JP3775624B2 - Method for producing polystyrene resin sheet foam - Google Patents

Method for producing polystyrene resin sheet foam Download PDF

Info

Publication number
JP3775624B2
JP3775624B2 JP29048897A JP29048897A JP3775624B2 JP 3775624 B2 JP3775624 B2 JP 3775624B2 JP 29048897 A JP29048897 A JP 29048897A JP 29048897 A JP29048897 A JP 29048897A JP 3775624 B2 JP3775624 B2 JP 3775624B2
Authority
JP
Japan
Prior art keywords
resin
molecular weight
foam
average molecular
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29048897A
Other languages
Japanese (ja)
Other versions
JPH10182870A (en
Inventor
卓 北浜
広行 極楽
直親 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP29048897A priority Critical patent/JP3775624B2/en
Publication of JPH10182870A publication Critical patent/JPH10182870A/en
Application granted granted Critical
Publication of JP3775624B2 publication Critical patent/JP3775624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【0001】
【産業上の利用分野】
本発明は主に建築物の壁、床、屋根等の断熱材や畳芯材等として好適に使用されるポリスチレン系樹脂板状発泡体の製造方法に関するものである。
【0002】
【従来の技術】
ポリスチレン系樹脂板状発泡体は、優れた断熱性及び好適な機械的強度を有することから断熱材等の用途に幅広く用いられている。
【0003】
ポリスチレン系樹脂板状発泡体の製造方法としては、従来より種々の方法が知られているが、一般には、押出機内でポリスチレン系樹脂に発泡剤を添加して溶融混練した後、この溶融混練物からなる発泡性組成物を押出機から低圧雰囲気下に押出発泡せしめて発泡体を得るという方法が採用されている。
【0004】
上記の如きポリスチレン系樹脂板状発泡体の製造方法にあっては、気体状態でのそれ自身の熱伝導率が空気に比べて低く、また、ポリスチレン系樹脂に対する透過速度が空気に比べて極めて遅いため、得られる発泡体の経時による断熱性の低下を防止し易いという理由から、トリクロロフロロメタン、ジクロロジフロロメタン、トリクロロトリフロロエタン等の塩素化フッ素化炭化水素(以下、CFCと称する)が、発泡剤として従来より好適に用いられてきた。
【0005】
しかしながら、これらのCFCは、大気中で分解され難くオゾン層まで到達して分子中の塩素原子によりオゾン層を破壊してしまうという問題を有しているので、環境保護の観点から、近年、その使用が制限されている。このためポリスチレン系樹脂発泡体の製造に用いる発泡剤としては、分子中に水素原子を有し大気中で比較的分解され易いオゾン破壊係数の小さいフッ素化炭化水素(以下、HCFCと称する)又は分子中に水素原子を有し且つ塩素原子を有していないオゾン破壊係数が0のフッ素化炭化水素(以下、HFCと称する)に早急に代替移行する必要がある。
【0006】
【発明が解決しようとする課題】
ところで、前述したようなポリスチレン系樹脂板状発泡体の製造方法にあっては、低圧雰囲気下に発泡性組成物が押し出されてから発泡がはじまらなければならない。発泡性組成物が押出機のリップから押し出される前に発泡剤の分離、気化によるダイスのリップ付近内部で発泡が起こると、均一な気泡が得られないばかりか、発泡体の外観が著しく悪化し、更には押出機の運転条件も不安定になり、良好な発泡体を得ることができなくなってしまう。このため、使用する発泡剤の種類や量によってもその値は異なるが、押出機内のリップ付近における樹脂の圧力は、発泡剤の分離、気化が起こらないようにするために一定以上の高い圧力に維持する必要がある。
【0007】
しかしながら、前記HCFCやHFCは、発泡剤として従来より用いられてきたCFCに比べ、ポリスチレン系樹脂との相溶性や均一分散性に劣るものが多く、HCFCやHFCを発泡剤として用いると、押出機内のリップ付近で原料樹脂と発泡剤とが分離して、通常使用されるフラットダイスのリップ付近内部で発泡が起こり易くなってしまう。そして、このような傾向は発泡剤の使用量を多くしたときに顕著となり、HCFCやHFCを発泡剤として用いた場合には、発泡剤の使用量を多くすると押出機内のリップ付近における樹脂の圧力を高く維持することが困難となり、低密度のポリスチレン系樹脂発泡体を得るのに必要十分な量の発泡剤を添加することができないので、密度の低い発泡体が得られ難いという問題があった。
【0008】
一方これに対して、押出温度を低くして発泡性組成物の粘度を上げ、これによって押出機内のリップ付近の樹脂圧力を高く保つことで、発泡剤の分離、気化を防ぐことが一応可能である。
【0009】
しかしながら、この場合には、発泡性組成物の温度が低くなっているので、その温度が押出発泡後短時間で原料樹脂の熱変形温度を下回ってしまい、発泡開始から終了までの時間が短く、発泡剤の膨張力が残っている間に発泡性組成物の温度が原料樹脂の熱変形温度未満になってしまう。このため、発泡剤が十分に気化する前に発泡が終了する温度へ到達してしまい、発泡剤の膨張力を十分に生かし切れずに目的とする密度になるまで十分に発泡した低密度の発泡体が得られないという問題がある。
【0010】
また、MFRの小さな原料樹脂を用いれば、押出温度を下げることなく発泡性組成物の粘度を高くして押出機内のリップ付近の樹脂圧力を高く維持することができるようにも思われる。
【0011】
しかしながら、この場合には、原料樹脂のMFRを極端に小さくしなければならず、その結果、原料樹脂の流動性が損なわれてリップから押し出される樹脂の流れに乱れが生じてしまうため、発泡体の発泡成形性が悪く、特に、発泡体を平滑な板状に成形するのが困難となってしまうという問題がある。
【0012】
本発明者らは上記知見に鑑み鋭意研究を重ねたところ、原料樹脂のMFRを発泡体の発泡成形性が損なわれない範囲としたまま押出機内のリップ付近での樹脂の圧力を高くするために、原料樹脂のz平均分子量(Mz)を5×105 以上にして該原料樹脂中に高分子量成分が多く含まれるようにするとともに、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を3.2以上として原料樹脂の分子量分布を広くし、低分子量の成分もある程度以上含まれるようにして低分子量成分の存在により原料樹脂の流動性を確保することで、HCFCやHFCを発泡剤として用いた場合であっても低密度のポリスチレン系樹脂板状発泡体を良好に製造することができることを見出した。
【0013】
【課題を解決するための手段】
即ち、本発明は、(1)ポリスチレン系樹脂からなる原料樹脂と発泡剤とを溶融混練してなる発泡性組成物をフラットダイスから押出し発泡させて、該ダイスリップ先端に接続する成形具を通過させ、厚み20〜100mm、密度20〜40kg/m 3 ポリスチレン系樹脂板状発泡体を製造するにあたり、上記原料樹脂のMFR1〜10g/10分、z平均分子量5×105以上、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)3.2以上であることを特徴とするポリスチレン系樹脂板状発泡体の製造方法、(2)z平均分子量が6×105以上のポリスチレン系樹脂を少なくとも1種以上含むポリスチレン系樹脂混合物を原料樹脂とする上記(1)記載のポリスチレン系樹脂板状発泡体の製造方法、を要旨とする。
【0014】
【発明の実施の形態】
本発明において原料樹脂として使用するポリスチレン系樹脂としては、例えばスチレンホモポリマーや、スチレンを主成分とするスチレン−無水マレイン酸共重合体、スチレン−ブタジエン共重合体、スチレン−アクリロニトリル共重合体、スチレン−アクリロニトリル−ブタジエン共重合体、耐衝撃性ポリスチレン等を挙げることができる。上記スチレン系共重合体におけるスチレン成分含有量は好ましくは70重量%以上である。
【0015】
本発明では、原料樹脂としてMFRが1〜10g/10分、好ましくは1〜3g/10分のものを用いる。但し、本発明でいうMFRとは、ASTM D−1238の条件Gにより測定されたものをいう。
【0016】
MFRが上記範囲内にある原料樹脂を用いると、成形性に優れるとともに、機械的強度にも優れた発泡体を得ることができる傾向にあるが、原料樹脂のMFRが上記範囲に満たないとその流動性が著しく低下してしまうため、押出機のリップから押し出される樹脂の流れに乱れが生じ、得られる発泡体の表面が波打つ等して成形性が損なわれる傾向があり、発泡体を平滑な板状とする場合には好ましくない。また、上記範囲を超える場合には、リップ付近の樹脂圧力が著しく低下するばかりか、得られる発泡体の機械的強度や耐熱性が低下してしまう虞がある。
【0017】
また、本発明で用いる原料樹脂のz平均分子量は5×105 以上であり、好ましくは6×105 以上である。z平均分子量が5×105 以上のものは、原料樹脂中に高分子量の成分が多く含まれており、発泡成形の際の押出機内のリップ付近における樹脂の圧力を高く維持することができる。原料樹脂のz平均分子量が5×105 に満たない場合には、原料樹脂中に含まれる高分子量成分が少なく押出機内のリップ付近の樹脂圧力が低下してしまうため、リップ付近で内部発泡が起こってしまい良好な発泡体が得られない。
【0018】
本発明では原料樹脂のz平均分子量を5×105 以上(好ましくは6×105 以上)とするとともに、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を3.2以上とする。重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を3.2以上とすることで、原料樹脂の分子量分布を広くして原料樹脂中に低分子量の成分もある程度以上含まれるようにして、原料樹脂のMFRを発泡体の発泡成形性が損なわれない範囲としたまま、低分子量成分の存在により原料樹脂の発泡時の流動性を確保することができる。重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が3.2に満たないと、低分子量成分の含有量が少なく原料樹脂の流動性が著しく低下してしまうため、リップから押し出される樹脂の流れに乱れが生じて発泡体の成形性が損なわれ、発泡体の表面が波打つ等してしまうため、発泡体を平滑な板状に成形することが困難となってしまう。
【0019】
本発明において、z平均分子量、重量平均分子量及び数平均分子量は、例えば、原料樹脂10mgをテトラヒドロフラン10mlに溶解し、これを分別カラムに通して分子量を測定する、いわゆるゲルパーミエーションクロマトグラフィー法により求めるものとする。詳しくは、上記分子量は、島津製作所社製GPC−LC3A型(HSGシリーズ充填カラムHSG−60、HSG−50、HSG−40を直列に連結したもの)と島津製作所社製示差屈折計検出機RID−4型を使用し、カラム温度:室温、流速:1.7ml/分の測定条件にて測定される値を採用する。
【0020】
また、MFR、z平均分子量及び重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が本発明の範囲内となるポリスチレン系樹脂は、例えば、連続重合法において有機過酸化物を複数段に分けて適宜量添加し、ゲルが発生しない範囲でスチレンモノマーを重合して本発明において特定するものを適宜調製することができる。
【0021】
また、本発明では、2種以上のポリスチレン系樹脂からなるポリスチレン系樹脂混合物を原料樹脂として用いても良く、2種以上のポリスチレン系樹脂を混合することによって、MFR、z平均分子量及び重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が、本発明の範囲内のものとなるように原料樹脂を調製することもできる。
【0022】
2種以上のポリスチレン系樹脂を混合して原料樹脂を調製する場合には、混合して用いる少なくとも1種以上のポリスチレン系樹脂のz平均分子量が6×105 以上であるのが好ましい。混合される少なくとも1種以上のポリスチレン系樹脂のz平均分子量を6×105 以上とすることにより、他の成分樹脂のz平均分子量が小さくても、原料樹脂のz平均分子量を容易に本発明の範囲内とすることができ、原料樹脂の分子量分布を広くするために、他の成分樹脂として低分子量成分を多く含むものを混合する場合に特に好ましい。
【0023】
本発明では、必要に応じて上記原料樹脂に気泡調整剤、難燃剤、流動性向上剤、着色剤、熱安定剤、充填剤等の各種添加剤を、本発明の所期の目的を妨げない範囲で添加することもできる。
【0024】
本発明では、ポリスチレン系樹脂に対する透過速度が空気に比べて極めて遅いことから、得られる発泡体の経時による断熱性能の低下を防止し易く、しかもオゾン層を破壊する虞がないか或いは極めて少ない等の理由で、発泡剤としてはHCFC又はHFCが好適に用いられる。
【0025】
本発明で用いるHCFCの具体例としては、1−クロロ−1,1−ジフロロエタン(HCFC−142b)、1,1−ジクロロ−1−フロロエタン(HCFC−141b)、1−クロロ−1,2,2,2−テトラフロロエタン(HCFC−124)、1,1−ジクロロ−2,2,2−トリフロロエタン(HCFC−123)、クロロジフロロメタン(HCFC−22)等を挙げることができ、HFCの具体例としては、1,1,1,2−テトラフロロエタン(HFC−134a)、1,1−ジフロロエタン(HFC−152a)、1,1,1−トリフロロエタン(HFC−143)、トリフロロメタン(HFC−23)、ジフロロメタン(HFC−32)、1,1,1,2,2−ペンタフロロエタン(HFC−125)等が挙げられ、これらは混合して用いても良い。
【0026】
本発明において原料樹脂に添加する発泡剤の使用量は、得ようとする発泡体の密度により適宜選択されるが、一般には、密度20〜40kg/m3 の発泡体を得るためには原料樹脂1kgあたり0.8〜2.0モルが好ましい。
【0027】
また、本発明では、発泡体の断熱性を阻害しない程度に、補助成分として上記したようなHFCやHCFCを除くその他の発泡剤を、HFC及び/又はHCFCに混合して用いることができる。このような発泡剤としては、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン等の脂肪族炭化水素、塩化メチル、塩化エチル、塩化エチレン等の塩素化炭化水素、各種アルコール、二酸化炭素等を単独で又は2種以上を併用したものが挙げられる。尚、HFC及び/又はHCFCを発泡剤全量に対して30〜70モル%の範囲で使用することが、発泡倍率向上効果、安全性、経済性の面で好ましい。特に、(a)HFC及び/又はHCFCを30〜70モル%、(b)塩素化炭化水素を0〜70モル%、(c)脂肪族炭化水素を0〜30モル%混合(但し、上記(a)、(b)及び(c)の合計が100モル%で、(b)と(c)の合計が30〜70モル%となるように混合する。)して使用することが好ましい。また、補助成分として例示したHFCやHCFCを除くその他の発泡剤だけを使用しても本発明における特定のポリスチレン系樹脂を使用することにより、従来のものに比べてより低密度の板状発泡体を得ることができる。
【0028】
本発明では、押出機内で原料樹脂に発泡剤を添加してこれらを溶融混練し、次いでこの溶融混練物からなる発泡性組成物を押出機内よりも低圧の雰囲気に押し出して発泡せしめるが、この発泡性組成物を押出機のリップから押し出す押出温度は、発泡性組成物が発泡に適した溶融粘度を示す範囲内の温度である必要がある。発泡に適した粘度を示す押出温度は、使用されるポリスチレン系樹脂の種類、流動性向上剤の添加の有無やその種類、添加量、更に発泡剤の添加量や発泡剤の成分組成等によっても異なるが、一般には110〜140℃である。
【0029】
本発明において発泡剤として好適に用いられるHFCやHCFCは、従来より発泡剤として用いられてきたCFCに比較してポリスチレン系樹脂との相溶性や均一分散性に劣り、得られる発泡体の低密度化を図り難いが、本発明によれば、原料樹脂のMFRを1〜10g/10分、z平均分子量を5×105以上、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を3.2以上としたことにより、HFCやHCFCを発泡剤として用いても、曲げ強度等の機械的強度の高い、断熱性に優れた低密度のポリスチレン系樹脂板状発泡体を良好に製造することができ、本発明は、特に厚み20〜100mm、密度20〜40kg/m3の低密度のポリスチレン系樹脂板状発泡体を製造する方法である。
【0030】
【実施例】
次に、具体的な実施例を挙げて本発明を更に詳細に説明する。
【0031】
実施例1
MFR2.5g/10分、z平均分子量6.64×105 、Mw/Mn=3.67のポリスチレン樹脂を原料樹脂として用い、この原料樹脂100重量部に対して、気泡調整剤としてタルクを0.3重量部、難燃剤としてヘキサブロモシクロドデカンを2重量部、更に熱安定剤を混合した。尚、難燃剤と熱安定剤は両者を含むマスターバッチにて混合した。
【0032】
次に、口径65mm、90mm、150mmのシリンダーが順次連結された押出機に、口径65mmのシリンダー側から上記混合物を供給するとともに、1,1,1,2−テトラフロロエタン、塩化メチル及びイソブタンを5:4:1のモル比で混合した発泡剤を、原料樹脂1kgあたり1.15モルの割合で圧入して溶融混練し、この発泡性組成物を押出機内を移送しながら表1に示す押出温度に調整した後にリップから押し出して発泡体を成形した。このときの押出機内のリップ付近の樹脂圧力を表1に併せて示す。
【0033】
尚、リップとしては、先端に幅115mm、間隙1mmの樹脂排出口を備えたフラットダイスを使用した。また、リップの先端には入口寸法が樹脂排出口より若干大きく、出口寸法が厚さ26mm、幅280mmであり、入口付近から出口に向かって緩やかに拡大した後、平行な構造を有するフッ素樹脂製の成形具を接続しておいた。
【0034】
得られた発泡体の密度、曲げ強度、及び発泡成形性の評価を表1に併せて示す。曲げ強度は以下の方法で測定した。
【0035】
〔曲げ強度の測定〕
曲げ強度は試料幅を50mm、支点間距離を150mmとし、JIS−A9511に準拠して求めた。
【0036】
実施例2
z平均分子量7.78×105 、Mw/Mn=3.08のポリスチレン樹脂と、z平均分子量4.78×105 、Mw/Mn=3.61のポリスチレン樹脂を、50対50の重量比で混合したものを原料樹脂として用いた以外は、実施例1と同様にして発泡体を成形した。上記原料樹脂のMFRは2.0g/10分、z平均分子量は6.83×105 であり、Mw/Mnは3.54であった。
【0037】
実施例3
z平均分子量7.78×105 、Mw/Mn=3.08のポリスチレン樹脂と、z平均分子量4.78×105 、Mw/Mn=3.61のポリスチレン樹脂を、40対60の重量比で混合したものを原料樹脂として用いた以外は、実施例1と同様にして発泡体を成形した。上記原料樹脂のMFRは2.3g/10分、z平均分子量は6.46×105 、Mw/Mnは3.25であった。
【0038】
実施例4
z平均分子量7.78×105 、Mw/Mn=3.08のポリスチレン樹脂と、z平均分子量4.78×105 、Mw/Mn=3.61のポリスチレン樹脂を、60対40の重量比で混合したものを原料樹脂として用いた以外は、実施例1と同様にして発泡体を成形した。上記原料樹脂のMFRは1.7g/10分、z平均分子量は7.05×105 、Mw/Mnは3.31であった。
【0039】
比較例1
MFR1.7g/10分、z平均分子量5.87×105 、Mw/Mn=3.02のポリスチレン樹脂を原料樹脂として用いた以外は、実施例1と同様にして発泡体を成形した。
【0040】
比較例2
MFR4.0g/10分、z平均分子量4.78×105 、Mw/Mn=3.61のポリスチレン樹脂を原料樹脂として用いた以外は、実施例1と同様にして発泡体を成形した。
【0041】
比較例3
MFR0.6g/10分、z平均分子量7.78×105 、Mw/Mn=3.08のポリスチレン樹脂を原料樹脂として用いた以外は、実施例1と同様にして発泡体を成形した。
【0042】
【表1】

Figure 0003775624
※1:ダイスのリップ付近内部で発泡が起こり、良好な発泡体が得られなかった。
※2:発泡成形が困難であり、板状の発泡体を得ることができなかった。
【0043】
図1は押出温度とリップ付近の樹脂圧力との関係をグラフに示したものであり、図2はリップ付近の樹脂圧力と得られた発泡体の密度との関係をグラフに示したものである。また、上記実施例及び比較例では、リップ付近の樹脂圧力が45kg/cm2 位を境にこれよりも低くなると、ダイスのリップ付近内部で発泡が起こり良好な発泡体が得られなかった。図1、2で、リップ付近の樹脂圧力が45kg/cm2 よりも低い部分を発泡不可領域として斜線で示し、それ以外の部分を発泡可能領域として示した。
【0044】
図1からも判るように、同じ押出温度では実施例の方が比較例よりもリップ付近の樹脂圧力を高く維持できる。よって、比較例1〜3の場合にはリップ付近の樹脂圧力が発泡不可領域内にあるような押出温度であっても、実施例1〜4ではリップ付近の樹脂圧力が発泡可能領域内にあり(図1をみてみると、例えば押出温度が124℃のとき、比較例1ではリップ付近の樹脂圧力が発泡不可領域内にあるが、実施例1〜4では全てリップ付近の樹脂圧力が発泡可能領域内にある)、十分に満足できる低密度の発泡体を得ることができるので、実施例1〜4では比較例1〜3の場合よりも押出温度を高くすることができる。
【0045】
また、図2からも判るように、リップ付近の樹脂圧力を押出機のダイスのリップ付近内部で発泡が起こらない限界まで低く調整した場合も、比較例1〜3の場合よりも実施例1〜4の方が低密度の発泡体を得ることができる。
【0046】
更に、図3は実施例と比較例のそれぞれにおいて得られた発泡体の曲げ強度と密度との関係をグラフに示したものであり、図3の通り実施例1〜4で得られたポリスチレン系樹脂板状発泡体は、比較例1、2で得られたものと曲げ強度を比較すると、同じ発泡体密度において実施例1〜4で得られたものの方が優れることが判る。
【0047】
このように、本発明によれば低密度のポリスチレン系樹脂板状発泡体を得るための押出温度やリップ付近の樹脂圧力等の成形条件が広くなり、低密度のポリスチレン系樹脂板状発泡体を良好に製造することがでる。
【0048】
【発明の効果】
以上説明したように、本発明によれば、原料樹脂のMFRを1〜10g/10分、z平均分子量を5×105 以上、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を3.2以上としたことにより、CFC以外の発泡剤を使用しても、曲げ強度等の機械的強度の高い、断熱性に優れた低密度のポリスチレン系樹脂板状発泡体を良好に製造することができる。
【図面の簡単な説明】
【図1】実施例及び比較例における発泡成形の際の押出温度と、リップ付近の樹脂圧力との関係を示すグラフである。
【図2】実施例及び比較例における発泡成形の際のリップ付近の樹脂圧力と、得られた発泡体の密度との関係を示すグラフである。
【図3】実施例及び比較例にて得られた発泡体の曲げ強度と、発泡体の密度との関係を示すグラフである。[0001]
[Industrial application fields]
The present invention mainly relates to a method for producing a polystyrene-based resin plate-like foam that is suitably used as a heat insulating material such as a wall, floor, or roof of a building, or a tatami core material.
[0002]
[Prior art]
Polystyrene resin plate-like foams are widely used in applications such as heat insulating materials because they have excellent heat insulating properties and suitable mechanical strength.
[0003]
Various methods are conventionally known as a method for producing a polystyrene resin plate-like foam. Generally, after adding a foaming agent to a polystyrene resin in an extruder and melt-kneading, this melt-kneaded product is used. A method is adopted in which a foam is obtained by extruding and foaming a foamable composition comprising an extruder in a low-pressure atmosphere.
[0004]
In the method for producing a polystyrene resin plate-like foam as described above, its own thermal conductivity in a gas state is lower than that of air, and the permeation rate with respect to the polystyrene resin is extremely low compared to air. For this reason, chlorinated fluorinated hydrocarbons (hereinafter referred to as CFC) such as trichlorofluoromethane, dichlorodifluoromethane, and trichlorotrifluoroethane are used because it is easy to prevent deterioration of the heat insulation properties over time of the obtained foam. In the past, it has been suitably used as a foaming agent.
[0005]
However, these CFCs have a problem that they are not easily decomposed in the atmosphere and reach the ozone layer and destroy the ozone layer by chlorine atoms in the molecule. Use is restricted. For this reason, as a foaming agent used for the production of a polystyrene resin foam, a fluorinated hydrocarbon (hereinafter referred to as HCFC) or a molecule having a hydrogen atom in the molecule and having a relatively small ozone destruction coefficient that is relatively easily decomposed in the atmosphere. It is necessary to immediately replace the fluorinated hydrocarbon (hereinafter referred to as HFC) having an ozone depletion coefficient of 0 having no hydrogen atoms and no hydrogen atoms.
[0006]
[Problems to be solved by the invention]
By the way, in the manufacturing method of the polystyrene resin plate-like foam as described above, foaming must start after the foamable composition is extruded in a low-pressure atmosphere. If foaming occurs inside the vicinity of the lip of the die due to separation and vaporization of the foaming agent before the foamable composition is extruded from the lip of the extruder, not only uniform bubbles can be obtained, but the appearance of the foam is significantly deteriorated. In addition, the operating conditions of the extruder become unstable, and a good foam cannot be obtained. For this reason, although the value varies depending on the type and amount of the foaming agent used, the pressure of the resin near the lip in the extruder is set to a pressure higher than a certain level in order to prevent separation and vaporization of the foaming agent. Need to be maintained.
[0007]
However, the HCFC and HFC are often inferior in compatibility and uniform dispersibility with polystyrene resins compared to CFCs conventionally used as foaming agents. When HCFC or HFC is used as a foaming agent, The raw material resin and the foaming agent are separated in the vicinity of the lip, and foaming is likely to occur in the vicinity of the lip of the flat die usually used. Such a tendency becomes prominent when the amount of foaming agent used is increased. When HCFC or HFC is used as a foaming agent, the pressure of the resin near the lip in the extruder increases when the amount of foaming agent used is increased. It is difficult to maintain a high density, and it is difficult to obtain a foam having a low density because it is impossible to add a sufficient amount of foaming agent to obtain a low-density polystyrene resin foam. .
[0008]
On the other hand, by lowering the extrusion temperature to increase the viscosity of the foamable composition, and thereby keeping the resin pressure near the lip in the extruder high, it is possible to prevent separation and vaporization of the foaming agent. is there.
[0009]
However, in this case, since the temperature of the foamable composition is low, the temperature falls below the thermal deformation temperature of the raw material resin in a short time after extrusion foaming, and the time from the start to the end of foaming is short, While the expansion force of the foaming agent remains, the temperature of the foamable composition becomes lower than the heat deformation temperature of the raw material resin. For this reason, it reaches the temperature at which foaming is completed before the foaming agent is sufficiently vaporized, and the low density foaming is sufficiently foamed until the desired density is reached without fully utilizing the expansion force of the foaming agent. There is a problem that the body cannot be obtained.
[0010]
Also, if a raw material resin having a small MFR is used, it seems that the viscosity of the foamable composition can be increased and the resin pressure near the lip in the extruder can be maintained high without lowering the extrusion temperature.
[0011]
However, in this case, the MFR of the raw material resin must be made extremely small. As a result, the flowability of the raw material resin is impaired and the flow of the resin extruded from the lip is disturbed. There is a problem that it is difficult to form a foam into a smooth plate shape.
[0012]
In order to increase the pressure of the resin in the vicinity of the lip in the extruder while keeping the MFR of the raw material in a range where the foam moldability of the foam is not impaired, the present inventors have made extensive studies in view of the above findings. The z-average molecular weight (Mz) of the raw material resin is set to 5 × 10 5 or more so that a high molecular weight component is contained in the raw material resin, and the weight average molecular weight (Mw) and the number average molecular weight (Mn) By increasing the molecular weight distribution of the raw resin with a ratio (Mw / Mn) of 3.2 or higher and including a low molecular weight component to a certain extent, the fluidity of the raw resin is ensured by the presence of the low molecular weight component. It has been found that even when HCFC or HFC is used as a foaming agent, a low-density polystyrene resin plate-like foam can be produced satisfactorily.
[0013]
[Means for Solving the Problems]
That is, the present invention is (1) a foamable composition obtained by melting and kneading a raw material resin made of polystyrene resin and a foaming agent is extruded from a flat die, foamed, and passed through a molding tool connected to the tip of the die slip. In producing a polystyrene-based resin plate-like foam having a thickness of 20 to 100 mm and a density of 20 to 40 kg / m 3 , the MFR of the raw material resin is 1 to 10 g / 10 minutes, the z-average molecular weight is 5 × 10 5 or more, method for producing a polystyrene resin plate foam, wherein the ratio of the weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw / Mn) is 3.2 or more, (2) z-average molecular weight The manufacturing method of the polystyrene resin plate-like foam according to the above (1), wherein the raw material resin is a polystyrene resin mixture containing at least one polystyrene resin of 6 × 10 5 or more. The
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the polystyrene resin used as a raw material resin in the present invention include styrene homopolymers, styrene-maleic anhydride copolymers, styrene-butadiene copolymers, styrene-acrylonitrile copolymers, styrenes mainly composed of styrene. -An acrylonitrile- butadiene copolymer, an impact-resistant polystyrene, etc. can be mentioned. The styrene component content in the styrene copolymer is preferably 70% by weight or more.
[0015]
In the present invention, a material resin having an MFR of 1 to 10 g / 10 minutes, preferably 1 to 3 g / 10 minutes is used. However, MFR as used in the field of this invention means what was measured by the conditions D of ASTM D-1238.
[0016]
When a raw material resin having an MFR within the above range is used, a foam having excellent moldability and mechanical strength tends to be obtained. However, if the MFR of the raw material resin is not within the above range, Since the fluidity is remarkably lowered, the flow of the resin extruded from the lip of the extruder is disturbed, and the surface of the resulting foam tends to be waved, and the moldability tends to be impaired. In the case of a plate shape, it is not preferable. Moreover, when exceeding the said range, there exists a possibility that not only the resin pressure of the lip vicinity may fall remarkably, but the mechanical strength and heat resistance of the foam obtained may fall.
[0017]
The z-average molecular weight of the raw material resin used in the present invention is 5 × 10 5 or more, preferably 6 × 10 5 or more. When the z-average molecular weight is 5 × 10 5 or more, the raw material resin contains a large amount of high molecular weight components, and the pressure of the resin near the lip in the extruder during foam molding can be maintained high. If the z-average molecular weight of the raw material resin is less than 5 × 10 5 , the high molecular weight component contained in the raw material resin is small and the resin pressure near the lip in the extruder is lowered, so that internal foaming occurs near the lip. It occurs and a good foam cannot be obtained.
[0018]
In the present invention, the z-average molecular weight of the raw material resin is set to 5 × 10 5 or more (preferably 6 × 10 5 or more), and the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is set. 3.2 or higher. By setting the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) to 3.2 or more, the molecular weight distribution of the raw resin is broadened, and the low molecular weight component is also included in the raw resin to some extent. As described above, the fluidity at the time of foaming of the raw material resin can be ensured by the presence of the low molecular weight component while keeping the MFR of the raw material resin in a range where the foam moldability of the foam is not impaired. If the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is less than 3.2, the content of the low molecular weight component is small and the fluidity of the raw material resin is significantly lowered. Since the flow of the resin extruded from the lip is disturbed and the moldability of the foam is impaired and the surface of the foam is undulated, it becomes difficult to form the foam into a smooth plate shape. End up.
[0019]
In the present invention, the z-average molecular weight, the weight-average molecular weight, and the number-average molecular weight are determined, for example, by a so-called gel permeation chromatography method in which 10 mg of raw material resin is dissolved in 10 ml of tetrahydrofuran and this is passed through a fractionation column to measure the molecular weight. Shall. Specifically, the molecular weight is GPC-LC3A type (manufactured by connecting HSG series packed columns HSG-60, HSG-50, HSG-40 in series) and Shimadzu Corporation differential refractometer detector RID- Type 4 is used, and column temperature: room temperature, flow rate: 1.7 ml / min.
[0020]
In addition, a polystyrene resin in which the ratio (Mw / Mn) of MFR, z-average molecular weight and weight-average molecular weight (Mw) to number-average molecular weight (Mn) falls within the scope of the present invention is, for example, an organic polymer in a continuous polymerization method. An oxide specified in the present invention can be appropriately prepared by adding an appropriate amount in a plurality of stages and polymerizing a styrene monomer within a range where no gel is generated.
[0021]
In the present invention, a polystyrene resin mixture composed of two or more kinds of polystyrene resins may be used as a raw material resin, and by mixing two or more kinds of polystyrene resins, MFR, z average molecular weight and weight average molecular weight. The raw material resin can also be prepared so that the ratio (Mw / Mn) of (Mw) to the number average molecular weight (Mn) is within the range of the present invention.
[0022]
When preparing raw material resin by mixing 2 or more types of polystyrene resin, it is preferable that the z average molecular weight of at least 1 type or more of polystyrene resin used by mixing is 6 * 10 < 5 > or more. By setting the z average molecular weight of at least one kind of polystyrene resin to be mixed to 6 × 10 5 or more, even if the z average molecular weight of other component resins is small, the z average molecular weight of the raw material resin can be easily obtained. In order to broaden the molecular weight distribution of the raw material resin, it is particularly preferable when a component containing many low molecular weight components is mixed as another component resin.
[0023]
In the present invention, various additives such as a bubble regulator, a flame retardant, a fluidity improver, a colorant, a heat stabilizer, and a filler are added to the raw material resin as necessary, so as not to interfere with the intended purpose of the present invention. It can also be added in a range.
[0024]
In the present invention, since the permeation rate with respect to the polystyrene-based resin is extremely slow compared with air, it is easy to prevent deterioration of the heat insulation performance with time of the obtained foam, and there is no possibility that the ozone layer is destroyed or very little. For this reason, HCFC or HFC is preferably used as the foaming agent.
[0025]
Specific examples of the HCFC used in the present invention include 1-chloro-1,1-difluoroethane (HCFC-142b), 1,1-dichloro-1-fluoroethane (HCFC-141b), 1-chloro-1,2,2 , 2-tetrafluoroethane (HCFC-124), 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123), chlorodifluoromethane (HCFC-22), and the like. Specific examples of 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143), Examples include fluoromethane (HFC-23), difluoromethane (HFC-32), 1,1,1,2,2-pentafluoroethane (HFC-125), and the like. It may be used as a mixture.
[0026]
The amount of the foaming agent added to the raw material resin in the present invention is appropriately selected depending on the density of the foam to be obtained. In general, in order to obtain a foam having a density of 20 to 40 kg / m 3 , the raw material resin is used. 0.8 to 2.0 mol per kg is preferred.
[0027]
In the present invention, other foaming agents other than HFC and HCFC as described above can be mixed with HFC and / or HCFC as an auxiliary component to the extent that the thermal insulation of the foam is not impaired. Examples of such blowing agents include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, and neopentane, chlorinated hydrocarbons such as methyl chloride, ethyl chloride, and ethylene chloride, various alcohols, carbon dioxide, and the like. The thing which used individually or in combination of 2 or more types is mentioned. In addition, it is preferable to use HFC and / or HCFC in the range of 30 to 70 mol% with respect to the total amount of the foaming agent in terms of the effect of improving the expansion ratio, safety, and economy. In particular, (a) 30 to 70 mol% of HFC and / or HCFC, (b) 0 to 70 mol% of chlorinated hydrocarbon, and (c) 0 to 30 mol% of aliphatic hydrocarbon (provided that ( (a), (b) and (c) are mixed so that the total is 100 mol% and the total of (b) and (c) is 30 to 70 mol%. Further, even if only other foaming agents other than HFC and HCFC exemplified as auxiliary components are used, the use of the specific polystyrene resin in the present invention makes it possible to obtain a plate-like foam having a lower density than the conventional one. Can be obtained.
[0028]
In the present invention, a foaming agent is added to the raw material resin in an extruder, and these are melt-kneaded, and then the foamable composition made of this melt-kneaded product is extruded into a lower pressure atmosphere than in the extruder to foam. The extrusion temperature at which the functional composition is extruded from the lip of the extruder needs to be within a range where the foamable composition exhibits a melt viscosity suitable for foaming. The extrusion temperature showing the viscosity suitable for foaming depends on the type of polystyrene resin used, whether or not a fluidity improver is added, its type, amount added, the amount of foaming agent added, and the composition of the foaming agent. Although it is different, it is generally 110 to 140 ° C.
[0029]
HFC and HCFC suitably used as a foaming agent in the present invention are inferior in compatibility and uniform dispersibility with polystyrene resins compared to CFCs conventionally used as foaming agents, and the resulting foam has a low density. However, according to the present invention, the MFR of the raw material resin is 1 to 10 g / 10 min, the z average molecular weight is 5 × 10 5 or more, and the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn). By setting (Mw / Mn) to 3.2 or more, even if HFC or HCFC is used as a foaming agent, it has a high mechanical strength such as bending strength, and a low-density polystyrene resin plate-like foam with excellent heat insulation. The present invention is a method for producing a low-density polystyrene-based resin sheet foam having a thickness of 20 to 100 mm and a density of 20 to 40 kg / m 3 .
[0030]
【Example】
Next, the present invention will be described in more detail with specific examples.
[0031]
Example 1
A polystyrene resin having an MFR of 2.5 g / 10 min, a z-average molecular weight of 6.64 × 10 5 , and Mw / Mn = 3.67 is used as a raw material resin. .3 parts by weight, 2 parts by weight of hexabromocyclododecane as a flame retardant, and further a heat stabilizer were mixed. The flame retardant and heat stabilizer were mixed in a masterbatch containing both.
[0032]
Next, the above mixture is supplied from the cylinder side having a diameter of 65 mm to an extruder in which cylinders having a diameter of 65 mm, 90 mm, and 150 mm are sequentially connected, and 1,1,1,2-tetrafluoroethane, methyl chloride, and isobutane are added. The foaming agent mixed at a molar ratio of 5: 4: 1 was press-fitted at a ratio of 1.15 mole per 1 kg of the raw material resin, melted and kneaded, and the extrusion composition shown in Table 1 was transferred while the foamable composition was transferred through the extruder. After adjusting to temperature, it was extruded from the lip to form a foam. The resin pressure near the lip in the extruder at this time is also shown in Table 1.
[0033]
As the lip, a flat die having a resin discharge port with a width of 115 mm and a gap of 1 mm at the tip was used. In addition, the inlet dimension at the tip of the lip is slightly larger than the resin outlet, the outlet dimension is 26 mm thick and 280 mm wide, and after being gradually expanded from the vicinity of the inlet to the outlet, it is made of a fluororesin having a parallel structure. The molding tool was connected.
[0034]
The density, bending strength, and foam moldability of the obtained foam are also shown in Table 1. The bending strength was measured by the following method.
[0035]
[Measurement of bending strength]
The bending strength was determined in accordance with JIS-A9511 with a sample width of 50 mm and a fulcrum distance of 150 mm.
[0036]
Example 2
Weight ratio of 50:50 polystyrene resin with z average molecular weight 7.78 × 10 5 , Mw / Mn = 3.08 and polystyrene resin with z average molecular weight 4.78 × 10 5 , Mw / Mn = 3.61 A foam was formed in the same manner as in Example 1 except that the material mixed in was used as a raw material resin. The raw resin had an MFR of 2.0 g / 10 min, a z-average molecular weight of 6.83 × 10 5 , and Mw / Mn of 3.54.
[0037]
Example 3
Weight ratio of 40 to 60: polystyrene resin with z average molecular weight of 7.78 × 10 5 and Mw / Mn = 3.08 and polystyrene resin with z average molecular weight of 4.78 × 10 5 and Mw / Mn = 3.61 A foam was formed in the same manner as in Example 1 except that the material mixed in was used as a raw material resin. The raw resin had an MFR of 2.3 g / 10 min, a z-average molecular weight of 6.46 × 10 5 , and Mw / Mn of 3.25.
[0038]
Example 4
Weight ratio of 60:40 polystyrene resin with z average molecular weight 7.78 × 10 5 , Mw / Mn = 3.08 and polystyrene resin with z average molecular weight 4.78 × 10 5 , Mw / Mn = 3.61 A foam was formed in the same manner as in Example 1 except that the material mixed in was used as a raw material resin. The raw resin had an MFR of 1.7 g / 10 min, a z-average molecular weight of 7.05 × 10 5 , and Mw / Mn of 3.31.
[0039]
Comparative Example 1
A foam was molded in the same manner as in Example 1, except that a polystyrene resin having an MFR of 1.7 g / 10 min, a z-average molecular weight of 5.87 × 10 5 , and Mw / Mn = 3.02 was used as a raw material resin.
[0040]
Comparative Example 2
A foam was molded in the same manner as in Example 1 except that a polystyrene resin having an MFR of 4.0 g / 10 min, a z-average molecular weight of 4.78 × 10 5 , and Mw / Mn = 3.61 was used as a raw material resin.
[0041]
Comparative Example 3
A foam was molded in the same manner as in Example 1 except that a polystyrene resin having an MFR of 0.6 g / 10 min, a z-average molecular weight of 7.78 × 10 5 , and Mw / Mn = 3.08 was used as a raw material resin.
[0042]
[Table 1]
Figure 0003775624
* 1: Foaming occurred inside the lip of the die, and a good foam was not obtained.
* 2: Foam molding was difficult, and a plate-like foam could not be obtained.
[0043]
FIG. 1 is a graph showing the relationship between the extrusion temperature and the resin pressure near the lip, and FIG. 2 is a graph showing the relationship between the resin pressure near the lip and the density of the obtained foam. . In the above examples and comparative examples, when the resin pressure near the lip was lower than about 45 kg / cm 2 , foaming occurred inside the lip of the die, and a good foam was not obtained. In FIGS. 1 and 2, a portion where the resin pressure near the lip is lower than 45 kg / cm 2 is indicated by hatching as a non-foamable region, and the other portions are indicated as foamable regions.
[0044]
As can be seen from FIG. 1, at the same extrusion temperature, the example can maintain the resin pressure near the lip higher than the comparative example. Therefore, in Comparative Examples 1 to 3, even if the extrusion temperature is such that the resin pressure near the lip is in the non-foamable region, the resin pressure near the lip is in the foamable region in Examples 1-4. (See FIG. 1, for example, when the extrusion temperature is 124 ° C., in Comparative Example 1, the resin pressure near the lip is in the non-foaming region, but in Examples 1 to 4, the resin pressure near the lip can be foamed. In the region), a sufficiently satisfying low-density foam can be obtained, so that the extrusion temperature can be higher in Examples 1-4 than in Comparative Examples 1-3.
[0045]
In addition, as can be seen from FIG. 2, when the resin pressure in the vicinity of the lip is adjusted to the lower limit where foaming does not occur in the vicinity of the lip of the extruder die, Examples 1 to 3 are more effective than those in Comparative Examples 1 to 3. No. 4 can obtain a low-density foam.
[0046]
Further, FIG. 3 is a graph showing the relationship between the bending strength and density of the foams obtained in each of the examples and comparative examples, and the polystyrene series obtained in Examples 1 to 4 as shown in FIG. When the resin plate-like foam is compared in bending strength with those obtained in Comparative Examples 1 and 2, it can be seen that those obtained in Examples 1 to 4 are superior at the same foam density.
[0047]
Thus, according to the present invention, the molding conditions such as the extrusion temperature and the resin pressure near the lip for obtaining a low density polystyrene resin plate foam are widened, and the low density polystyrene resin plate foam is obtained. It can be manufactured well.
[0048]
【The invention's effect】
As described above, according to the present invention, the MFR of the raw material resin is 1 to 10 g / 10 min, the z average molecular weight is 5 × 10 5 or more, and the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn). By setting (Mw / Mn) to 3.2 or more, even if a foaming agent other than CFC is used, low-density polystyrene-based resin plate foaming with high mechanical strength such as bending strength and excellent heat insulation The body can be manufactured well.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between extrusion temperature during foam molding and resin pressure near a lip in Examples and Comparative Examples.
FIG. 2 is a graph showing the relationship between the resin pressure in the vicinity of the lip and the density of the obtained foam during foam molding in Examples and Comparative Examples.
FIG. 3 is a graph showing the relationship between the bending strength of the foams obtained in Examples and Comparative Examples and the density of the foams.

Claims (2)

ポリスチレン系樹脂からなる原料樹脂と発泡剤とを溶融混練してなる発泡性組成物をフラットダイスから押出し発泡させて、該ダイスリップ先端に接続する成形具を通過させ、厚み20〜100mm、密度20〜40kg/m 3 ポリスチレン系樹脂板状発泡体を製造するにあたり、上記原料樹脂のMFR1〜10g/10分、z平均分子量5×105以上、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)3.2以上であることを特徴とするポリスチレン系樹脂板状発泡体の製造方法。A foamable composition formed by melting and kneading a raw material resin made of polystyrene resin and a foaming agent is extruded and foamed from a flat die, passed through a molding tool connected to the tip of the die slip, and has a thickness of 20 to 100 mm and a density of 20 In producing a polystyrene resin plate-like foam of ˜40 kg / m 3 , the MFR of the raw material resin is 1 to 10 g / 10 minutes, the z-average molecular weight is 5 × 10 5 or more, the weight-average molecular weight (Mw) and the number average. method for producing a polystyrene resin plate foam, wherein the ratio of the molecular weight (Mn) (Mw / Mn) is 3.2 or more. z平均分子量が6×105以上のポリスチレン系樹脂を少なくとも1種以上含むポリスチレン系樹脂混合物を原料樹脂とする請求項1記載のポリスチレン系樹脂板状発泡体の製造方法。The method for producing a polystyrene resin plate-like foam according to claim 1, wherein a raw material resin is a polystyrene resin mixture containing at least one polystyrene resin having a z average molecular weight of 6 x 10 5 or more.
JP29048897A 1996-10-22 1997-10-07 Method for producing polystyrene resin sheet foam Expired - Fee Related JP3775624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29048897A JP3775624B2 (en) 1996-10-22 1997-10-07 Method for producing polystyrene resin sheet foam

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29812096 1996-10-22
JP8-298120 1996-10-22
JP29048897A JP3775624B2 (en) 1996-10-22 1997-10-07 Method for producing polystyrene resin sheet foam

Publications (2)

Publication Number Publication Date
JPH10182870A JPH10182870A (en) 1998-07-07
JP3775624B2 true JP3775624B2 (en) 2006-05-17

Family

ID=26558080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29048897A Expired - Fee Related JP3775624B2 (en) 1996-10-22 1997-10-07 Method for producing polystyrene resin sheet foam

Country Status (1)

Country Link
JP (1) JP3775624B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570504B2 (en) * 2004-04-26 2010-10-27 株式会社ジェイエスピー Method for producing extruded polystyrene resin foam

Also Published As

Publication number Publication date
JPH10182870A (en) 1998-07-07

Similar Documents

Publication Publication Date Title
EP2041211A1 (en) Polymer foams containing multi-functional layered nano-graphite
WO2003102064A2 (en) Anisotropic polymer foam
JPH10502952A (en) Extruded open-cell foam and method for producing the same
JP4794791B2 (en) Thermal insulation extruded foam with monovinyl aromatic polymer with broad molecular weight distribution
US20080287560A1 (en) Polymer foams containing multi-functional layered nano-graphite
WO1997048758A1 (en) Extruded foams of broad distribution polymers
JP3435161B2 (en) Method for Unimodal Cell Size Distribution Styrene Foam Structure
US6268046B1 (en) Process for producing extruded foam products having polystyrene blends with high levels of CO2 as a blowing agent
JP2002508419A (en) Foam containing HFC-134 and low-solubility auxiliary blowing agent and method for producing such foam
JP4028081B2 (en) Method for producing polystyrene resin sheet foam
WO2000034366A2 (en) Process for producing alkenyl aromatic foams having increased thermal insulation using cycloalkane blowing agent and foams produced thereby
JP4216911B2 (en) Method for producing polystyrene resin sheet foam
WO2001040362A1 (en) Extruded foam product
JP3775624B2 (en) Method for producing polystyrene resin sheet foam
WO1993005105A1 (en) Blowing agent composition
JP2000515197A (en) Closed cell thermoplastic foam containing HFC-134
JP3761310B2 (en) Styrene resin extruded foam manufacturing method and foam
JP3273685B2 (en) Polystyrene-based resin foam insulation and manufacturing method thereof
KR20090048432A (en) Polymer foams containing multi-functional layered nano-graphite
JP2002144409A (en) Extruded foam sheet of polystyrene resin and manufacturing method therefor
JPH0581612B2 (en)
AU2003233528B2 (en) Anisotropic polymer foam
JPH1129650A (en) Method of production of polystyrene resin foamed product and polystyrene resin foamed product produced thereby
JPH11217456A (en) Production of foam
CA2219016A1 (en) Method for producing foamed board based on polystyrenic resin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees