JP3775595B2 - Water repellent fibrous activated carbon knitted fabric - Google Patents
Water repellent fibrous activated carbon knitted fabric Download PDFInfo
- Publication number
- JP3775595B2 JP3775595B2 JP2002204398A JP2002204398A JP3775595B2 JP 3775595 B2 JP3775595 B2 JP 3775595B2 JP 2002204398 A JP2002204398 A JP 2002204398A JP 2002204398 A JP2002204398 A JP 2002204398A JP 3775595 B2 JP3775595 B2 JP 3775595B2
- Authority
- JP
- Japan
- Prior art keywords
- knitted fabric
- activated carbon
- fibrous activated
- water repellent
- carbon knitted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Knitting Of Fabric (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Inorganic Fibers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、炭化可能な原料有機繊維の編物を炭化・賦活処理することによって得られる繊維状活性炭の編物であって、積層加工などの加工性に富み引裂きや折り曲げに対して耐久性があり、取り扱い性が良好で通気性の高い有機ガスの吸着性能に優れた撥水性を有する繊維状活性炭編物に関する。詳しくは、本発明はマスクや脱臭パッド、脱臭シーツなどのメディカル用品、有害ガスから身体を守る防護服、各種の空気清浄機等に使用される繊維状活性炭編物に関する。また、本繊維状活性炭編物を単独または他のシート状物と積層して用いたメディカル用品や防護服、フィルター等の用途に使用した際に、水や汗などに濡れた場合でも高いガスバリア性を有する繊維状活性炭編物に関するものである。
【0002】
【従来の技術】
従来、炭化可能な原料有機繊維に炭化処理および賦活処理を施して繊維状活性炭を得ることが提案されている。また、繊維状活性炭がシート形状を成すシート状の繊維状活性炭を得る方法としては、原料有機繊維をフェルトなどの不織布状あるいは織物状・編物状とした後、炭化および賦活処理する方法や原料有機繊維を炭化および賦活処理して繊維状活性炭を得た後にフェルト等の不織布状に加工する方法が挙げられる。
【0003】
これら繊維状活性炭は元来有するミクロポアの発達した細孔構造によりガスの吸脱着速度が速くかつ非常に大きな吸着性能を有することで種々の用途に利用されている。しかし、これら繊維状活性炭シートは空気中の水分結露や汗等で濡れた場合にはフィルターや防護服として用いた場合に実用性能を十分発揮できなくなる。
【0004】
【発明が解決しようとする課題】
本発明は上記の従来技術における問題を解決しようとするものである。すなわち、空気中の水分結露や汗等で濡れた場合にもフィルターや防護服として用いた場合に高いガスバリア性を維持させるために撥水性を有する繊維状活性炭編物を提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意検討の結果、本発明に至った。すなわち、本発明は、繊維状高分子前駆体を糸状化し製編した後、炭化・賦活して得られる繊維状活性炭編物において、繊維状活性炭編物に撥水剤を付与することにより、撥水度が2以上より好ましくは4以上であることを特徴とする繊維状活性炭編物である。
【0006】
【発明の実施の形態】
繊維状活性炭シートは可撓性に優れるために各種フィルターやエレメントとして各種有機溶剤のガスを吸着するために用いられる。シートの形成方法には前述のように、原料有機繊維をフェルトなどの不織布状あるいは織物状とした後、炭化および賦活処理する方法や原料有機繊維を炭化および賦活処理して繊維状活性炭を得た後にフェルト等の不織布状に加工する方法が挙げられるが、柔軟性や加工性から編地状の繊維状活性炭シートが優れる。他の繊維材料等との積層加工や防護衣のようにシート自体が動きを伴う場所で取り扱われる場合には特にその柔軟性から編物状であることが特に有利である。その繊維状活性炭編物を得る工程については繊維状高分子前駆体の糸状をあらかじめ編物にした後、炭化・賦活して繊維状活性炭編物とする方法が良く、活性炭繊維糸状を製編することは活性炭繊維の強度が弱いため実際工業的には不可能である。
【0007】
該繊維状活性炭編物の吸着性能としてはJIS K1477「繊維状活性炭試験方法」の5.7項に記載のトルエン吸着性能で25g/m2以上(25℃、1/10希釈の条件下)、好ましくは40g/m2以上必要である。この吸着量を下回る場合は、フィルターや防護服として用いた場合に実用性能を十分発揮できなくなる。
【0008】
繊維状活性炭編物を目的に応じて加工する場合、例えば織編物や不織布といった他の繊維集合体と積層する場合、工業的に加工しようとすれば該繊維状活性炭編物に機械的応力が加わり、裂けや破れが生じる。これを防ぐためには少なくとも、JIS L1018に記載の方法による引張強さが1.0N以上、JIS L1096 8.15.4項に記載の引裂強さ(トラペゾイド法)が1.0N以上好ましくは2.5N以上必要である。これを下回る場合は、積層加工やその他の製品化のための加工を施す場合に生産性が大幅に低下し実用的でなくなる。
【0009】
このような、引裂強さの大きい繊維状活性炭編物を得るには、前駆体繊維がフェノール系繊維であることが望ましく、高分子前駆体の糸状としてはステープルから得られる紡績糸あるいはフィラメント糸状いずれの場合でも良く、また両者を混合した混繊糸状でもかまわない。単繊維繊度は1.1dtex〜5.5dtexで、撚り合わせた糸状の繊度は197dtex以上、好ましくは295〜590dtexが良い。繊維状活性炭編物の前駆体繊維としては他にセルロース系、ピッチ系やPAN系が知られている。セルロース系繊維を全駆体とする場合は炭化・賦活により十分な吸着性能を発揮する比表面積を有する繊維状活性炭編物が得られるが、収率が低く、また収縮率が大きいので剛性が高く、編物の強度、特に引裂強さの小さいものとなる。PAN系繊維を前駆体繊維とする場合には、比較的編物の強度の高いものが得られるが、大きな吸着性能を有する繊維状活性炭編物を得ることが困難である。ピッチ系繊維を用いるとセルロース系とPAN系の中間程度の強度と吸着性能が得られるが、必ずしも両方の特性とも満足するものではない。
【0010】
本発明において、繊維状活性炭編物は炭化・賦活されることにより機械的強度が低下する。特に引裂強さが極端に低下すると後加工時や使用時の破壊に繋がり不都合である。
そこで原料編物を活性炭にする際には、バッチ式あるいは連続式に炭化・賦活工程を施すことで得られるが、繊維状活性炭編物の生地特性や吸着性能の均一性を得ることや工業的生産性を考慮すると炭化・賦活を連続的に行うことが好ましい。原料編物を350℃以上1000℃以下の温度の不活性雰囲気で炭化し、次いで500℃以上1000℃以下の温度で炭素と反応する水蒸気、酸素、二酸化炭素などを含む活性な雰囲気で賦活し活性炭化する。又、場合によっては雰囲気条件を制御することにより炭化と賦活を同時に行うことも可能である。尚、賦活処理、すなわち活性炭化を行う際の最高到達温度を1000℃以上にすると異常収縮などによりシワの発生を伴うことがあり、最高到達温度は1000℃以下にすることが好ましい。これにより、比表面積が500〜3000m2/gである繊維状活性炭編物が得られる。
【0011】
又、得られた繊維状活性炭編物の目付は、50〜250g/m2、好ましくは100〜150g/m2が良い。50g/m2以下の場合繊維状活性炭編物の強度が弱く、250g/m2以上の場合通気性や柔軟性が悪くなるといった問題が起こるためである。
【0012】
繊維状活性炭編物に撥水性を付与する方法としては、通常スプレーによる噴霧や含浸加工などが考えられるが、均一性を考えると含浸加工が好ましい。
【0013】
又、撥水剤としてはフッ素樹脂系、ワックス系、セルロース反応系、シリコン樹脂系等特に限定されるものではなく、添着量は撥水剤固形分として0.1〜15、好ましくは0.5〜5wt%であればよい。添着量が0.1wt%以下では撥水度が低く、15wt%以上であれば繊維状活性炭編物の性能が低下するためである。
【0014】
(実施例)
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例はこの発明を制限するものではなく、前・後記の主旨を逸脱しない範囲で変更実施することは全て本発明の技術範囲に包含される。
尚、編物の各特性値の測定法は次の通りである。編物の絶乾質量、目付、厚さ、についてはJIS L1018に準拠し、繊維状活性炭編物のトルエン吸着性能は、JIS K1477に準拠した。また、編物の撥水度はJIS L1092
6.2に準拠した。
【0015】
(実施例1)
単繊維繊度2.2dtex、糸状の繊度295dtexのフェノール系繊維を使用し、22ゲージ両面丸編み機によりフライス編地を編成した。この編物は、目付225g/m2、厚さ1.65mmに設定した。
この編物を常温から890℃まで30分間、不活性雰囲気中で炭化させ、次に水蒸気12wt%を含有する雰囲気中890℃の温度で90分間賦活した。
得られた繊維状活性炭編物は、絶乾質量120g/m2、厚さ1.05mmで、トルエン吸着性能は56g/m2であった。
この繊維状活性炭編物を、3wt%のフッ素系撥水剤(明成化学工業(株)アサヒガードAG970)、0.3wt%の架橋剤(住友化学工業(株)スミテックスレジンM−3)及び、0.1wt%の触媒(住友化学工業(株)スミテックスアクセラレータACX)を含む加工浴にパッド乾燥後、170℃で固着処理を施し、撥水剤固形分で0.5wt%添着させた。
【0016】
(実施例2)
単繊維繊度2.2dtex、糸状の繊度295dtexのフェノール系繊維を使用し、18ゲージ両面丸編み機によりスムース編地を編成した。この編地は、目付259g/m2、厚さ1.75mmに設定した。
この編地を常温から890℃まで30分間で不活性雰囲気中で炭化させ、次に水蒸気12wt%を含有する雰囲気中890℃の温度で90分間賦活した。
得られた繊維状活性炭編物は、絶乾質量140g/m2、厚さ1.00mmで、トルエン吸着性能は63g/m2であった。
この繊維状活性炭編物を、3wt%のフッ素系撥水剤(明成化学工業(株)アサヒガードAG970)、0.3wt%の架橋剤(住友化学工業(株)スミテックスレジンM−3)及び、0.1wt%の触媒(住友化学工業(株)スミテックスアクセラレータACX)を含む加工浴にパッド乾燥後、170℃で固着処理を施し、撥水剤固形分で0.5wt%添着させた。
【0017】
(実施例3)
単繊維繊度2.2dtex、糸状の繊度295dtexのポリノジック繊維を使用し、22ゲージ両面丸編み機によりスムース編地を編成した。この編地は、目付350g/m2、厚さ1.85mmに設定した。
この編地に10wt%の燐酸アンモニウム水溶液を含浸後、300℃で耐炎化処理後、875℃まで30分間で不活性雰囲気中で炭化させ、次に水蒸気12wt%を含有する雰囲気中875℃の温度で90分間賦活した。
得られた繊維状活性炭編物は、絶乾質量100g/m2、厚さ1.10mmで、トルエン吸着性能は45g/m2であった。
この繊維状活性炭編物を、3wt%のフッ素系撥水剤(明成化学工業(株)アサヒガードAG970)、0.3wt%の架橋剤(住友化学工業(株)スミテックスレジンM−3)及び、0.1wt%の触媒(住友化学工業(株)スミテックスアクセラレータACX)を含む加工浴にパッド乾燥後、170℃で固着処理を施し、撥水剤固形分で0.5wt%添着させた。
【0018】
(比較例1)
実施例1と同じ繊維状活性炭編物で、撥水加工処理を施さないものを比較例1とした。
【0019】
(比較例2)
実施例2と同じ繊維状活性炭編物で、撥水加工処理を施さないものを比較例2とした。
【0020】
(比較例3)
実施例3と同じ繊維状活性炭編物で、撥水加工処理を施さないものを比較例3とした。
【0021】
上記実施例および比較例で得た材料の撥水度を表1に示す。
【0022】
上記実施例および比較例でで得た材料を純水の中に1分間浸漬後、取出し脱水した。この時の材料に対する純水の含水率は表2の通りであった。
【0023】
この材料を、図1のように25℃に設定したインキュベータ内の容器にセットし、容器内にトルエン10μLを入れたポットを置き、下流側のガス濃度を一定時間ごとにシリンジでサンプリングした。
このとき、ガスクロで測定した結果を図2に示す。
【0024】
【表1】
【0025】
【表2】
【0026】
以上のように、実施例1〜3の様に、繊維状活性炭編物を撥水処理することによって、繊維状活性炭編物が水や汗等に濡れた場合においても高いガスバリア性を有するが、撥水処理をしていない比較例1〜3ではガスバリア性の低下が起こる。
【0027】
【発明の効果】
以上説明したように、本発明は、繊維状高分子前駆体を糸状化し製編した後、炭化・賦活して得られた繊維状活性炭編物を撥水処理する事によって、水や汗などで濡れた場合においても優れたガスバリア性能を有する繊維状活性炭編物を提供する事が可能である。
【図面の簡単な説明】
【図1】図1は、ガスバリア性を評価した試験容器の概略図である。
【図2】図2は、ガスバリア性を評価したときの結果をグラフ化したものである。
【符号の説明】
A:繊維状活性炭編物 B:ガラス容器 C:ガラスポット
D:トルエン(液体) E:シリコンキャップ[0001]
BACKGROUND OF THE INVENTION
The present invention is a fibrous activated carbon knitted fabric obtained by carbonizing and activating a knitted raw material organic fiber knitted fabric, is rich in workability such as laminating, and is durable against tearing and bending, The present invention relates to a fibrous activated carbon knitted fabric having water repellency that is excellent in handling properties and has high air permeability and adsorbability of organic gas. Specifically, the present invention relates to a fibrous activated carbon knitted fabric used for medical supplies such as a mask, a deodorizing pad, and a deodorizing sheet, protective clothing for protecting the body from harmful gases, various air purifiers and the like. In addition, when this fibrous activated carbon knitted fabric is used alone or laminated with other sheet-like materials for medical supplies, protective clothing, filters, etc., it has high gas barrier properties even when it gets wet with water or sweat. The present invention relates to a fibrous activated carbon knitted fabric.
[0002]
[Prior art]
Conventionally, it has been proposed to obtain a fibrous activated carbon by subjecting a raw material organic fiber that can be carbonized to carbonization treatment and activation treatment. In addition, as a method of obtaining a sheet-like fibrous activated carbon in which the fibrous activated carbon forms a sheet shape, the raw material organic fiber is made into a nonwoven fabric such as felt or a woven / knitted fabric, and then carbonized and activated, or a raw organic material A method of carbonizing and activating the fiber to obtain a fibrous activated carbon and then processing it into a non-woven fabric such as felt.
[0003]
These fibrous activated carbons are utilized in various applications because they have a high gas adsorption / desorption rate and a very large adsorption performance due to the micropore structure developed by micropores. However, when these fibrous activated carbon sheets are wetted by moisture condensation in the air, sweat, or the like, they cannot sufficiently exhibit practical performance when used as a filter or protective clothing.
[0004]
[Problems to be solved by the invention]
The present invention seeks to solve the above-described problems in the prior art. That is, the present invention intends to provide a fibrous activated carbon knitted fabric having water repellency in order to maintain a high gas barrier property when used as a filter or protective clothing even when wet with moisture condensation or sweat in the air.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have reached the present invention. That is, the present invention provides a fibrous activated carbon knitted fabric obtained by knitting and knitting a fibrous polymer precursor and then imparting a water repellent to the fibrous activated carbon knitted fabric. Is a fibrous activated carbon knitted fabric characterized by having 2 or more, more preferably 4 or more.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Since the fibrous activated carbon sheet is excellent in flexibility, it is used as various filters and elements for adsorbing various organic solvent gases. As described above, in the sheet forming method, the raw material organic fiber was made into a nonwoven fabric or woven fabric such as felt, and then carbonized and activated, and the raw organic fiber was carbonized and activated to obtain fibrous activated carbon. Although the method of processing it into nonwoven fabrics, such as felt later, is mentioned, the knitted fabric-like fibrous activated carbon sheet is excellent from a softness | flexibility and workability. When the sheet itself is handled in a place with movement, such as laminating with other fiber materials or protective clothing, a knitted shape is particularly advantageous because of its flexibility. As for the process of obtaining the fibrous activated carbon knitted fabric, it is good to make the fibrous polymer precursor yarn into a knitted fabric in advance and then carbonize and activate it to make a fibrous activated carbon knitted fabric. Actually industrially impossible due to weak fiber strength.
[0007]
Adsorption performance of the fibrous activated carbon knitted fabric is preferably 25 g / m 2 or more (under conditions of 1/10 dilution at 25 ° C.) in terms of toluene adsorption performance described in 5.7 of JIS K1477 “Test method for fibrous activated carbon”, preferably Needs 40 g / m 2 or more. When the amount is less than this adsorption amount, practical performance cannot be exhibited sufficiently when used as a filter or protective clothing.
[0008]
When processing a fibrous activated carbon knitted fabric according to the purpose, for example, when laminating with other fiber aggregates such as a woven or non-woven fabric, mechanical stress is applied to the fibrous activated carbon knitted fabric and the fiber activated carbon knitted fabric is torn. And tearing occurs. In order to prevent this, at least the tensile strength according to the method described in JIS L1018 is 1.0 N or more, and the tear strength (trapezoid method) described in JIS L1096 8.15.4 is 1.0 N or more, preferably 2.5 N or more. is necessary. Below this range, productivity is drastically reduced when lamination processing or other processing for commercialization is performed, which is not practical.
[0009]
In order to obtain such a fibrous activated carbon knitted fabric with high tear strength, it is desirable that the precursor fiber is a phenol fiber, and the polymer precursor yarn is either a spun yarn or a filament yarn obtained from staples. In some cases, it may be a mixed yarn in which both are mixed. The single fiber fineness is 1.1 dtex to 5.5 dtex, and the twisted yarn-like fineness is 197 dtex or more, preferably 295 to 590 dtex. Cellulose-based, pitch-based and PAN-based fibers are also known as precursor fibers for fibrous activated carbon knitted fabrics. When the cellulosic fiber is used as the whole precursor, a fibrous activated carbon knitted fabric having a specific surface area that exhibits sufficient adsorption performance by carbonization and activation can be obtained, but the yield is low and the shrinkage rate is large, so the rigidity is high, The strength of the knitted fabric, particularly the tear strength is small. When the PAN-based fiber is used as the precursor fiber, a knitted fabric having a relatively high strength can be obtained, but it is difficult to obtain a fibrous activated carbon knitted fabric having a large adsorption performance. When pitch fibers are used, intermediate strength and adsorption performance between cellulose and PAN can be obtained, but both properties are not necessarily satisfied.
[0010]
In the present invention, the fibrous activated carbon knitted fabric is reduced in mechanical strength by being carbonized and activated. In particular, if the tear strength is extremely reduced, it is inconvenient because it leads to breakage during post-processing or use.
Therefore, when activated carbon is used as the raw material knitted fabric, it can be obtained by subjecting it to a carbonization and activation process in a batch or continuous manner. However, it is possible to obtain uniform fabric characteristics and adsorption performance of the fibrous activated carbon knitted fabric and industrial productivity. In view of the above, it is preferable to perform carbonization and activation continuously. Activated carbonization by carbonizing raw material knitted fabric in an inert atmosphere at a temperature of 350 ° C. or higher and 1000 ° C. or lower, and then activated in an active atmosphere containing water vapor, oxygen, carbon dioxide, etc. that reacts with carbon at a temperature of 500 ° C. or higher and 1000 ° C. or lower. To do. In some cases, carbonization and activation can be performed simultaneously by controlling the atmospheric conditions. In addition, when the maximum reached temperature at the time of activation treatment, that is, activated carbonization is set to 1000 ° C. or higher, wrinkles may be generated due to abnormal shrinkage or the like, and the maximum reached temperature is preferably set to 1000 ° C. or lower. Thereby, the fibrous activated carbon knitted fabric whose specific surface area is 500-3000 m < 2 > / g is obtained.
[0011]
The basis weight of the obtained fibrous activated carbon knitted fabric is 50 to 250 g / m 2 , preferably 100 to 150 g / m 2 . This is because when the strength is 50 g / m 2 or less, the strength of the fibrous activated carbon knitted fabric is weak, and when it is 250 g / m 2 or more, problems such as poor air permeability and flexibility occur.
[0012]
As a method for imparting water repellency to the fibrous activated carbon knitted fabric, spraying by spraying or impregnation is usually considered, but in view of uniformity, impregnation is preferable.
[0013]
Further, the water repellent is not particularly limited, such as fluororesin, wax, cellulose reaction system, silicone resin, etc., and the amount added is 0.1 to 15, preferably 0.5 as the water repellent solid content. It may be ˜5 wt%. This is because the water repellency is low when the amount of attachment is 0.1 wt% or less, and the performance of the fibrous activated carbon knitted fabric is deteriorated when the amount is 15 wt% or more.
[0014]
(Example)
Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention, and all modifications made without departing from the gist of the preceding and following descriptions are all included in the technical scope of the present invention.
In addition, the measuring method of each characteristic value of a knitted fabric is as follows. The absolutely dry mass, basis weight, and thickness of the knitted fabric conform to JIS L1018, and the toluene adsorption performance of the fibrous activated carbon knitted fabric conforms to JIS K1477. The water repellency of the knitted fabric is JIS L1092.
Conforms to 6.2.
[0015]
Example 1
A milled knitted fabric was knitted with a 22 gauge double-side circular knitting machine using phenolic fibers having a single fiber fineness of 2.2 dtex and a yarn-like fineness of 295 dtex. This knitted fabric was set to have a basis weight of 225 g / m 2 and a thickness of 1.65 mm.
This knitted fabric was carbonized from normal temperature to 890 ° C. for 30 minutes in an inert atmosphere, and then activated for 90 minutes at a temperature of 890 ° C. in an atmosphere containing 12 wt% of water vapor.
The obtained fibrous activated carbon knitted fabric had an absolutely dry mass of 120 g / m 2 , a thickness of 1.05 mm, and a toluene adsorption performance of 56 g / m 2 .
This fibrous activated carbon knitted fabric is obtained by adding 3 wt% of a fluorine-based water repellent (Aseihigaku Co., Ltd., Asahi Guard AG970), 0.3 wt% of a cross-linking agent (Sumitomo Chemical Industries, Ltd., Sumitex Resin M-3), The pad was dried in a processing bath containing 0.1 wt% catalyst (Sumitomo Chemical Co., Ltd., Smitex Accelerator ACX), and then subjected to fixing treatment at 170 ° C., and 0.5 wt% was added as a water repellent solid content.
[0016]
(Example 2)
A smooth knitted fabric was knitted using an 18 gauge double-sided circular knitting machine using phenolic fibers having a single fiber fineness of 2.2 dtex and a yarn-like fineness of 295 dtex. This knitted fabric was set to have a basis weight of 259 g / m 2 and a thickness of 1.75 mm.
The knitted fabric was carbonized in an inert atmosphere for 30 minutes from room temperature to 890 ° C., and then activated for 90 minutes at a temperature of 890 ° C. in an atmosphere containing 12 wt% of water vapor.
The obtained fibrous activated carbon knitted fabric had an absolutely dry mass of 140 g / m 2 , a thickness of 1.00 mm, and a toluene adsorption performance of 63 g / m 2 .
This fibrous activated carbon knitted fabric is obtained by adding 3 wt% of a fluorine-based water repellent (Aseihigaku Co., Ltd., Asahi Guard AG970), 0.3 wt% of a cross-linking agent (Sumitomo Chemical Industries, Ltd., Sumitex Resin M-3), The pad was dried in a processing bath containing 0.1 wt% catalyst (Sumitomo Chemical Co., Ltd., Smitex Accelerator ACX), and then subjected to fixing treatment at 170 ° C., and 0.5 wt% was added as a water repellent solid content.
[0017]
Example 3
A smooth knitted fabric was knitted using a 22 gauge double-side circular knitting machine using polynosic fibers having a single fiber fineness of 2.2 dtex and a yarn-like fineness of 295 dtex. This knitted fabric was set to have a basis weight of 350 g / m 2 and a thickness of 1.85 mm.
This knitted fabric is impregnated with 10 wt% ammonium phosphate aqueous solution, flameproofed at 300 ° C., carbonized in an inert atmosphere for 30 minutes to 875 ° C., and then at a temperature of 875 ° C. in an atmosphere containing 12 wt% of water vapor. And activated for 90 minutes.
The obtained fibrous activated carbon knitted fabric had an absolutely dry mass of 100 g / m 2 , a thickness of 1.10 mm, and a toluene adsorption performance of 45 g / m 2 .
This fibrous activated carbon knitted fabric is obtained by adding 3 wt% of a fluorine-based water repellent (Aseihigaku Co., Ltd., Asahi Guard AG970), 0.3 wt% of a cross-linking agent (Sumitomo Chemical Industries, Ltd., Sumitex Resin M-3), The pad was dried in a processing bath containing 0.1 wt% catalyst (Sumitomo Chemical Co., Ltd., Smitex Accelerator ACX), and then subjected to fixing treatment at 170 ° C., and 0.5 wt% was added as a water repellent solid content.
[0018]
(Comparative Example 1)
The same fibrous activated carbon knitted fabric as in Example 1 that was not subjected to the water repellent treatment was designated as Comparative Example 1.
[0019]
(Comparative Example 2)
The same fibrous activated carbon knitted fabric as in Example 2 that was not subjected to the water repellent treatment was designated as Comparative Example 2.
[0020]
(Comparative Example 3)
The same fibrous activated carbon knitted fabric as in Example 3 that was not subjected to water-repellent treatment was designated as Comparative Example 3.
[0021]
Table 1 shows the water repellency of the materials obtained in the above Examples and Comparative Examples.
[0022]
The materials obtained in the above Examples and Comparative Examples were immersed in pure water for 1 minute, then taken out and dehydrated. The water content of pure water with respect to the material at this time was as shown in Table 2.
[0023]
This material was set in a container in an incubator set to 25 ° C. as shown in FIG. 1, a pot containing 10 μL of toluene was placed in the container, and the downstream gas concentration was sampled with a syringe at regular intervals.
At this time, the result measured by gas chromatography is shown in FIG.
[0024]
[Table 1]
[0025]
[Table 2]
[0026]
As described above, as in Examples 1 to 3, the fibrous activated carbon knitted fabric has a high gas barrier property even when the fibrous activated carbon knitted fabric is wet with water, sweat, etc. In Comparative Examples 1 to 3 that are not treated, the gas barrier property is lowered.
[0027]
【The invention's effect】
As described above, in the present invention, the fibrous activated carbon knitted fabric obtained by carbonizing and activating the fibrous polymer precursor after threading and knitting is wetted with water, sweat, or the like by water-repellent treatment. In this case, it is possible to provide a fibrous activated carbon knitted fabric having excellent gas barrier performance.
[Brief description of the drawings]
FIG. 1 is a schematic view of a test container evaluated for gas barrier properties.
FIG. 2 is a graph showing the results when gas barrier properties are evaluated.
[Explanation of symbols]
A: Fibrous activated carbon knitted fabric B: Glass container C: Glass pot D: Toluene (liquid) E: Silicon cap
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002204398A JP3775595B2 (en) | 2002-07-12 | 2002-07-12 | Water repellent fibrous activated carbon knitted fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002204398A JP3775595B2 (en) | 2002-07-12 | 2002-07-12 | Water repellent fibrous activated carbon knitted fabric |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004044024A JP2004044024A (en) | 2004-02-12 |
JP3775595B2 true JP3775595B2 (en) | 2006-05-17 |
Family
ID=31710013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002204398A Expired - Lifetime JP3775595B2 (en) | 2002-07-12 | 2002-07-12 | Water repellent fibrous activated carbon knitted fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3775595B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008188925A (en) * | 2007-02-07 | 2008-08-21 | Toyobo Co Ltd | Protective material and protective clothes |
JP2008190814A (en) * | 2007-02-07 | 2008-08-21 | Toyobo Co Ltd | Camouflage material |
-
2002
- 2002-07-12 JP JP2002204398A patent/JP3775595B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004044024A (en) | 2004-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6470750B2 (en) | Activated carbon fiber and method for producing the same | |
US5254396A (en) | Carbon fiber structure and process for producing the same | |
JP4392432B2 (en) | Method for producing carbonized fabric | |
CN1189231C (en) | Filtering component in the form of activated carbon fibres | |
JP7229788B2 (en) | activated carbon fiber material | |
JP3775595B2 (en) | Water repellent fibrous activated carbon knitted fabric | |
JPS60231843A (en) | Carbonizable cloth | |
JP4355343B2 (en) | Carbonized fabric manufacturing method and carbonized fabric obtained thereby | |
JP4200421B2 (en) | Laminated product of fibrous activated carbon knitted fabric with water repellency | |
JP2888635B2 (en) | Adsorption activated carbonized polyarylamide | |
JP2003313780A (en) | Water repellent fibrous activated carbon sheet | |
JP2016129992A (en) | Protective material | |
JP3496074B2 (en) | Fibrous activated carbon knit | |
JP2004044023A (en) | Water-repellent fibrous active carbon knit | |
JP2002235247A (en) | Knitted fabric of fibrous activated carbon | |
JP2023132942A (en) | Fibrous activated carbon knitted fabric | |
JP5644979B1 (en) | Fibrous activated carbon multiple fabric | |
JP3395902B2 (en) | Laminated product of fibrous activated carbon knit | |
JP7204026B1 (en) | NONWOVEN FABRIC AND METHOD FOR MANUFACTURING SAME, METHOD FOR COLLECTING ORGANIC SOLVENT USING SAME, AND ORGANIC SOLVENT COLLECTION APPARATUS | |
JP2012139975A (en) | Adsorption sheet | |
JP2016117972A (en) | Water-repellent fibrous active carbon multi-ply woven fabric | |
JP2002235248A (en) | Knitted fabric of fibrous activated carbon | |
JP2016117971A (en) | Fibrous active carbon multiple texture having water repellency | |
JP3407804B2 (en) | Quilting sheet | |
JP4411524B2 (en) | Quilting sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050620 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050623 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060215 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3775595 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100303 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110303 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110303 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120303 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120303 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130303 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140303 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term | ||
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |