 32, when the driving voltage fluctuates, the displacement also fluctuates. Greatly deviates from the desired surface.
[0020]
In addition, there is a problem in that the pressure applied to each voltage actuator 302 fluctuates due to the influence of thermal expansion due to a change in environmental temperature, and the mirror surface 300 deviates from the desired mirror surface.
[0021]
Furthermore, the diameter of the light beam for aberration correction is about 4 mm, and in order to realize an accurate deformed shape of the deformable mirror, it is necessary to provide a large number of piezoelectric actuators 302 within the diameter of 4 mm, and the assembly is complicated. As a result, the size of the deformable mirror increases as a whole. For this reason, there also exists a problem that the apparatus structure of an optical pick-up becomes large.
[0022]
In addition, the deformable mirror previously proposed by the applicant of the present application uses an aspherical surface with relatively shallow irregularities as the shape of the part that must always generate a specific aberration and compensate for the aberration. It is very sensitive and unstable with respect to misalignment during assembly. For this reason, assembling takes time, which has been a limitation in reducing the cost of the optical pickup.
[0023]
The present invention has been made in order to solve the above-described problems, is less susceptible to environmental temperature fluctuations and electric circuit fluctuations, can hold a mirror surface with high accuracy, is small in size, Another object of the present invention is to provide a deformable mirror that can be manufactured at low cost with a simple structure.
[0024]
Another object of the present invention is to provide a deformable mirror that can improve the deformability, consequently reduce the energy required for elastic deformation, and reduce the running cost of the recording / reproducing apparatus.
[0025]
Another object of the present invention is to provide a deformable mirror that does not generate large stress locally and can improve its life.
[0026]
[Means for Solving the Problems]
The deformable mirror of the present invention is installed on an elastically deformable flexible member having a reflective surface for reflecting incident light on the surface, and on the back surface side of the flexible member so as to face the back surface, The flexible member is supported in a state in which the flatness is maintained on the curved surface portion whose central portion protrudes toward the flexible member and the peripheral portion of the curved surface portion so as to form a space that allows deformation of the flexible member. A deformable mirror that adsorbs the flexible member to the surface of the curved surface portion and deforms the flexible member on the surface of the curved surface portion of the reference surface substrate. A first region that always contacts when the flexible member is deformed; a second region from the first region to the deepest portion of the curved surface portion; and a third region that transitions from the deepest portion to the flat portion of the peripheral portion. The surface shape of one side cross-section with respect to the center portion of the reference surface substrate of the curved surface portion is the curved surface portion. From center outermost deep is represented by a function indicating the depth to the radius r f (r), to the first region outside a between the center of the curved surface of the deepest Inflection point There is one Inflection point The deepest part of the curved surface is formed by a curve satisfying f ″ (r)> 0, whereby the above object is achieved.
[0027]
The operation of the present invention will be described below.
[0028]
In the deformable mirror configured as described above, the flexible member, that is, the reflecting surface formed on the surface thereof is deformed following the cross-sectional shape of the curved surface portion of the reference surface substrate. For this reason, if the shape accuracy of the curved surface portion is kept high, the deformation accuracy of the reflecting surface can be determined with high accuracy, so that aberration compensation can be performed with high accuracy.
[0029]
In addition, the deformable mirror targeted by the present invention is mounted, for example, in a recording / reproducing apparatus. In this case, the region requiring aberration compensation is a region corresponding to the NA of the objective lens from the central portion of the flexible member. I just need it. Such a region is a region within the radius r1. Therefore, it is possible to set the area outside the radius r1 to an arbitrary shape in which the flexible member is easily deformed.
[0030]
Based on such an idea, the cross-sectional shape of the curved surface portion is expressed by a function f (r) of r, where the portion from the center portion to the radius r2 is formed as a spherical surface, and the portion from the radius r1 to the radius r3 is represented by the radius r. Between r1 and radius r3 Inflection point There is one Inflection point If the portion from the radius r3 to the radius r3 is constituted by a curve satisfying f ″ (r)> 0, the flexible member can be smoothly deformed without excessive stress, and energy for deformation can be reduced. The specific reason will be described in an embodiment described later.
[0031]
In addition, the shape of the part that must always generate a specific aberration and compensate for the aberration is a spherical surface, which is less sensitive to the axis deviation during assembly, so that the assembly is easy and can contribute to cost reduction accordingly. .
[0032]
Here, the deformable mirror targeted by the present invention includes, for example, an upper electrode layer that forms part of a flexible member and a lower electrode layer that is formed on a reference surface substrate, as will be described in the following embodiments. Is elastically deformed by applying a voltage between them with a drive circuit. For this reason, the energy required for elastic deformation, that is, the drive voltage can be reduced. As a result, the running cost of the recording / reproducing apparatus can be reduced. Further, since the driving voltage is lowered, the possibility of dielectric breakdown of the insulating film is reduced, so that the reliability of the device can be improved.
[0033]
Further, the r5-r4 portion corresponding to the distance of the horizontal portion in the flat surface portion of the reference surface substrate hardly affects the deformation as will be described later. Therefore, it is preferable from the viewpoint of downsizing or lowering the driving voltage to reduce this part to reduce the overall size, or to increase the part up to the radius r4 instead. The length of r5-r4 that satisfies these requirements was confirmed to be r5-r4 ≦ 0.2 mm according to the simulation results of the inventors and the like described later.
[0034]
In addition, a structure in which the gap between the flexible member and the lower electrode becomes smaller at the peripheral portion of the curved surface portion enables generation of a relatively large electrostatic force even at a relatively low voltage, which is preferable from the viewpoint of lowering the voltage. . In such a structure, a portion from the radius r3 to the radius r4 of the reference surface substrate is expressed by a function g (r) of r, and between the radius r3 and the radius r4, Inflection point There is one, Inflection point To a radius r4 can be achieved by forming a curve with g ″ (r) <0.
[0035]
Further, when the portion from the center portion of the reference surface substrate to the radius r5 is a differentiable cross-sectional curve, such a shape is a smoother shape, so stress concentration at the corner portion is eliminated. In addition, since the adhesion between the flexible member and the reference surface substrate is improved, it is preferable from the viewpoint of transmission of electrostatic force.
[0036]
Further, the portion from the center portion of the reference surface substrate to the radius r4 satisfies the condition of the following formula (2),
r4 ≧ 2 × r2 (2)
In addition, if r3 is located at the middle point or closer to the center than the middle point, according to the simulation results described later by the inventors, it is confirmed that the flexible member is more easily deformed. did it. Therefore, according to such a configuration, the energy required for elastic deformation, that is, the driving voltage can be further reduced.
[0037]
In addition, the difference d3-d1 between the depth d1 of the reference surface substrate having the radius r1 and the depth d3 of the radius r3 corresponding to the deepest portion is a condition of the following expression (3).
0.5 μm ≦ d3-d1 ≦ 1.5 μm (3)
If the configuration satisfies the above, according to the simulation results described later by the present inventors, the balance between the electrostatic force and the reaction force caused by the bending of the flexible member is balanced, and the energy required for elastic deformation, that is, the driving voltage is further reduced. I was able to confirm that I could do it.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings.
(Embodiment 1)
1 to 12 show Embodiment 1 of the deformable mirror of the present invention. First, a schematic configuration of a mirror that can be modified according to the present invention will be described with reference to FIGS. 1 is a plan view of the deformable mirror, FIG. 2 is a cross-sectional view taken along line XX of FIG. 1, FIG. 3 is a bottom view, and FIG. 4 is an exploded perspective view.
[0039]
The deformable mirror 1 has a basic configuration including a silicon substrate 50, a flexible member 2 attached to the back side of the silicon substrate 50, and a reference surface substrate 6 disposed below the flexible member 2. Here, the silicon substrate 50 is formed in a frame shape having an opening 53 in a square shape inside. The center of the opening 53 is slightly deviated from the center of the shape of the silicon substrate 50 to the left in the figure.
[0040]
As shown in FIG. 4, the flexible member 2 has a square shape slightly larger than the opening 53 in plan view, and the outer peripheral portion thereof is fixed to the outer peripheral edge portion of the silicon substrate 50 that is flat. . More specifically, it is fixed to the outer peripheral edge portion of the silicon substrate 50 via the silicon thermal oxide film 51a. The flexible member 2 is fixed to the silicon substrate 50 with a tensile stress applied.
[0041]
Here, as shown in FIG. 2, the flexible member 2 includes an upper electrode layer 8 and a reflective film 10 laminated thereon. The upper electrode layer 8 is made of a Ni film having a thickness of about 8 μm, for example. The reflective film 10 is made of a thin film such as Au or Al having a thickness of about 1 μm, for example.
[0042]
It is also possible to take an embodiment in which the reflection film 10 is eliminated and the surface of the upper electrode layer 8 is used as it is as a reflection surface. According to such a configuration, there is an advantage that the number of parts can be reduced and the manufacturing cost can be reduced.
[0043]
The reference surface substrate 6 has a cylindrical shape as shown in FIG. 4 and is produced by, for example, a glass mold method. The lower electrode layer 12, the wiring part 55, the wiring pad 56, and the spacer layer 54 are formed on the surface of the reference surface substrate 6, that is, the surface facing the flexible member 2, and the insulating layer 9 is formed thereon. (See FIG. 2). Here, the lower electrode layer 12, the wiring part 55, and the wiring pad 56 are connected.
[0044]
As shown in FIG. 2 and the like, the outer peripheral edge portion of the surface of the reference surface substrate 6 is flat, and a curved surface portion (uneven portion) 3 is formed inside thereof, and the lower electrode layer 12 is formed thereon. ing. Further, a chamfered portion 59 is provided at the outer peripheral edge of the outer peripheral edge portion that has become flat, the wiring portion 55 is formed in the flat portion, and the insulating layer 9 is not provided in the chamfered portion 59. Therefore, the insulating layer 9 is not attached to the wiring pad 56 on the chamfered portion 59 (see FIG. 2).
[0045]
The lower electrode layer 12 and the spacer layer 54 are made of Al having a thickness of about 0.1 μm, for example, and the insulating layer 9 is made of silicon oxide having a thickness of about 0.5 μm, for example.
[0046]
Here, the wiring pad 56 is provided to electrically connect a wiring portion 55 for applying a voltage to the lower electrode layer 12 and a lower electrode pad 58 described later. The wiring portion 55 and the wiring pad 56 are formed with the same thickness and material as the lower electrode layer 12.
[0047]
The silicon substrate 50 to which the flexible member 2 is fixed and the reference surface substrate 6 provided with the lower electrode layer 12 and the insulating layer 9 are the upper electrode layer 8 on the silicon substrate 50 side and the lower electrode on the reference surface substrate 6 side. The layers 12 are bonded with an adhesive so as to face each other (see FIG. 2). More specifically, the flat outer peripheries are closely adhered to each other. The flexible member 2 is in contact with the upper surface of the insulating layer 9 on the spacer 54 and the upper surface of the lower electrode layer 12 and the insulating layer 9 on the wiring portion 55 at the same height, and maintains flatness.
[0048]
For example, a conductive epoxy adhesive is used as the adhesive. As shown in FIG. 2, the adhesive 57 a is formed on the wiring pads 56 on the chamfered portion 59 of the reference surface substrate 6 and the back surface of the silicon substrate 50. It also functions to electrically connect to the lower electrode pad 58 provided through the thermal oxide film 51a.
[0049]
The chamfered portion 59 of the reference surface substrate 6 is exposed by exposing the wiring pad 56 to the outside when the reference surface substrate 6 is bonded to the silicon substrate 50, and the adhesives 57a and 57b enter the chamfered portion, thereby being bonded. And has a function of ensuring the electrical connection between the wiring pad 56 and the lower electrode pad 58.
[0050]
The exposed portion 2b (see FIG. 3) of the flexible member 2 and the lower electrode pad 58 are connected to the drive circuit 7 by means such as solder. Thereby, the drive circuit 7 applies a voltage between the exposed part 2b of the flexible member 2 and the lower electrode layer 12, or stops the application.
[0051]
Specifically, when the light beam incident on the reflective film 10 of the flexible member 2 is reflected without giving aberration, the drive circuit 7 does not apply a voltage. As a result, since the flexible member 2 is maintained flat by the action of the applied tensile stress, the incident light beam is reflected as it is without giving any aberration. On the other hand, when the aberration is given to the incident light beam, the drive circuit 7 applies a voltage between the upper electrode layer 8 and the lower electrode layer 12. As a result, an electrostatic force acts between the two, so that the flexible member 2 is deformed to the reference surface substrate 6 side, and as a result, is adsorbed to the concavo-convex surface 3 and gives a predetermined aberration to the incident light beam. give.
[0052]
Next, a configuration example in which a deformable mirror is incorporated in a recording / reproducing apparatus will be described with reference to FIGS. Here, a description will be given by taking as an example a recording / reproducing apparatus that can handle two types of optical disks having a thickness of 0.6 mm (for example, DVD) and 1.2 mm (for example, CD).
[0053]
A beam 504 emitted from the semiconductor laser 500 that is a light source of the optical pickup passes through the collimator lens 502, the beam splitter 503, and the quarter wavelength plate 507 and reaches the beam splitter 506. The beam 504 passes through the beam splitter 506 and the quarter wave plate 507 and reaches the deformable mirror 1.
[0054]
Then, the light reflected by the deformable mirror 1 passes through the quarter-wave plate, is reflected by the beam splitter 506, and enters the objective lens 508. Then, the light is condensed by the objective lens 508 and irradiated onto the optical disk 509. The objective lens 508 is set with a focal length, NA, etc. so as to correspond to an optical disc having a disc thickness of 0.6 mm.
[0055]
Here, in the first embodiment, it is assumed that the state of the deformable mirror 1 is changed according to the thickness of the mounted optical disk 509 so that the focus of the objective lens 508 matches the optical disk 509. That is, when the thickness of the disk is 1.2 mm, the deformable mirror 1 is deformed to give aberration to the incident light so that the disk is focused. The deformable mirror 1 forms a flat mirror when not deformed. The operation will be described below.
[0056]
First, a disc thickness detector 515 provided on the upper side of the optical disc 509 detects whether the thickness is 0.6 mm or 1.2 mm. The disc thickness detecting device 515 has a configuration as shown in FIG. 6, for example. The disc thickness detection device 515 emits a light beam 602 from the light source 600 and reflects it on the upper surface of the optical disc 509. This reflected light follows the optical path 604 and enters the optical position detector 601 when the thickness of the optical disk 509 is 0.6 mm. On the other hand, when the thickness of the optical disk 509 is 1.2 mm, it follows the optical path 603 and enters the optical position detector 601. Therefore, the thickness of the disk 509 can be determined by detecting the position of the reflected light with the optical position detector 601.
[0057]
Next, the system control device 516 receives the substrate thickness information from the substrate thickness detection device 515 and operates the drive circuit 7 of the deformable mirror 1. At this time, the drive circuit 7 does not deform the deformable mirror 1 when the optical disk thickness is 0.6 mm. On the other hand, when the thickness of the disk is 1.2 mm, the deformable mirror 1 is deformed. That is, the flexible member 2 of the deformable mirror 1 is attracted to the reference surface of the reference surface substrate 6. As a result, a predetermined aberration is given to the reflected light from the deformable mirror 1 so that the objective lens 508 is focused on an optical disk having a disk thickness of 1.2 mm.
[0058]
On the other hand, an optical disk 509 having a disc thickness of 0.6 mm is used by focusing on the optical disc 509 having a disc thickness of 1.2 mm when light with no aberration is incident on the objective lens 508. When used, aberration may be given by the deformable mirror 1, but an optical disc having a disc thickness of 0.6 mm has a large recording capacity, so that the optical disc such as a CD having a disc thickness of 1.2 mm is reproduced. Therefore, high positional accuracy is required for the optical components used.
[0059]
According to the simulation results of the present inventors, the positional accuracy of the optical component can be loosened when incident light with aberration is incident when reproducing a substrate having a disk thickness of 1.2 mm. Therefore, when the deformable mirror 1 is a flat mirror, an optical disk having a disk thickness of 0.6 mm is reproduced, and when the deformable mirror 1 is deformed, an optical disk having a disk thickness of 1.2 mm is reproduced. It is better to play.
[0060]
In this case, when the deformable mirror 1 works as a plane mirror, it is in a state along the position of the mirror surface depth = 0 μm, and when it works as an aberration compensation mirror, it is an uneven surface as shown by the curve in FIG. A cross-sectional shape along the curved surface portion 3 is obtained.
[0061]
Here, the curved surface portion 3 only needs to be such that the mirror surface 2a of the flexible member 2 adsorbed thereto generates the predetermined aberration.
[0062]
FIG. 7 shows an example of a result obtained by simulating the cross-sectional shape of the curved surface portion 3 that generates the predetermined aberration. It is preferable to use a portion having a spherical cross section. That is, if the curved surface portion 3 is a spherical surface, it is stable against the axial deviation and further correction of the focal length is possible to some extent. This is because the time required for assembly can be reduced as compared with the deformable mirror, and the cost of the optical pickup device and the like can be reduced accordingly.
[0063]
Here, in general, when reproducing a DVD or the like having a thickness of 0.6 mm, for example, a large NA such as 0.45 is required. However, when reproducing a CD or the like having a thickness of 1.2 mm, for example, A small NA such as 0.38 is sufficient. If the focal length of the objective lens is, for example, 3.3 mm, the NA of the objective lens is the same as above, for example, 0.38, and the aberration is corrected in the range, the light beam is actually bent by the deformation of the mirror. Although it is a small value, it is estimated that the required beam system is 3.3 × 0.38 mm, and a radius of about 1.25 mm is irradiated with the light beam. Therefore, what is necessary is just to make it the shape of the curved surface part 3 as shown to Fig.8 (a).
[0064]
However, when the deformable mirror 1 is configured with the shape of the curved surface portion 3 as it is, the deformation of the flexible member 2 is as shown in FIG. Unreasonable deformation occurs in the corresponding part. For this reason, the deformation of the flexible member 2 itself becomes unreasonable, and enormous energy (applied voltage) is required. Even if it is deformed, it is not realistic in view of its life due to plastic deformation or the like in the flexible member 2 itself.
[0065]
Therefore, in practice, as shown in FIGS. 9A to 9C, the NA-corresponding portion may be a surface that corrects aberrations, and the periphery thereof may have a cross-sectional shape in which the flexible member 2 is easily deformed. .
[0066]
Here, as the shape of the entire curved surface portion 3 including the peripheral portion, basically three types of types shown in FIGS. 9A to 9C can be considered. These details are described below. First, what is shown in FIG. 9 (a) corresponds to the radius of the portion that must always generate a specific aberration and correct the aberration (radius from the center of the curved surface portion 3), for example, the NA of the objective lens. The radius of the portion is r1, the radius of the portion designed to generate a specific aberration in the curved surface portion 3 is r2, the radius of the deepest portion of the curved surface portion 3 is r3, and the transition from the curved surface portion 3 to the peripheral plane portion 34 is made. If the radius of the portion to be r4 is r4 and the outermost radius of the plane portion 34 is r5 (represented in FIG. 5A), the portion from the center portion 35 to the radius r2 is formed of a spherical surface, and from the radius r1 The portion up to the radius r3 is represented by the function f (r) of r, and between r1 and r3 Inflection point There is one, this Inflection point The portion on the r3 side is formed in a cross-sectional shape represented by a curve satisfying f ″ (r)> 0.
[0067]
Further, the shape is not particularly limited outside the deepest portion corresponding to the position of the radius r, but in the case shown in FIG. 9A, the deepest portion and the entrance to the flat portion of the peripheral portion are connected by a straight line (inclined surface). is doing.
[0068]
In the case shown in FIG. 9B, a straight line (inclined surface) is connected from the position of the radius r2 to the entrance of the flat portion 34 at the peripheral edge.
[0069]
In the case shown in FIG. 9C, the spherical surface is extended as it is to the position of the radius r4.
[0070]
The dimensions of each part are as follows. Unless otherwise specified, the thickness of the flexible member 2 is 8 μm (practical range is 5 to 15 μm), and the insulating layer 9 is made of a material SiO. 2 The relative dielectric constant is 4, SiO 2 Has a thickness of 0.5 μm (practical range is 0.4 to 1.5 μm), a radius r1 of 1.1 mm (practical range is 0.5 to 1.5 mm), and a radius r5 of 3 mm (practical range). The range is 1.5 to 4 mm), and the radius of curvature R of the portion of the spherical surface that needs to be corrected by generating specific aberrations is R = 100 mm (practical range is 50 to 150 mm). Calculation (evaluation) was performed when the deformable mirror 1 was deformed with a driving voltage of 25V.
[0071]
10A to 10C show the evaluation results (simulation results). However, FIGS. 10A to 10C show evaluation results of the types shown in FIGS. 9A to 9C, respectively.
[0072]
As can be seen from FIG. 10 (a), in the type shown in FIG. 9 (a), the flexible member 2 is substantially in contact except for the deepest portion of the curved surface portion 3.
[0073]
On the other hand, as can be seen from FIG. 10 (b), the type shown in FIG. 9 (b) generates a specific aberration because the reaction force due to bending of the flexible member 2 near the deepest part is large. Thus, although the central portion within the radius r1 where the aberration must be corrected is in contact with no problem, there is a phenomenon that the peripheral portion with the radius r1 is difficult to contact.
[0074]
Further, as can be seen from FIG. 10C, in the type shown in FIG. 9C, the gap between the flexible member 2 and the lower electrode layer 12 is increased in the peripheral portion of the curved surface portion 3. Because of this, an electrostatic force hardly acts on the flexible member 2 in this portion. For this reason, the flexible member 2 must be deformed only by the electrostatic force received from the central portion of the curved surface portion 3.
[0075]
Therefore, from the viewpoint of effectively utilizing the electrostatic force, driving the flexible member 2 with the lowest possible drive voltage, and achieving the desired aberration correction, a portion where a specific aberration must be generated to correct the aberration. That is, it is preferable to connect the position from the radius r1 to the deepest portion, that is, the radius r3 with a smooth curve.
[0076]
Here, if the cross-sectional curve from the center of the curved surface portion 3 to the deepest portion is f (r), the radius r1 (or radius r2) that generates a specific aberration is the upper chord of the spherical surface, and therefore f " (R) <0 In order to connect as smoothly as possible to the deepest part, it is necessary to include a curve satisfying f ″ (r)> 0 from the radius r2 to r3. That is, at least f ″ (r) = 0 between the radii r1 and r3. Inflection point There must be one or more.
[0077]
Next, the above Inflection point The case where two or more existed was investigated. FIG. 11 shows the radius between r1 and r3. Inflection point The reference surface board | substrate 6 which has the curved-surface part 3 in which two exist is shown. In this case, one protrusion is generated between the radii r1 to r3. FIG. 12 shows the evaluation results.
[0078]
As shown in FIG. 12, it can be seen that the deformation of the flexible member 2 is obstructed by the protrusions, which makes it difficult to deform. Inflection point As the number increases, the protrusions also increase, producing even more undesirable results.
[0079]
Therefore, from the above consideration, the radius of the curved surface portion 3 where a specific aberration must be generated to compensate for the aberration, that is, the radius of the portion corresponding to the NA of the objective lens, for example, is r1. If the radius of the part designed to generate a specific aberration is r2, and the radius of the deepest part of the curved surface part 3 is r3, the part from the center part 35 to the radius r2 is formed of a spherical surface, and the radius r1 to the radius The part up to r3 is represented by the function f (r) of r, and the part between the radii r1 and r3 Inflection point It can be seen that if the curved surface portion 3 is formed by a curve satisfying f ″ (r)> 0 on the r3 side from the inflection point, the energy required for deformation can be reduced.
(Embodiment 2)
13 to 16 show a second embodiment of the deformable mirror of the present invention. In the first embodiment, the influence of the cross-sectional shape from the central portion to the deepest portion of the curved surface portion 3 on the deformation of the flexible member 2 was examined. In the second embodiment, the curved surface portion 3 (center portion to radius) The effect on the deformation of the flexible member 2 when the horizontal dimension ratio of the flat portion (to r4) and the plane portion (from radius r4 to radius r5) 34 was changed was examined.
[0080]
Specifically, as the first pattern (type), the radius of curvature of the spherical surface for aberration correction up to the radius r1 = 1.09, r2 = 1.1, r3 = 1.5, and the radius r2 is R = 100 mm. Reference surface substrate 6 is used, and the second pattern has a radius r1 = 1.39, r2 = 1.4, r3 = 1.7, and a radius of curvature of the spherical surface for correcting aberrations up to radius r2 is R = 150 mm. Using the surface substrate 6, the radius r4 and r5 were changed, and a driving voltage of 30 V was applied between the flexible member 2 and the lower electrode layer 10 to examine the ease of deformation.
[0081]
In the second embodiment, a quadratic curve that is continuous from the central portion 35 to the radius r4 is used for the portions from the radius r3 to the radius r4.
[0082]
In each of the cases where the curvature radius R is 100 mm and 150 mm, in FIG. 13 and FIG. 15, the horizontal radius of the curved surface portion 3 is fixed at 2.6 mm, and the length of the flat surface portion 34 is about 0.2 mm. It was changed to -0.6 mm. In FIGS. 14 and 16, the radius of the curved surface portion 3 is 2.6 mm (the flat surface portion is fixed) while the outer peripheral radius of the flat surface portion 34 that determines the size of the reference surface substrate 6 itself, that is, r5 is fixed at 3.0 mm. Is 0.4 mm) and 2.4 to 2.8 mm (in this case, the flat portion is 0.6 to 0.2 mm).
[0083]
According to the simulation result, it has been found that the influence of the horizontal dimension of the flat surface portion on the deformation is small compared to the horizontal direction of the curved surface portion 3. For example, the reference surface substrate 6 is naturally required to be downsized, and the horizontal dimension is limited. In this case, it has been found that increasing the curved surface portion 3 is more advantageous for deformation of the flexible member 2 than increasing the flat surface portion.
[0084]
From the above consideration results, it is better to make the flat surface portion 34 as small as possible and to reduce the overall size, or to enlarge the curved surface portion 3 accordingly. However, since the plane portion also has a function as a support portion of the reference surface substrate 6, about 0 to 0.2 mm may be necessary. Therefore, the dimension of the plane part 34 is preferably 0.2 mm or less.
(Embodiment 3)
17 to 20 show Embodiment 3 of the deformable mirror of the present invention. In the third embodiment, the cross-sectional curve shape from the deepest portion of the curved surface portion 3, that is, the radius r 3 portion to the transition portion from the curved surface portion 3 to the flat surface portion 34, that is, the radius r 5 portion is deformed of the flexible member 2. We investigated the effect on
[0085]
In the second embodiment, for example, in FIGS. 14 to 16, the flexible member 2 is relatively adsorbed to the curved surface portion 3 in the central portion of the curved surface portion 3, whereas in the peripheral portion of the curved surface portion 3. , Almost no contact. The cause is that the gap between the flexible member 2 and the curved surface portion 3 in the initial stage of deformation, in other words, the gap between the flexible member 2 and the lower electrode layer 10 is closer to the peripheral portion than the central portion 35 of the curved surface portion 3. This is probably because the electrostatic force is small due to this.
[0086]
Therefore, the cross-sectional shape in which the gap is reduced at the peripheral portion of the curved surface portion 3, that is, the one-side cross-sectional shape of the curved surface portion 3 with respect to the center portion of the reference surface substrate 6 Is represented by a function g (r) of r, between r3 and r4 Inflection point There is one Inflection point On the r4 side, if the cross-sectional curve is formed by a curve satisfying g ″ (r) <0, static electricity is expected to work effectively even at the peripheral portion.
[0087]
FIG. 17 shows an evaluation result when the reference surface substrate 6 having a cross-sectional shape satisfying the above-described matters is used, and FIG. 18 shows an evaluation result when the reference surface substrate 6 having a cross-sectional shape opposite to that is used. Show. However, the thickness of the flexible member 2 was 8 μm, and the applied voltage was 30V.
[0088]
As can be seen from a comparison between FIG. 17 and FIG. 18, if the gap between the flexible member 2 and the curved surface portion 3 is reduced at the periphery of the curved surface portion 3, the deformation of the flexible member 2 is considerably effective. Turned out to be. Further, in the transition portion from the curved surface portion 3 to the flat surface portion 34, it is expected that stress concentration occurs in the deformed state as shown in FIG. 18, but in the case of FIG. 17, the stress concentration can be reduced. In view of the reliability of the deformable mirror, the reference surface substrate 6 having the cross-sectional shape shown in FIG.
[0089]
However, in the third embodiment, the portion having the radius r3 and the portion having the radius r4 are relatively smooth but are not completely differentiable curves. That is, there may be corners.
[0090]
Therefore, as shown in FIG. 19 and FIG. 20, when the corner is present at the radius r3 or the radius r4, it is completely smooth, that is, from the center portion to the portion of the radius r5 in the reference surface substrate 6. The deformation state was compared in the case of a differentiable curve.
[0091]
Here, FIG. 19 shows the evaluation results when the portion from the central portion 35 to the portion of the radius r5 is completely differentiable, and FIG. 20 is the same shape as FIG. 17, the portion of the radius r4 is not differentiable. The evaluation result when is present is shown. Only the applied voltage was lowered from the case of FIGS.
[0092]
As can be seen from a comparison between FIG. 19 and FIG. 20, when the cross-sectional shape is differentiable as a whole, the gap between the curved surface portion 3 and the flexible member 2 tends to become smaller, and the electrostatic force is effectively used. From the point of view, it turned out to be more effective. In addition, it is expected that the stress concentration at the radius r3 and radius r4 portions can be further reduced, which is preferable from the viewpoint of the reliability of the deformable mirror. Therefore, the reference surface substrate 6 having the cross-sectional shape shown in FIG.
(Embodiment 4)
21 to 29 show Embodiment 4 of the deformable mirror of the present invention. In the fourth embodiment, the influence of the position of the deepest portion of the curved surface portion 3 on the deformation of the flexible member 2 was investigated. That is, in the first to third embodiments, the position of the deepest portion is not particularly defined, but in the fourth embodiment, the horizontal position and the vertical position of the deepest portion, that is, the portion of the radius r3 are deformed of the flexible member 2. We investigated the effect on the
[0093]
First, regarding the position of the deepest portion in the horizontal direction, the thickness of the flexible member 2 was investigated at 12 μm and an applied voltage of 25V. Further, the radius of curvature R of the spherical surface provided so as to generate specific aberrations up to the radius r2 was set to R = 100 mm and r4 / r5 = 2.8 / 3.0 mm.
[0094]
The case where r3 = 1.2, 1.3, 1.4, 1.42, and 1.5 mm was evaluated as an example as the radius r3 of the deepest part. The cross-sectional shape and calculation result are shown in FIGS.
[0095]
According to the calculation results shown in FIGS. 21 to 25, the position of r3 = 1.4 mm is the middle point of the one-side cross section of the curved surface portion 3, but if the position of r3 is slightly closer to the r4 side than that point, the flexible member 2 is less likely to be deformed (see FIGS. 24 and 25), and conversely, the position of r3 is best at the midpoint (see FIG. 23), but even if it becomes closer to the center point, it is a flexible member 2 was not extremely difficult to deform (see FIGS. 21 and 22).
[0096]
This is considered to be due to the fact that the deformation of the flexible member 2 is symmetric with respect to the deepest portion and is easily deformed, and that the gap between the flexible member 2 and the curved surface portion 3 is reduced in the entire curved surface portion 3.
[0097]
In order to satisfy the above conditions, it is necessary that the radius r4 ≧ 2 × r2 is satisfied. However, if r4 <2 × r2, the radius r3 of the deepest portion is preferably provided on the r2 side as much as possible.
[0098]
Next, the influence of the deepest portion of the curved surface portion 3, that is, the vertical position of the portion having the radius r3, that is, the depth of the curved surface portion 3, on the deformation of the flexible member 2 was examined.
[0099]
Here, if the depth of the deepest part is too deep, the gap becomes large, which is disadvantageous because static electricity generated at a constant voltage is weakened. On the other hand, if it is too shallow, it will be impossible to bend the flexible member 2, and it is expected that poor contact will occur near r1. Therefore, it was examined which position the vertical position of the portion of the radius r3 is effective for the deformation of the flexible member 2.
[0100]
FIG. 26 shows the evaluation result of the deformation state of the flexible member 2 when the deepest part depth d3 is 6.5 μm. The applied voltage is the same as in FIG. In FIG. 27, the depth d3 of the deepest part is 7 μm, and other than that, the comparison is performed under the same conditions as FIG. According to the evaluation results of FIG. 26 and FIG. 27, the area around which a specific aberration should be generated for correcting aberrations slightly by the bending reaction force of the flexible member 2, that is, around the area within the radius r1, has already been in contact. It turns out that it is difficult to do.
[0101]
28 and 29 show the case where the deepest part is deep (d3 = 7.5 μm and d3 = 8 μm, respectively). The applied voltage was 21V. It can be seen that there is an adverse effect on the deformation of the flexible member 2 from a depth of about 8 μm corresponding to FIG.
[0102]
Here, since the depth of the deepest part itself varies depending on the curvature of the curved surface part up to the radius r2 and the NA, the end of the spherical surface for aberration correction, that is, the relative position between the vertical position of the radius r1 and the vertical position of the deepest part. In terms of the relationship, it has been found that the difference in the distance in the depth direction between the radius r1 portion and the r3 portion is preferably between 0.5 and 1.5 μm.
[0103]
Note that the difference between the present invention and the deformable mirror previously proposed by the applicant of the present application is largely due to the shape of the central portion of the curved surface portion and the difference in depth, particularly the difference in depth. For example, in the case of the previously proposed deformable mirror, since the depth of the curved surface portion is 1 μm or less, in the calculation of electrostatic force, the distance between the upper and lower electrode layers = the film thickness of the insulating layer, Even if the gap between the electrode portions is ignored, the result does not change so much. However, in the case of the present invention, the gap between the flexible member and the curved surface portion cannot be ignored. The calculation is performed by a simulation method that takes into account the fact that the electrostatic force is fluctuated successively due to deformation.
[0104]
【The invention's effect】
According to the above deformable mirror of the present invention, the flexible member, that is, the reflecting surface formed on the surface thereof is deformed following the cross-sectional shape of the curved surface portion of the reference surface substrate. For this reason, if the shape accuracy of the curved surface portion is kept high, the deformation accuracy of the reflecting surface can be determined with high accuracy, so that aberration compensation can be performed with high accuracy.
[0105]
The deformable mirror targeted by the present invention is mounted on, for example, a recording / reproducing apparatus. In this case, the region requiring aberration compensation is a region corresponding to the NA of the objective lens from the central portion of the flexible member. It suffices that such a region is a region within the radius r1. Therefore, it is possible to set the area outside the radius r1 to an arbitrary shape in which the flexible member is easily deformed.
[0106]
Therefore, in the present invention, the cross-sectional shape of the curved surface portion is formed such that the portion from the center portion to the radius r2 is a spherical surface, and the portion from the radius r1 to the radius r3 is represented by a function f (r) of r, and the radius r1 To radius r3 Inflection point There is one Inflection point The portion from the radius r3 to the radius r3 is composed of a curve satisfying f ″ (r)> 0, and the flexible member is deformed smoothly without excessive stress, and energy for deformation can be reduced. .
[0107]
Therefore, according to the present invention, the energy required for elastic deformation, that is, the driving voltage can be reduced. As a result, the running cost of the recording / reproducing apparatus can be reduced. Further, since the driving voltage is lowered, the possibility of dielectric breakdown of the insulating film is reduced, so that the reliability of the device can be improved.
[0108]
In addition, the shape of the part that must generate a specific aberration and compensate for the aberration is spherical, making it less sensitive to misalignment during assembly, making assembly easier and contributing to cost reduction. it can.
[0109]
In particular, according to the deformable mirror described in claim 2, since the curved surface portion is configured so as to satisfy the condition of r5-r4 ≦ 0.2 mm, the device configuration can be further downsized or the driving voltage can be further reduced. Can be planned.
[0110]
In particular, according to the deformable mirror according to claim 3, a portion from the radius r3 to the radius r4 of the reference surface substrate is represented by a function g (r) of r, and between the radius r3 and the radius r4. Inflection point There is one, Inflection point Since the portion from the radius r4 to the radius r4 is formed by a curve satisfying g ″ (r) <0, the gap between the flexible member and the lower electrode layer becomes smaller at the peripheral portion of the curved surface portion, and the voltage is relatively low. However, a relatively large electrostatic force can be generated, which is preferable from the viewpoint of lowering the voltage.
[0111]
In particular, according to the deformable mirror described in claim 4, since the portion from the center portion of the reference surface substrate to the radius r5 has a differentiable sectional curve, stress concentration at the corner portion is eliminated. Furthermore, since the adhesion between the flexible member and the reference surface substrate is improved, it is preferable from the viewpoint of transmission of electrostatic force.
[0112]
Further, in particular, according to the deformable mirror according to claim 5, the portion from the center portion of the reference surface substrate to the radius r4 satisfies the condition of the following formula (2):
r4 ≧ 2 × r2 (2)
In addition, since r3 is located at the middle point or closer to the center than the middle point, the flexible member is more easily deformed, so that the energy required for elastic deformation, that is, the driving voltage is further reduced. There are advantages you can do.
[0113]
In particular, according to the deformable mirror of claim 6, the difference d3-d1 between the depth d1 of the radius r1 portion of the reference surface substrate and the depth d3 of the radius r3 portion corresponding to the deepest portion is: Condition of the following formula (3)
0.5 μm ≦ d3-d1 ≦ 1.5 μm (3)
Therefore, there is an advantage that the electrostatic force and the reaction force due to the bending of the flexible member can be balanced, and the energy required for elastic deformation, that is, the driving voltage can be further reduced.
[Brief description of the drawings]
FIG. 1 is a plan view of a deformable mirror showing Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view taken along line XX of FIG. 1, showing Embodiment 1 of the present invention.
FIG. 3 is a bottom view of a deformable mirror showing Embodiment 1 of the present invention.
FIG. 4 is an exploded perspective view of a deformable mirror, showing Embodiment 1 of the present invention.
FIG. 5 is a block diagram showing a configuration of a recording / reproducing apparatus equipped with a deformable mirror according to the first embodiment of the present invention.
FIG. 6 is a schematic diagram showing the detection principle of the thickness detection device according to the first embodiment of the present invention.
FIG. 7 is a diagram illustrating a cross-sectional shape of a curved surface portion of a reference surface substrate for performing aberration compensation obtained by simulation, according to the first embodiment of the present invention.
8A is a cross-sectional view of an undeformable state showing an example of a deformable mirror, and FIG. 8B is a cross-sectional view of the deformable mirror of FIG.
9A to 9C are cross-sectional views illustrating examples of a reference surface substrate having various curved surface portions according to the first embodiment of the present invention.
10A and 10B show Embodiment 1 of the present invention, FIG. 10A is a diagram showing an evaluation result when a flexible member is deformed using the reference surface substrate of FIG. 9A, and FIG. The figure which shows the evaluation result at the time of deforming a flexible member using the reference surface board | substrate of 9 (b), (c) is deforming a flexible member using the reference surface board | substrate of FIG.9 (c). FIG.
FIG. 11 shows the first embodiment of the present invention on one side Inflection point Sectional drawing of the reference surface board | substrate which has a curved surface part which consists of a curved surface which has two.
12 is a diagram showing an evaluation result when a flexible member is deformed using the reference surface substrate of FIG.
FIG. 13 shows a flexible member when the horizontal dimension ratio of the curved surface portion (from the center portion to the radius r4) and the flat surface portion (from the radius r4 to the radius r5) is changed according to the second embodiment of the present invention. The figure which shows the evaluation result for investigating the influence which it has on a deformation | transformation.
FIG. 14 shows a flexible member according to a second embodiment of the present invention when the horizontal dimension ratio of the curved surface portion (from the center portion to the radius r4) and the flat surface portion (from the radius r4 to the radius r5) is changed. The figure which shows the evaluation result for investigating the influence which it has on a deformation | transformation.
FIG. 15 shows a flexible member according to a second embodiment of the present invention when the horizontal dimension ratio of the curved surface portion (from the center portion to the radius r4) and the flat surface portion (from the radius r4 to the radius r5) is changed. The figure which shows the evaluation result for investigating the influence which it has on a deformation | transformation.
FIG. 16 shows a flexible member when the horizontal dimension ratio of the curved surface portion (from the center portion to the radius r4) and the flat surface portion (from the radius r4 to the radius r5) is changed according to the second embodiment of the present invention. The figure which shows the evaluation result for investigating the influence which it has on a deformation | transformation.
FIG. 17 is a diagram showing an evaluation result for investigating the influence of the cross-sectional curve shape from the deepest part of the curved surface part to the transition part to the flat surface part on the deformation of the flexible member according to the third embodiment of the present invention. .
FIG. 18 is a diagram showing an evaluation result for investigating the influence of the cross-sectional curve shape from the deepest part of the curved surface part to the transition part to the flat part on the deformation of the flexible member, showing Embodiment 3 of the present invention; .
FIG. 19 is a diagram showing an evaluation result for investigating the influence of the cross-sectional curve shape from the deepest part of the curved surface part to the transition part to the flat surface part on the deformation of the flexible member according to the third embodiment of the present invention. .
FIG. 20 is a diagram showing an evaluation result for investigating the influence of the cross-sectional curve shape from the deepest part of the curved surface part to the transition part to the flat part on the deformation of the flexible member, showing Embodiment 3 of the present invention; .
FIG. 21 is a diagram illustrating an evaluation result for investigating the influence of the position of the deepest portion of the curved surface portion on the deformation of the flexible member according to the fourth embodiment of the present invention.
FIG. 22 is a diagram illustrating an evaluation result for investigating the influence of the position of the deepest portion of the curved surface portion on the deformation of the flexible member according to the fourth embodiment of the present invention.
FIG. 23 is a diagram illustrating an evaluation result for investigating the influence of the position of the deepest portion of the curved surface portion on the deformation of the flexible member according to the fourth embodiment of the present invention.
FIG. 24 is a diagram showing an evaluation result for investigating the influence of the position of the deepest portion of the curved surface portion on the deformation of the flexible member according to the fourth embodiment of the present invention.
FIG. 25 is a diagram illustrating an evaluation result for investigating the influence of the position of the deepest portion of the curved surface portion on the deformation of the flexible member according to the fourth embodiment of the present invention.
FIG. 26 is a diagram illustrating an evaluation result for investigating the influence of the position of the deepest portion of the curved surface portion on the deformation of the flexible member according to the fourth embodiment of the present invention.
FIG. 27 is a diagram showing an evaluation result for investigating the influence of the position of the deepest portion of the curved surface portion on the deformation of the flexible member according to the fourth embodiment of the present invention.
FIG. 28 is a diagram illustrating an evaluation result for investigating the influence of the position of the deepest portion of the curved surface portion on the deformation of the flexible member according to the fourth embodiment of the present invention.
FIG. 29 is a diagram illustrating an evaluation result for investigating the influence of the position of the deepest portion of the curved surface portion on the deformation of the flexible member according to the fourth embodiment of the present invention.
FIG. 30 is a diagram showing a configuration of a conventional pickup.
FIG. 31 is a diagram showing a configuration of an optical pickup using a conventional deformable mirror.
FIG. 32 is a diagram showing a configuration of a conventional deformable mirror.
[Explanation of symbols]
1 Deformable mirror
2 Flexible members
3 Curved surface
6 Reference surface board
8 Upper electrode layer
9 Insulating layer
12 Lower electrode layer
34 Plane section
35 Center part
50 Silicon substrate
508 Objective lens

Claims (1)

表面に入射光を反射する反射面を有する弾性変形可能な可撓性部材と、該可撓性部材の裏面側に、該裏面と対向する形に設置され、該可撓性部材の変形を許す空間を形成するように中心部が可撓性部材側に突出した曲面部及び該曲面部の周縁部に該可撓性部材を平面性が維持された状態で支持する平面部が形成された参照面基板とを備え、該可撓性部材を該曲面部の表面に吸着させて変形させる変形可能ミラーであって、
該参照面基板の曲面部表面には、該可撓性部材が変形する際に必ず接触する第1領域と、該第1領域から曲面部の最深部までの第2領域と、該最深部から該周縁部の該平面部へ遷移する第3領域とが設けられており、
該曲面部の該参照面基板の中心部に対する片側断面の表面形状は、
該曲面部の中心部から該最深部までが、半径rに対する深さを示す関数f(r)で表され、該曲面部の中心から最深部までの間であって該第1領域外に変曲点が1つ存在し、該変曲点から曲面の最深部がf”(r)>0となる曲線で形成されている変形可能ミラー。
An elastically deformable flexible member having a reflecting surface that reflects incident light on the surface, and the back surface of the flexible member are installed in a shape facing the back surface, allowing deformation of the flexible member. A curved surface portion whose central portion protrudes toward the flexible member so as to form a space, and a flat surface portion that supports the flexible member in a state in which the flatness is maintained are formed at the peripheral portion of the curved surface portion. A deformable mirror comprising a surface substrate, and deforming the flexible member by adsorbing to the surface of the curved surface portion,
The curved surface portion of the reference surface substrate has a first region that always comes into contact when the flexible member is deformed, a second region from the first region to the deepest portion of the curved surface portion, and the deepest portion. A third region transitioning to the flat portion of the peripheral edge portion is provided,
The surface shape of the one-side cross-section with respect to the center portion of the reference surface substrate of the curved surface portion is
The function from the center of the curved surface portion to the deepest portion is expressed by a function f (r) indicating the depth with respect to the radius r, and is between the center of the curved surface portion and the deepest portion and changes outside the first region. deformable mirror inflection point exists one, the deepest portion of the curved surface from the inflection point is formed by the curve becomes f "(r)> 0.
JP2002298083A 2002-10-10 2002-10-10 Deformable mirror Expired - Fee Related JP3775672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298083A JP3775672B2 (en) 2002-10-10 2002-10-10 Deformable mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298083A JP3775672B2 (en) 2002-10-10 2002-10-10 Deformable mirror

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP06519697A Division JP3552873B2 (en) 1997-03-18 1997-03-18 Deformable mirror

Publications (2)

Publication Number Publication Date
JP2003139928A JP2003139928A (en) 2003-05-14
JP3775672B2 true JP3775672B2 (en) 2006-05-17

Family

ID=19197273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298083A Expired - Fee Related JP3775672B2 (en) 2002-10-10 2002-10-10 Deformable mirror

Country Status (1)

Country Link
JP (1) JP3775672B2 (en)

Also Published As

Publication number Publication date
JP2003139928A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
US5719846A (en) Deformable mirror and method for fabricating the same and apparatus using a deformable mirror
US5880896A (en) Deformable mirror
KR100442905B1 (en) An objective lens assembly, an apparatus for assembling/adjusting an objective lens assembly, an optical head, and an optical recording/reproduction apparatus
US6741406B2 (en) Objective lens, optical pickup-device equipped with same and assembling method of same
US7874688B2 (en) Deformable mirror device, deformable mirror plate
JPH10188319A (en) Deformable mirror and optical recording and reproducing device using the same
JPH07176070A (en) Floating optical head and optical recording and reproducing device
US6490100B1 (en) Objective lens and optical head device
US6496466B1 (en) Folding mirror structure
JPH10255303A (en) Optical pickup and assembling method of objective lens for optical pickup
JP2002196208A (en) Group lens, optical head and optical recording and reproducing device
JP3775672B2 (en) Deformable mirror
JP3552873B2 (en) Deformable mirror
JP2002334475A (en) Device for correcting spherical aberration in optical head
JP2004070004A (en) Variable shape mirror, method for manufacturing the same, and optical information input/output device
JP3379184B2 (en) Floating optical head
JPH10222856A (en) Optical information recording/reproducing device
JP2007058921A (en) Optical pickup apparatus
JP3767836B2 (en) Deformable mirror and manufacturing method thereof
JP2004109478A (en) Wave front aberration correcting mirror and optical pickup
JP4266532B2 (en) Apparatus and method for detecting tilt of optical disk and aberration correcting mirror used therefor
JP2004079117A (en) Information recording and reproducing device
JPH11238238A (en) Optical head and optical disk device
JP2004171682A (en) Optical information recording and reproducing device
JP2003157565A (en) Correction mirror for wave front aberration and optical disk device using the mirror

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees