JP3774759B2 - An animal cell cyclic AMP concentration increasing agent or a cyclic nucleotide phosphodiesterase inhibitor comprising a ferulic acid polymer. - Google Patents
An animal cell cyclic AMP concentration increasing agent or a cyclic nucleotide phosphodiesterase inhibitor comprising a ferulic acid polymer. Download PDFInfo
- Publication number
- JP3774759B2 JP3774759B2 JP2000192564A JP2000192564A JP3774759B2 JP 3774759 B2 JP3774759 B2 JP 3774759B2 JP 2000192564 A JP2000192564 A JP 2000192564A JP 2000192564 A JP2000192564 A JP 2000192564A JP 3774759 B2 JP3774759 B2 JP 3774759B2
- Authority
- JP
- Japan
- Prior art keywords
- ferulic acid
- cyclic amp
- cyclic
- nucleotide phosphodiesterase
- increasing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明者は、フェルラ酸をH2O2の存在下、西洋ワサビペルオキシダーゼ等の酵素、やラジカル重合開始剤で脱水素重合させてフェルラ酸重合体を得た。 研究の結果、このフェルラ酸重合体が、哺乳動物細胞サイクリックAMP濃度上昇作用あるいはサイクリックAMPホスホジエステラーゼ阻害作用を有することを見いだし、本発明を完成させるに至った。
【0002】
【従来の技術】
リグニンは、セルロース、ヘミセルロースとともに、木材の主要成分として、自然界に最も豊富に存在する有機物質の一つである。しかし、パルプ生産時に副生される蒸解溶出液を原料として生産されるリグニンスルホン酸が、主に工業用分散剤として利用されているにすぎない未利用の天然資源である。
また、リグニンは穀類のフスマなどのほか、子嚢菌類、担子菌類からも抽出することが可能であり、豊富な天然有機物質の有効利用は大きな課題であった。また、ブナシメジなどはオガクズなどを主成分とする培地で人工栽培されているが、収穫後の培地の有効利用が課題であった。
一方、松かさ、各種のキノコの菌糸などの抽出液のリグニン画分に抗HIV-1活性のあることが知られている。リグニン様物質については他に末梢血単核細胞によるサイトカインの産生促進、マクロファージの活性化、培養細胞系でのインフルエンザウイルスや単純ヘルペスウイルスのプラーク形成抑制などの生理活性が報告されている。更に、リグニンの構成成分であるp-クマル酸、フェルラ酸、カフェー酸をH2O2の存在下、西洋ワサビペルオキシダーゼで脱水素重合させた高分子の合成リグニンも抗HIV-1活性を有することが確認されている(日本臨床, Vol.51, p.127 (1993))。しかし、これらは未だ、実用化されておらず、血管内皮細胞に働きサイクリックAMP濃度を上昇させるなどの報告はされていない。
【0003】
サイクリックAMP(サイクリックアデノシン3', 5'- 一リン酸、環状AMP、cAMP)は多くのホルモンや神経伝達物質の情報を細胞内の標的分子に伝えるセカンドメッセンジャーであり、細胞膜に存在するアデニル酸シクラーゼによって、ATPから合成される。サイクリックAMPは細菌や動物界に広く存在する。高等動物では、各種のホルモンが受容体・G蛋白質・アデニル酸シクラーゼを活性化し、サイクリックAMPの産生を促進する。動物におけるサイクリックAMPの作用点はサイクリックAMP依存性プロテインキナーゼ(Aキナーゼ)であり、Aキナーゼは細胞内の多くの蛋白質を基質とするため、サイクリックAMPは細胞の多彩な機能を調節する。例えば、Aキナーゼは転写因子CREB(サイクリックAMP応答配列結合蛋白質)をリン酸化し、リン酸化されたCREBがCRE(サイクリックAMP応答配列)に結合し遺伝子の転写活性を制御することが知られている。
このような機能を有するサイクリックAMPはサイクリックヌクレオチドホスホジエステラーゼによって5'-AMPに分解される。サイクリックヌクレオチドホスホジエステラーゼはアデニル酸シクラーゼとともに、細胞内のサイクリックAMPの量的水準を調節していると考えられている。サイクリックヌクレオチドホスホジエステラーゼは脳、肺、肝臓、心臓など種々の組織中に存在し、カルモジュリン(活性化因子)に対する結合性、基質に対する親和性などが異なる数種類の酵素が存在する。
このように、アデニル酸シクラーゼ、サイクリックヌクレオチドホスホジエステラーゼなどの活性を制御することにより、サイクリックAMPの濃度を調節することにより、様々な生体機能を調節することが可能と考えられる。
例えば、肺の炎症過程では、体液性因子が血管内皮細胞に働き、細胞間の隙間から血液中の蛋白質性の液が間質に入り込みやすくなり、浮腫をもたらす。血管内皮細胞のサイクリックAMP濃度上昇はこのような内皮透過性を抑制することが報告されている(Am. J. Physiol., Vol.275, p.L203 (1998))。
また、サイクリックヌクレオチドホスホジエステラーゼを阻害する物質としてはテオフィリンなどプリンアルカロイド系のものが多く報告されているが、リグニン関連物質にそのような活性は報告されていない。
【0004】
【課題を解決するための手段】
本発明者らは、天然に豊富に存在するリグニンを医薬品あるいは特定保健用食品素材として有効利用、高度利用することを目的として、動物細胞を用いて様々な生理活性を評価した結果、フェルラ酸の重合体に動物細胞のサイクリックAMP濃度を上昇させる作用あるいはサイクリックヌクレオチドホスホジエステラーゼ阻害作用のあることが判明し、本発明に至った。
すなわち本発明は
(a)哺乳動物細胞サイクリックAMP濃度上昇作用を有するフェルラ酸の重合体(b)サイクリックヌクレオチドホスホジエステラーゼ阻害作用を有するフェルラ酸の重合体
をそれぞれ、哺乳動物細胞サイクリックAMP濃度上昇剤及びサイクリックヌクレオチドホスホジエステラーゼ阻害剤として用いることに関する。
以下、本発明を詳細に説明する。
【0005】
【本発明の実施の形態】
本発明に係るフェラル酸重合体は、H2O2の存在下、西洋ワサビペルオキシダーゼでフェルラ酸を脱水素重合させ合成することも可能である。ペルオキシダーゼによる脱水素重合は、例えばChem. Pharm. Bull. Vol.39, p.950 (1991)に記載された方法で行うことが出来る。また、西洋ワサビペルオキシダーゼのほか、ラッカーゼ等の酵素を用いることができる。
また、マンガントリス(アセチルアセトナート)、フェントン試薬、トリクロロ三価バナジウム等のラジカル重合開始剤を用いて、p-クマル酸を脱水素重合させることもできる。
【0006】
次に、本発明におけるフェルラ酸を酵素合成してフェルラ酸重合体として水溶性リグニン様物質を得る場合について説明する。まず、フェルラ酸をペルオキシダーゼ処理に付し、フェルラ酸を重合させる。重合条件としてはフェルラ酸が重合される条件であれば特に限定されないが、例えば、リン酸緩衝液中にフェルラ酸及びペルオキシダーゼ、過酸化水素を添加し20〜60℃で30分以上反応させることにより行う。好ましくは、20〜40℃で1時間以上反応させることにより行う。ペルオキシダーゼ処理されたフェルラ酸は、定法による脱塩処理、減圧乾燥に付され、フェルラ酸酸重合体が得られる。また、低分子量の重合体は水溶液を1 kDaあるいは500 Daの限外濾過膜を用いて分画することにより得ることが出来る。
【0007】
本発明のサイクリックAMP濃度上昇作用物質、サイクリックヌクレオチドホスホジエステラーゼ阻害剤は、そのままで、または通常用いられる個体坦体、液体坦体、乳化分散剤等により錠剤、粉剤、水和剤、乳剤、カプセル剤等の形に製剤化してサイクリックAMP濃度上昇剤、サイクリックヌクレオチドホスホジエステラーゼ阻害剤として使用することが出来る。上記坦体としては、水、ゼラチン、澱粉、ステアリン酸マグネシウム、ラクトース、植物油等が挙げられる。また、本発明の物質は内皮透過性亢進を抑制する、あるいはサイクリックAMPをセカンドメッセンジャーとするホルモンの代替をする医薬としての利用の他、さまざまな食品中に添加して機能性食品、特定保健用食品などとして用いることが出来る。かかる食品として、清涼飲料、乳酸飲料、スープ、チーズ、ハム、菓子類などが挙げられる。本発明の物質はまた、ペットフード、飼料などに添加してペットや家畜に対してホルモンの代替をして健康を改善する目的で用いることが出来る。
【0008】
【実施例】
以下、本発明に係る動物細胞サイクリックAMP濃度上昇剤、サイクリックAMPホスホジエステラーゼ阻害剤の実施例を説明する。ただし、本発明は、このような実施例に限定されるものでなく、特許請求の範囲の技術的事項の範囲内でさらにいろいろな実施例があることは言うまでもない。
(フェルラ酸重合体の合成例)
以下のA、B、Cの3種類の溶液を調整した。
A液:フェルラ酸1g/50mMリン酸緩衝液(pH8.0)200ml
B液:西洋ワサビペルオキシダーゼ10mg/50mMリン酸緩衝液(pH8.0)200ml
C液:0.1%H2O2、50mMリン酸緩衝液(pH8.0)175ml
A、B両液を混合し、撹拌しつつ25℃に保った。これにC液を2時間かけて滴下した。C液全量の滴下終了後、さらに25℃で1時間撹拌を続けた。これに、pH3になるまで酢酸を加え、氷浴中で1時間冷却した。これを4℃、8,000rpm、20分間遠心分離して沈殿を回収し、希塩酸(pH2)に懸濁し、再度遠心分離した。同様の操作を繰り返した後沈殿を回収し、メタノール80mlに溶解した。溶液を濾過し、濾液を希塩酸(pH2)1,000ml中に滴下し、氷浴中で1時間冷却した。これを4℃、8,000rpmにて20分間遠心分離し、得られた沈殿を水に溶解し、pHを7付近に合わせた。これを分画分子量30kDa、10kDa、1kDa、500Daの限外濾過ろ過膜(アミコン社製)を通過させて>30kDa、10kDa-30kDa、1kDa-10kDa、500Da-1kDaの4段階に分画し、減圧乾燥した。以上により褐色の粉末各20〜40mgを得た。この粉末はフーリエ変換赤外分光法の結果からリグニン様の構造を有する重合体であることを確認した。
【0009】
実施例1(サイクリックAMP濃度上昇剤としての有効性の確認)
ブタ肺動脈内皮細胞(継代数1、セルシステムズ社より購入)をCS-C培地(D-MEM培地とハムF12培地を1:1に等比混合した培地に、10%ウシ胎児血清、15mMヘペス、Acidic FGF、ヘパリンを添加した培地、セルシステムズ社より購入)を添加した25cm2フラスコ(コラーゲンでコーティングしたフラスコ)にて5% CO2存在下、37℃で4日間の培養を行った。古い培養液を捨て、10mlのEDTA溶液による洗浄後、これにトリプシ-EDTA溶液2mlを加え、顕微鏡にて細胞を観察し細胞が丸くなりつつある状態で、トリプシンインヒビター溶液を2ml加えた。細胞を基質より剥がし、直ちにCS-C培地10mlを加え100Gで5分間遠心した。遠心上清を捨て、これにCS-C培地20mlを加え、コラーゲンでコーティングした24穴(1穴2cm2)のプレートに1穴あたり1mlを播種したのち、5% CO2存在下、37℃で3〜4日間の培養を行った。次にプレートの各穴の培地を捨て、1mlのCS-C培地にて各穴を2回洗浄した。その後、CS-C培地を各穴あたり360μl添加し、40μlの活性測定用試料(対照として同容量の蒸留水)を加え、軽く振とうした後、5% CO2存在下、37℃で1時間静置した。なお、試料添加時における細胞数は1穴あたり4.0 x 105個であり、実験は全て2連で行った。
反応はアマシャム・ファルマシアバイオテク社より購入したサイクリックAMP EIAシステムのキットに添付されたA1緩衝液(0.05M酢酸ナトリウム緩衝液、pH5.8、0.02%ウシ血清アルブミン、2.5%ドデシルトリメチルアンモニウムブロマイド)を45μl添加することで終了し、細胞内及び培地中に放出された全サイクリックAMP量を同キットにより測定した。その結果を表1に示す。また、別に行った濃度依存性の実験を表2に示す。
【0010】
【表1】
【0011】
【表2】
【0012】
実施例2(サイクリックヌクレオチドホスホジエステラーゼ阻害剤としての有効性の確認)
サイクリックヌクレオチドホスホジエステラーゼ阻害作用の測定は下記の方法により行った。
シグマ社より購入したウシ脳由来ホスホジエステラーゼアクチベータ(カルモジュリン)を緩衝液(62.5mMトリス塩酸緩衝液、pH7.5、6.3mM塩化マグネシウム、3.8mM β-メルカプトエタノール、0.038mM塩化カルシウム)に溶解し、14.3ユニット/mlのアクチベータ溶液とした。また、シグマ社より購入したウシ脳由来ホスホジエステラーゼを上記緩衝液に0.1ユニット/mlの濃度に溶解し、酵素溶液とした。1mMのサイクリックAMP水溶液を基質溶液とした。
0.5ml容量のプラスチックチューブに、アクチベータ溶液140μl、酵素溶液20μl、測定試料溶液20μlを入れ、30℃で5分間保温した後、基質溶液20μlを加えよく混合して、30℃で40分間反応を行った。その後、10%トリフルオロ酢酸20μlを添加することにより反応を停止させた。反応停止後、生成したAMPを下記条件下で高速液体クロマトグラフィーにより定量した。
高速液体クロマトグラフィー測定条件
カラム:μBondasphere 5μC18 300Å(ウォーターズ社3.9 x 150 mm)
溶出液:0.1%トリフルオロ酢酸を含む0〜63%のアセトニトリルの直線濃度勾配(20分)
流速:1ml/min
検出:260nmの紫外部吸収
このような実験を複数回行い、阻害率を次の式より算出した。
阻害率= (A - B) / A X 100 (%)
[式中、A:阻害剤を含まない場合のAMPのピーク面積、B:阻害剤添加の場合のAMPのピーク面積]
また、上記阻害率が50%になるペプチド濃度をIC50値で表した。
このようにして得られたIC50値を表3に示す。
【0013】
【表3】
【0014】
【発明の効果】
本発明のサイクリックAMP濃度上昇剤は下記の効果を奏する。
(1)哺乳動物細胞に働いてサイクリックAMP濃度上昇作用を有する。
(2)サイクリックヌクレオチドホスホジエステラーゼ阻害作用を有する。
(3)人のほか、犬、猫などのペット、牛、豚、馬などの産業動物におけるサイクリックAMPをセカンドメッセンジャーとするホルモンの代替をする、また、肺血管内皮の炎症による内皮透過性亢進を抑制するなど、健康を改善する目的で用いることが出来る。
(4)本発明のサイクリックAMP濃度上昇剤は、フェルラ酸を酵素的ないしフェルラ酸とラジカル重合開始剤を用いて化学的に重合させて合成できる。[0001]
BACKGROUND OF THE INVENTION
The present inventor obtained a ferulic acid polymer by dehydrogenating the ferulic acid with an enzyme such as horseradish peroxidase or a radical polymerization initiator in the presence of H 2 O 2 . As a result of research, it has been found that this ferulic acid polymer has an action of increasing the cyclic AMP concentration of mammalian cells or an inhibitory action of cyclic AMP phosphodiesterase, and has completed the present invention.
[0002]
[Prior art]
Lignin, along with cellulose and hemicellulose, is one of the most abundant organic substances in nature as a major component of wood. However, lignin sulfonic acid produced using the cooking eluate produced as a by-product during pulp production as a raw material is an unused natural resource that is mainly used as an industrial dispersant.
In addition to cereal bran, lignin can be extracted from ascomycetes and basidiomycetes, and the effective use of abundant natural organic substances has been a major issue. In addition, bunashimeji and the like are artificially cultivated in a medium mainly composed of sawdust and the like, but effective utilization of the medium after harvesting has been a problem.
On the other hand, it is known that lignin fractions of extracts such as pine cones and various mushroom mycelia have anti-HIV-1 activity. Other lignin-like substances have been reported to have physiological activities such as promotion of cytokine production by peripheral blood mononuclear cells, activation of macrophages, and suppression of plaque formation of influenza virus and herpes simplex virus in cultured cell systems. Furthermore, synthetic lignin, which is a polymer obtained by dehydrogenative polymerization of p-coumaric acid, ferulic acid and caffeic acid, which are constituents of lignin, with horseradish peroxidase in the presence of H 2 O 2 also has anti-HIV-1 activity. Has been confirmed (Japan Clinical, Vol.51, p.127 (1993)). However, these have not yet been put into practical use, and no reports have been made on working on vascular endothelial cells and increasing the cyclic AMP concentration.
[0003]
Cyclic AMP (cyclic adenosine 3 ', 5'-monophosphate, cyclic AMP, cAMP) is a second messenger that conveys information on many hormones and neurotransmitters to target molecules in the cell, adenyl present in the cell membrane Synthesized from ATP by acid cyclase. Cyclic AMP is widely present in the bacteria and animal kingdoms. In higher animals, various hormones activate receptors, G proteins, and adenylate cyclase to promote cyclic AMP production. Cyclic AMP regulates a variety of cellular functions because cyclic AMP acts in animals as a cyclic AMP-dependent protein kinase (A kinase). A kinase uses many intracellular proteins as substrates. . For example, A kinase phosphorylates the transcription factor CREB (cyclic AMP response element binding protein), and phosphorylated CREB binds to CRE (cyclic AMP response element) to control gene transcriptional activity. ing.
Cyclic AMP having such a function is decomposed into 5′-AMP by cyclic nucleotide phosphodiesterase. Cyclic nucleotide phosphodiesterase, together with adenylate cyclase, is thought to regulate the quantitative level of cyclic AMP in cells. Cyclic nucleotide phosphodiesterases are present in various tissues such as brain, lung, liver, heart and the like, and there are several types of enzymes that have different binding properties to calmodulin (activator), affinity for substrates, and the like.
Thus, it is considered that various biological functions can be adjusted by adjusting the concentration of cyclic AMP by controlling the activities of adenylate cyclase, cyclic nucleotide phosphodiesterase, and the like.
For example, in the pulmonary inflammation process, humoral factors act on vascular endothelial cells, and proteinous fluid in the blood tends to enter the interstitium from the gaps between the cells, resulting in edema. It has been reported that an increase in cyclic AMP concentration in vascular endothelial cells suppresses such endothelial permeability (Am. J. Physiol., Vol. 275, p.L203 (1998)).
As substances that inhibit cyclic nucleotide phosphodiesterase, many purine alkaloids such as theophylline have been reported, but no such activity has been reported for lignin-related substances.
[0004]
[Means for Solving the Problems]
As a result of evaluating various physiological activities using animal cells for the purpose of effective use and advanced utilization of lignin, which is abundant in nature, as a drug or food material for specified health use, The polymer was found to have an effect of increasing the cyclic AMP concentration of animal cells or an inhibitory effect on cyclic nucleotide phosphodiesterase, leading to the present invention.
That is, the present invention relates to (a) a polymer of ferulic acid having an action of increasing cyclic AMP concentration in mammalian cells, and (b) a polymer of ferulic acid having an inhibitory action of cyclic nucleotide phosphodiesterase, respectively. And use as a cyclic nucleotide phosphodiesterase inhibitor.
Hereinafter, the present invention will be described in detail.
[0005]
[Embodiments of the Invention]
The ferulic acid polymer according to the present invention can be synthesized by dehydrogenating and polymerizing ferulic acid with horseradish peroxidase in the presence of H 2 O 2 . Dehydrogenation polymerization with peroxidase can be carried out, for example, by the method described in Chem. Pharm. Bull. Vol. 39, p.950 (1991). In addition to horseradish peroxidase, enzymes such as laccase can be used.
Alternatively, p-coumaric acid can be dehydrogenated using a radical polymerization initiator such as manganese tris (acetylacetonate), Fenton reagent, trichlorotrivalent vanadium, and the like.
[0006]
Next, the case where the ferulic acid in the present invention is enzymatically synthesized to obtain a water-soluble lignin-like substance as a ferulic acid polymer will be described. First, ferulic acid is subjected to peroxidase treatment to polymerize ferulic acid. The polymerization conditions are not particularly limited as long as ferulic acid is polymerized. For example, by adding ferulic acid, peroxidase, and hydrogen peroxide in a phosphate buffer solution and reacting at 20 to 60 ° C. for 30 minutes or more. Do. Preferably, the reaction is carried out at 20 to 40 ° C. for 1 hour or longer. The ferulic acid treated with peroxidase is subjected to a desalting treatment by a conventional method and drying under reduced pressure to obtain a ferulic acid polymer. A low molecular weight polymer can be obtained by fractionating an aqueous solution using a 1 kDa or 500 Da ultrafiltration membrane.
[0007]
The cyclic AMP concentration-increasing agent and cyclic nucleotide phosphodiesterase inhibitor of the present invention can be used as they are or in the form of tablets, powders, wettable powders, emulsions and capsules as they are or are usually used as individual carriers, liquid carriers, emulsifying dispersants, etc. And can be used as a cyclic AMP concentration-increasing agent or a cyclic nucleotide phosphodiesterase inhibitor. Examples of the carrier include water, gelatin, starch, magnesium stearate, lactose, and vegetable oil. Further, the substance of the present invention can be added to various foods in addition to its use as a medicine that suppresses the increase in endothelial permeability or substitutes for hormones using cyclic AMP as a second messenger. It can be used as a food product. Examples of such foods include soft drinks, lactic acid drinks, soups, cheeses, hams, and confectionery. The substance of the present invention can also be used for the purpose of improving health by substituting hormones for pets and livestock by adding them to pet food and feed.
[0008]
【Example】
Examples of the animal cell cyclic AMP concentration increasing agent and the cyclic AMP phosphodiesterase inhibitor according to the present invention will be described below. However, the present invention is not limited to such embodiments, and it goes without saying that there are various embodiments within the scope of the technical matters of the claims.
(Synthesis example of ferulic acid polymer)
The following three types of solutions A, B, and C were prepared.
Solution A: Ferulic acid 1g / 50mM phosphate buffer (pH8.0) 200ml
Solution B: Horseradish peroxidase 10 mg / 50 mM phosphate buffer (pH 8.0) 200 ml
Solution C: 0.1% H 2 O 2 , 175 ml of 50 mM phosphate buffer (pH 8.0)
Both A and B liquids were mixed and kept at 25 ° C. with stirring. C liquid was dripped at this over 2 hours. After completion of the dropwise addition of the entire amount of liquid C, stirring was further continued at 25 ° C for 1 hour. To this, acetic acid was added until pH 3 and cooled in an ice bath for 1 hour. This was centrifuged at 4 ° C. and 8,000 rpm for 20 minutes to collect the precipitate, suspended in dilute hydrochloric acid (pH 2), and centrifuged again. After repeating the same operation, the precipitate was recovered and dissolved in 80 ml of methanol. The solution was filtered, and the filtrate was dropped into 1,000 ml of diluted hydrochloric acid (pH 2) and cooled in an ice bath for 1 hour. This was centrifuged at 4 ° C. and 8,000 rpm for 20 minutes, the resulting precipitate was dissolved in water, and the pH was adjusted to around 7. This was passed through an ultrafiltration membrane with a molecular weight cut off of 30 kDa, 10 kDa, 1 kDa, 500 Da (manufactured by Amicon), and fractionated into 4 steps of> 30 kDa, 10 kDa-30 kDa, 1 kDa-10 kDa, 500 Da-1 kDa, and reduced pressure Dried. As a result, 20 to 40 mg of brown powder was obtained. This powder was confirmed to be a polymer having a lignin-like structure from the results of Fourier transform infrared spectroscopy.
[0009]
Example 1 (Confirmation of effectiveness as a cyclic AMP concentration increasing agent)
Porcine pulmonary artery endothelial cells (passage number 1, purchased from Cell Systems) in CS-C medium (D-MEM medium and Ham F12 medium in an equal ratio of 1: 1 to 10% fetal bovine serum, 15 mM hepes, Culture was performed at 37 ° C. for 4 days in the presence of 5% CO 2 in a 25 cm 2 flask (flask coated with collagen) to which Acidic FGF and a medium supplemented with heparin (purchased from Cell Systems) were added. After discarding the old culture solution and washing with 10 ml of EDTA solution, 2 ml of trypsin-EDTA solution was added thereto, and 2 ml of trypsin inhibitor solution was added while the cells were observed to be rounded under a microscope. The cells were detached from the substrate, immediately added with 10 ml of CS-C medium, and centrifuged at 100 G for 5 minutes. Discard the supernatant, add 20 ml of CS-C medium, and inoculate 1 ml per well in a 24-well plate (1 cm 2 cm 2 ) coated with collagen, then in the presence of 5% CO 2 at 37 ° C. The culture was performed for 3 to 4 days. Next, the medium in each well of the plate was discarded, and each well was washed twice with 1 ml of CS-C medium. Then, add 360 μl of CS-C medium per well, add 40 μl of activity measurement sample (same volume of distilled water as a control), shake gently, and in the presence of 5% CO 2 at 37 ° C. for 1 hour. Left to stand. The number of cells at the time of sample addition was 4.0 × 10 5 per well, and all experiments were performed in duplicate.
The reaction was performed using the A1 buffer (0.05 M sodium acetate buffer, pH 5.8, 0.02% bovine serum albumin, 2.5% dodecyltrimethylammonium bromide) attached to the kit for the cyclic AMP EIA system purchased from Amersham Pharmacia Biotech. The addition of 45 μl was completed, and the total amount of cyclic AMP released into the cells and into the medium was measured using the same kit. The results are shown in Table 1. In addition, Table 2 shows a concentration-dependent experiment conducted separately.
[0010]
[Table 1]
[0011]
[Table 2]
[0012]
Example 2 (Confirmation of effectiveness as a cyclic nucleotide phosphodiesterase inhibitor)
The cyclic nucleotide phosphodiesterase inhibitory action was measured by the following method.
Bovine brain-derived phosphodiesterase activator (calmodulin) purchased from Sigma is dissolved in buffer (62.5 mM Tris-HCl buffer, pH 7.5, 6.3 mM magnesium chloride, 3.8 mM β-mercaptoethanol, 0.038 mM calcium chloride), 14.3 Unit / ml activator solution. Further, bovine brain-derived phosphodiesterase purchased from Sigma was dissolved in the above buffer solution at a concentration of 0.1 unit / ml to obtain an enzyme solution. A 1 mM cyclic AMP aqueous solution was used as a substrate solution.
Place 140 μl of activator solution, 20 μl of enzyme solution, and 20 μl of measurement sample solution in a 0.5 ml plastic tube, incubate at 30 ° C for 5 minutes, add 20 μl of substrate solution, mix well, and react at 30 ° C for 40 minutes. It was. The reaction was then stopped by adding 20 μl of 10% trifluoroacetic acid. After stopping the reaction, the produced AMP was quantified by high performance liquid chromatography under the following conditions.
Column for high performance liquid chromatography measurement: μBondasphere 5μC 18 300Å (Waters 3.9 x 150 mm)
Eluent: Linear gradient of 0 to 63% acetonitrile containing 0.1% trifluoroacetic acid (20 minutes)
Flow rate: 1 ml / min
Detection: UV absorption at 260 nm. Such an experiment was performed a plurality of times, and the inhibition rate was calculated from the following equation.
Inhibition rate = (A-B) / AX 100 (%)
[Wherein, A: peak area of AMP when no inhibitor is contained, B: peak area of AMP when inhibitor is added]
The peptide concentration at which the inhibition rate was 50% was expressed as an IC 50 value.
The IC 50 values thus obtained are shown in Table 3.
[0013]
[Table 3]
[0014]
【The invention's effect】
The cyclic AMP concentration increasing agent of the present invention has the following effects.
(1) It works on mammalian cells and has an effect of increasing cyclic AMP concentration.
(2) It has a cyclic nucleotide phosphodiesterase inhibitory action.
(3) In addition to humans, substitutes for hormones using cyclic AMP as the second messenger in pets such as dogs and cats, and industrial animals such as cattle, pigs and horses, and increased endothelial permeability due to inflammation of the pulmonary vascular endothelium It can be used for the purpose of improving health, such as controlling
(4) The cyclic AMP concentration-increasing agent of the present invention can be synthesized by chemically polymerizing ferulic acid enzymatically or using ferulic acid and a radical polymerization initiator.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000192564A JP3774759B2 (en) | 2000-06-27 | 2000-06-27 | An animal cell cyclic AMP concentration increasing agent or a cyclic nucleotide phosphodiesterase inhibitor comprising a ferulic acid polymer. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000192564A JP3774759B2 (en) | 2000-06-27 | 2000-06-27 | An animal cell cyclic AMP concentration increasing agent or a cyclic nucleotide phosphodiesterase inhibitor comprising a ferulic acid polymer. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002003386A JP2002003386A (en) | 2002-01-09 |
JP3774759B2 true JP3774759B2 (en) | 2006-05-17 |
Family
ID=18691681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000192564A Expired - Lifetime JP3774759B2 (en) | 2000-06-27 | 2000-06-27 | An animal cell cyclic AMP concentration increasing agent or a cyclic nucleotide phosphodiesterase inhibitor comprising a ferulic acid polymer. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3774759B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR122017014535B1 (en) * | 2009-01-26 | 2019-03-26 | Xyleco, Inc. | METHOD FOR PRODUCING A CARBOXYLIC ACID ESTER |
BE1029719B1 (en) * | 2021-08-27 | 2023-03-27 | Fyteko Sa | COMBINATION WITH HERBICIDAL ACTIVITY FOR AGRICULTURAL APPLICATIONS |
BE1029718B1 (en) * | 2021-08-27 | 2023-03-27 | Fyteko Sa | BIOLOGICAL HERBICIDE ENHANCING AGENT AND METHOD FOR USING THE SAME |
-
2000
- 2000-06-27 JP JP2000192564A patent/JP3774759B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002003386A (en) | 2002-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sarkar et al. | Influence of cytokines and growth factors in ANG II-mediated collagen upregulation by fibroblasts in rats: role of myocytes | |
Herzfeld et al. | The dedifferentiated pattern of enzymes in livers of tumor-bearing rats | |
Boonloh et al. | Rice bran protein hydrolysates prevented interleukin-6-and high glucose-induced insulin resistance in HepG2 cells | |
Zhou et al. | Anti‐inflammatory effect of an Apigenin‐Maillard reaction product in macrophages and macrophage‐endothelial cocultures | |
Yin et al. | Digestion rate of dietary starch affects the systemic circulation of lipid profiles and lipid metabolism-related gene expression in weaned pigs | |
CN104664039A (en) | Saury Maillard peptide with uric acid reducing activity as well as preparation method and application thereof | |
Yang et al. | Influence of myrcene on inflammation, matrix accumulation in the kidney tissues of streptozotocin-induced diabetic rat | |
Takahashi et al. | Dietary supplementation of glycine modulates inflammatory response indicators in broiler chickens | |
Janczyk et al. | Evaluation of nutritional value and safety of the green microalgae Chlorella vulgaris treated with novel processing methods | |
JP3774759B2 (en) | An animal cell cyclic AMP concentration increasing agent or a cyclic nucleotide phosphodiesterase inhibitor comprising a ferulic acid polymer. | |
Cetinkaya et al. | Radixin Relocalization and Nonmuscle α‐Actinin Expression Are Features of Remodeling Cardiomyocytes in Adult Patients with Dilated Cardiomyopathy | |
Peng et al. | Effect of irisin on pressure overload–induced cardiac remodeling | |
JP3755022B2 (en) | Animal cell cyclic AMP concentration increasing agent or cyclic nucleotide phosphodiesterase inhibitor comprising a polymer of p-coumaric acid | |
KR101490657B1 (en) | Compositions for preventing or treating cardiovascular disease comprising fermentation products of Maillard reacted milk protein | |
Hou et al. | Collagen from Iris squid grafted with polyethylene glycol and collagen peptides promote the proliferation of fibroblast through PI3K/AKT and Ras/RAF/MAPK signaling pathways | |
CN101438834A (en) | Method for improving meat quality | |
Maclver et al. | Effect of experimental hypertension on phosphoinositide hydrolysis and proto-oncogene expression in cardiovascular tissues | |
Jayaraman et al. | Evaluation of an in vitro model of hepatic inflammatory response by gene expression profiling | |
Iino et al. | Effect of glycated collagen on proliferation of human smooth muscle cells in vitro | |
JP3491036B2 (en) | Cyclic nucleotide phosphodiesterase inhibitor | |
Damon | VSM growth is stimulated in sympathetic neuron/VSM cocultures: role of TGF-β2 and endothelin | |
Rabinowitz | Control of metabolism and synthesis of macromolecules in normal and ischemic heart | |
KR101959714B1 (en) | Functional healthy food composition for preventing or improving cancer management in combination with dietary carbohydrate restriction | |
CN111132678A (en) | Egg thiols for the treatment of chronic low-grade systemic inflammation (CLGSI) and related diseases | |
Adjei-Fremah | Molecular Effects of Cowpea Polyphenols on Mammalian Transcriptome, Proteome, and Microbiome |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3774759 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |