JP3774436B2 - Inductor manufacturing method - Google Patents

Inductor manufacturing method Download PDF

Info

Publication number
JP3774436B2
JP3774436B2 JP2002373881A JP2002373881A JP3774436B2 JP 3774436 B2 JP3774436 B2 JP 3774436B2 JP 2002373881 A JP2002373881 A JP 2002373881A JP 2002373881 A JP2002373881 A JP 2002373881A JP 3774436 B2 JP3774436 B2 JP 3774436B2
Authority
JP
Japan
Prior art keywords
binder
magnetic powder
coil
forming
coil part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002373881A
Other languages
Japanese (ja)
Other versions
JP2004207443A (en
Inventor
和雄 小林
健 佐藤
勝彦 西村
耕介 原田
京宣 新谷
佐武秀機
和臣 渡辺
循二 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Fujitsu Telecom Networks Ltd
Original Assignee
Seiko Epson Corp
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Fujitsu Telecom Networks Ltd filed Critical Seiko Epson Corp
Priority to JP2002373881A priority Critical patent/JP3774436B2/en
Publication of JP2004207443A publication Critical patent/JP2004207443A/en
Application granted granted Critical
Publication of JP3774436B2 publication Critical patent/JP3774436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、電源などに使用するパワーインダクタ、ノイズフィルタ用コイル、スイッチングトランスなどに適用される中空の芯を有するインダクタの製造方法に関する。
【0002】
【従来の技術】
従来、インダクタやトランスとしては、種々のものが知られている。
例えば、磁粉を混入した結着材から成る磁性媒体中に、巻線の全体もしくは一部分を埋設して成るコイルとその製造方法が知られている(例えば、特許文献1参照)。
所定形状の中空部を設けた型材に巻線を施し、中空部に薄片状磁性粉末を充填しまたは充填しつつ巻線に直流を間欠通電し、さらに絶縁性樹脂を含浸固化せしめて所定形状に成型した圧粉磁心を得る圧粉磁心の製造方法が知られている(例えば、特許文献2参照)。
【0003】
心部が中心となる絶縁性ボビンに巻線を施したコイルと、一端が開口した収納ケースとを用意し、コイルを、収納ケース内に、両者の中心軸が一致するように装入した後、コイル全体が埋設するように強磁性粉末を充填し、しかる後収納ケースの開口部を封止するインダクタおよびその製造方法が知られている(例えば、特許文献3参照)。
【0004】
軟磁性粉末と熱可塑性ポリマーから成る被覆層を芯線の外周部に具備する電線を用意し、これを空芯コイル形状に巻線加工したインダクタおよびその製造方法が知られている(例えば、特許文献4参照)。
粘土状の弾性および粘性を有し、さらに熱もしくは紫外線などを照射すると凝固する絶縁性の材料に、透磁率が高く、かつ抵抗率の高い磁性材料を混入させて成るEMI対策用コアが知られている(例えば、特許文献5参照)。
【0005】
【特許文献1】
特開昭54−163354号公報
【特許文献2】
特開昭57−39516号公報
【特許文献3】
特開平5−159934号公報
【特許文献4】
特開平6−36937号公報
【特許文献5】
特開平10−275994号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1に係るコイルとその製造方法では、磁性媒体を固化することによって磁性媒体の中に巻線の全体もしくは一部分を埋設するので、磁性体が方向性を持つ場合、磁性体の方向を均一とすることが難しい。また、磁性体の特性に偏差があるため、インダクタンスなど特性がばらついてしまうという問題があった。
また、特許文献2に係る圧粉磁心および圧粉磁心コイルの製造方法では、絶縁性樹脂を含浸固化せしめて所定形状に成型した圧粉磁心を得るので、磁性体が方向性を持つ場合、磁性体の方向を均一とすることが難しい。また、磁性体の特性に偏差があるため、インダクタンスなど特性がばらついてしまうという問題があった。
【0007】
また、特許文献3に係るインダクタおよびその製造方法では、コイルを、収納ケース内に、両者の中心軸が一致するように装入した後、コイル全体が埋設するように強磁性粉末を充填し、しかる後収納ケースの開口部を封止するので、強磁性粉末の充填を正確に行い難く、充填ムラを起こし易いという問題がある。
また、特許文献4に係るインダクタおよびその製造方法では、軟磁性粉末が熱可塑性ポリマーによって固化されているので、磁性体が方向性を持つ場合、磁性体の方向を均一とすることが難しい。また、磁性体の特性に偏差があるため、インダクタンスなど特性がばらついてしまうという問題があった。
【0008】
また、特許文献5に係るEMI対策用コアでは、凝固する絶縁性の材料に、透磁率が高く、かつ抵抗率の高い磁性材料を混入させて成るので、磁性体が方向性を持つ場合、磁性体の方向を均一とすることが難しい。また、磁性体の特性に偏差があるため、インダクタンスなど特性がばらついてしまうという問題があった。
【0009】
一方、従来のトロイダルコアでは、プレスによりトロイダル形状に巻回するための複雑な工数を要するという問題があった。そのため、トロイダルコアが高価となるという不具合があった。
また、従来のトロイダルコアでは、磁性体にギャップがあるため、漏れ磁束が生じ、ギャップ近傍において磁束の偏りが生じ易いという問題があった。そのため、スイッチングコンバータとして用いた場合、ギャップによる漏れ磁束は、スイッチ・オフに伴うサージとノイズ発生の原因となる。
なお、トランスにおいても、インダクタと同様の問題があった。
【0010】
本発明は斯かる従来の問題点を解決するために為されてもので、その目的は、製作が容易で磁性体が方向性を持つ場合に磁性体の方向を均一にすることが可能なインダクタの製造方法を提供することにある。
【0011】
【課題を解決するための手段】
請求項1に係る発明は、磁性粉末を入れた容器に線材を螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を吸着してコア部を形成する工程と、前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布する工程と、電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布した状態で、前記コイル部への電流値を高め、前記コイル部からの発熱で前記結着材を硬化させ、前記磁性粉末と前記コイル部とを前記結着材で被覆して成る結着材層を形成する工程とを備えたことを特徴とする。
【0012】
請求項2に係る発明は、磁性粉末を入れた容器に線材を螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を吸着してコア部を形成する工程と、前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布する工程と、電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布した状態で、前記コイル部を加熱器にて加熱し、前記結着材を加熱硬化して前記磁性粉末と前記コイル部とを前記結着材で被覆して成る結着材層を形成する工程とを備えたことを特徴とする。
【0013】
請求項3に係る発明は、結着材を付着した磁性粉末を入れた容器内に線材を螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を前記コイル部に電磁吸着してコア部を形成する工程と、前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、前記コイル部への電流値を高めて前記結着材を加熱硬化して前記磁性粉末と前記コイル部とを前記結着材で被覆して成る結着材層を形成する工程とを備えたことを特徴とする。
【0014】
請求項4に係る発明は、結着材を付着した磁性粉末を入れた容器内に線材を螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を前記コイル部に電磁吸着してコア部を形成する工程と、前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、前記コイル部を加熱器にて加熱し、前記結着材を加熱硬化して前記磁性粉末と前記コイル部とを前記結着材で被覆して成る結着材層を形成する工程とを備えたことを特徴とする。
【0015】
請求項5に係る発明は、磁性粉末を入れた容器に複数の線材を同時に螺旋状に巻回するとともにドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を吸着してコア部を形成する工程と、前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布する工程と、電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布した状態で、前記コイル部への電流値を高め、前記線材からの発熱で前記結着材を硬化させ、前記磁性粉末と前記線材とを前記結着材で被覆して成る結着材層を形成する工程とを備えたことを特徴とする。
【0016】
請求項6に係る発明は、磁性粉末を入れた容器に複数の線材を同時に螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を吸着してコア部を形成する工程と、前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布する工程と、電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布した状態で、加熱器にて前記結着材を加熱硬化して前記磁性粉末と前記線材とを前記結着材で被覆して成る結着材層を形成する工程とを備えたことを特徴とする。
【0017】
請求項7に係る発明は、結着材を付着した磁性粉末を入れた容器内に複数の線材を同時に螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を前記コイル部に電磁吸着してコア部を形成する工程と、前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、前記コイル部への電流値を高めて前記結着材を加熱硬化して前記磁性粉末と前記コイル部とを前記結着材で被覆して成る結着材層を形成する工程とを備えたことを特徴とする。
【0018】
請求項8に係る発明は、結着材を付着した磁性粉末を入れた容器内に複数の線材を同時に螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を前記コイル部に電磁吸着してコア部を形成する工程と、前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、前記コイル部を加熱器にて加熱し、前記結着材を加熱硬化して前記磁性粉末と前記コイル部とを前記結着材で被覆して成る結着材層を形成する工程とを備えたことを特徴とする。
【0019】
請求項9に係る発明は、請求項1ないし請求項8の何れか1項記載のインダクタの製造方法において、前記結着材層は、外装のみが硬化し、内部の前記磁性粉末が前記結着材により拘束されていないことを特徴とする。
請求項10に係る発明は、請求項1ないし請求項8の何れか1項記載のインダクタの製造方法において、前記結着材層は、外装および内部の前記磁性粉末が前記結着材により拘束されていることを特徴とする。
請求項11に係る発明は、請求項1ないし請求項8の何れか1項載のインダクタの製造方法において、前記コイル部に通電する電流は、直流、交流、脈流、矩形あるいは直流を重畳した交流であることを特徴とする。
請求項12に係る発明は、請求項1、請求項2、請求項5、請求項6の何れか1項記載のインダクタの製造方法において、前記コイル部を電磁吸着している磁性粉末とともに前記結着材に浸漬することを特徴とする。
【0020】
【発明の実施の形態】
以下、本発明を図面に示す実施形態に基づいて説明する。
図1および図3は、本発明の一実施形態に係るインダクタ1を示す。
本実施形態に係るインダクタ1は、線材2を螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部4への通電時に生じる電磁吸着によりコイル部4に電磁吸着されている磁性粉末3をコア部とし、このコア部に、コイル部4への通電を継続してコイル部4とともに結着材5を塗布し、その後にコイル部4による発熱で結着材5を硬化して形成される結着材層9で被覆することによって形成されている。
【0021】
コイル部4は、図2に示すように、例えば、線径(直径)1mmのエナメル被覆銅線を同心円の直径11mm、ピッチ2mmで螺旋状に30回巻回して形成した直線状の巻線を、内径8mm、外径30mmのドーナツ形状に形成することによって構成されている。
ここで、線材2としては、例えば、エナメル、ポリウレタンなどの絶縁皮膜を施した銅線、アルミニウム線などで構成されている。なお、その径および長さは、用途目的に応じて任意に決定できる。
また、磁性粉末3としては、例えば、原子比で示す化学量論組成が(Fe0.97Cr0.03)76(Si0.5B0.5)22C2などのFe−Si−B系のアモルファス合金粉末を用いた。粉末粒径としては、45μm以下または150μm以下である。また、45μm以下のアモルファス合金と150μm以下のアモルファス合金とで形成したコイルのインダクタンス、直流重畳特性を比較したところ、150μm以下のアモルファス合金が優れていた。
また、結着材5としては、例えば、熱硬化性樹脂、溶剤系接着剤、水ガラスなどで構成されている。
【0022】
本実施形態に係るインダクタ1においては、例えば、図3に示すように、コイル部4への通電によって磁性粉末3がコイル部4の内側4aと外側4bとに吸着されてコア部を形成し、このコア部が結着材層9によって囲繞されて形成されている。
従って、本実施形態に係るインダクタ1によれば、従来のトロイダルコアとは異なって、コア部にギャップがないリアクトルを実現することができる。
このように、ギャップレスにすれば、漏れ磁束を低減することが可能となり、近接効果による巻緑抵抗増大を防ぎ銅損を低減できる。
また、ギャップ近傍における磁束の偏りを無くしコアロス鉄損の増大を防ぐことができる。
さらに、スイッチングコンバータとして用いた場合、ギャップによる漏れ磁束はスイッチングのスイッチオフに伴うサージとノイズ発生の原因ともなるが、本実施形態に係るインダクタ1によれば、このような不具合も解消することが可能となる。
【0023】
上述したように、すでに成形されたトロイダルコアに巻線を施すことは容易ではなく、特に、機械化による量産に問題がある。このため、リアクトルが高価となるという不具合があった。
これに対し、本実施形態に係るインダクタ1によれば、コイル部4に磁性粉末3を用い、トロイダルコアに巻線を施す手順を省略し、殆ど材料費のみの低価格でトロイダルにリアクトルを構成できるという利点がある。
本実施形態に係るインダクタ1によれば、コア部を形成する磁性粉末3は、コイル部4の内側4aと外側4bとに吸着されてコア部を形成し、このコア部が結着材層9によって囲繞されて形成されているので、漏れ出ることがない。
しかも、コア内部の磁性粉末3は、電磁吸着時に磁性粉末3の磁性の方向が均一化されているので、従来のように、磁性体が方向性を持つ場合、磁性体の方向が均一にできないという問題が発生しない。
【0024】
なお、本実施形態では、結着材層9は、外装を形成し、コア内部の磁性粉末3が結着材5によって拘束されることがない場合について説明したが、結着材がコア内部にまで浸透して磁性粉末3をともに結着しても良い。
この場合、コア内部の磁性粉末3は、電磁吸着時に磁性粉末3の磁性の方向が均一化された状態を保って結着材5で磁性粉末3を結着するので、従来のように、磁性体が方向性を持つ場合、磁性体の方向が均一にできないという問題が発生しない。
【0025】
次に、図5に基づいて本実施形態に係るインダクタ1の製造方法を説明する(請求項1ないし請求項4、請求項9に対応する)。
先ず、図5(a)に示すように、磁性粉末3を入れた容器6にコイル部4を配し、コイル部4を導線8を介して電源7に接続し、コイル部4に電流6Aで通電し、コイル部4の周囲に電磁吸着により磁性粉末3を吸着したコア部を形成する。
ここで、図6に基づいて磁性粉末3の吸着について説明する。コイル部4への電流が3A以下では、吸着力が悪かった。コイル部4への電流が3Aを超えて8Aまでの間では好適な吸着量が得られた。コイル部4への電流が8Aを超えると、吸着力が強くなり、コイル部4の外側から磁性粉末3が漏れるようになってきた。以上の結果から、本実施形態においては、通電電流値は4A〜8A、好ましくは6A〜8Aとすることが望ましいと判断した。
【0026】
次に、図5(b)に示すように、磁性粉末3を電磁吸着した状態で、コイル部4を容器6より取り出し、電磁吸着されている磁性粉末3とともに線材2に結着材5を塗布する。
次に、図5(c)に示すように、コイル部4への電流値を高め、コイル部4からの発熱で結着材5を硬化させ、結着材層9を形成する。結着材層9の硬化後、電源を切る。ここでの操作は、常温下で行う。
ここで、結着材5としてエポキシ樹脂を用い、電磁吸着時の電流値6Aを20Aに上げたところ、約2分でエポキシ樹脂が硬化した。
斯くして、図1に示すように、目的とするインダクタ1を得ることができる。
得られたインダクタ1と、公知の同型のインダクタとについて、チョークコイルの直流重畳特性(100kHz、1V)を取ったところ、図7に示すように、得られたインダクタ1は必要直流重畳値で必要インダクタンス値が取れることを確認できた。ここでは、例えば、直流重畳値IL=20A時、インダクタンス値が5μH以上あることを確認した。
ここで、線材2に通電する電流は、図8(a)に示す直流、図8(b)に示す交流、図4(c)に示す脈流、図8(d)に示す矩形を重畳した交流、図8(e)に示す直流を重畳した交流の何れでも良い(請求項11)。
【0027】
また、本実施形態では、磁性粉末3を入れた容器6にコイル部4を配し、コイル部4に電流を通電し、コイル部4の周囲に電磁吸着により磁性粉末3を吸着したコア部を形成した後に、磁性粉末3を電磁吸着した状態で、容器6より取り出し、電磁吸着されている磁性粉末3とともにコイル部4に結着材5を塗布し、電磁吸着されている磁性粉末3とともにコイル部4に結着材5を塗布した状態で、コイル部4への電流値を高め、コイル部4からの発熱で結着材5を硬化させ、磁性粉末5とコイル部4とを結着材5で被覆して成る結着材層9を形成したが、磁性粉末3を入れた容器6にコイル部4を配し、コイル部4に電流を通電し、コイル部4の周囲に電磁吸着により磁性粉末3を吸着したコア部を形成した後に、磁性粉末3を電磁吸着した状態で、容器6より取り出し、電磁吸着されている磁性粉末3とともにコイル部4に結着材5を塗布し、電磁吸着されている磁性粉末3とともにコイル部4に結着材5を塗布した状態で、コイル部4を、例えば、オーブンなどの加熱器(図示せず)にて加熱し結着材5を加熱硬化して磁性粉末3とコイル部4とを結着材5で被覆するようにしても良い(請求項2)。
【0028】
また、本実施形態では、磁性粉末3を入れた容器6にコイル部4を配し、コイル部4に電流を通電し、コイル部4の周囲に電磁吸着により磁性粉末3を吸着したコア部を形成した後に、磁性粉末3を電磁吸着した状態で、容器6より取り出し、電磁吸着されている磁性粉末3とともにコイル部4に結着材5を塗布し、電磁吸着されている磁性粉末3とともにコイル部4に結着材5を塗布した状態で、コイル部4への電流値を高め、コイル部4からの発熱で結着材5を硬化させ、磁性粉末5とコイル部4とを結着材5で被覆して成る結着材層9を形成したが、例えば、噴霧や浸漬などにて結着材5を付着した磁性粉末3を入れた容器6にコイル部4を配し、コイル部4に電流を通電し、コイル部4の周囲に電磁吸着により磁性粉末3を吸着したコア部を形成した後に、磁性粉末3を電磁吸着した状態で、容器6より取り出し、コイル部4への電流値を高めて結着材5を加熱硬化して磁性粉末3とコイル部4とを結着材5で被覆して成る結着材層9を形成するようにしても良い(請求項3)。
【0029】
また、本実施形態では、磁性粉末3を入れた容器6にコイル部4を配し、コイル部4に電流を通電し、コイル部4の周囲に電磁吸着により磁性粉末3を吸着したコア部を形成した後に、磁性粉末3を電磁吸着した状態で、容器6より取り出し、電磁吸着されている磁性粉末3とともにコイル部4に結着材5を塗布し、電磁吸着されている磁性粉末3とともにコイル部4に結着材5を塗布した状態で、コイル部4への電流値を高め、コイル部4からの発熱で結着材5を硬化させ、磁性粉末5とコイル部4とを結着材5で被覆して成る結着材層9を形成したが、例えば、噴霧や浸漬などにて結着材5を付着した磁性粉末3を入れた容器6にコイル部4を配し、コイル部4に電流を通電し、コイル部4の周囲に電磁吸着により磁性粉末3を吸着したコア部を形成した後に、磁性粉末3を電磁吸着した状態で、容器6より取り出し、コイル部4を、例えば、オーブンなどの加熱器(図示せず)にて加熱し、結着材5を加熱硬化して磁性粉末3とコイル部4とを結着材5で被覆して成る結着材層9を形成するようにしても良い(請求項4)。
【0030】
なお、本実施形態において、例えば、図9に示すように、容器6に機械的振動を加えることができるカム機構10A,10Bを取り付け、電磁吸着時に磁性粉末3に機械的振動を与えて磁性粉末3の充填度を高めても良い。また、図10に示すように、容器6に真空ポンプ11を取り付け、電磁吸着時に容器6内を真空状態にして磁性粉末3の充填度を高めても良い。
また、本実施形態では、結着材層9は、外装を形成し、内部の磁性粉末3が結着材5によって拘束されることがない場合について説明したが、結着材5が内部にまで浸透して磁性粉末3をともに結着しても良い(請求項10)。
また、本実施形態では、磁性粉末3を電磁吸着した状態で、電磁吸着されている磁性粉末3とともにコイル部4に結着材5を塗布したが、結着材5に浸漬しても良い(請求項12)。
【0031】
また、本実施形態では、1本の線材2を螺旋状に巻回して形成したコイル部4を用いる場合について説明したが、図4に示すように、例えば、2本の線材2を同時に螺旋状に巻回してコイル部4を形成しても良い(請求項5〜請求項8)。勿論、線材2の本数は、2本以上であれば任意である。
また、本実施形態では、直線状の巻線をドーナツ形状に形成する場合について説明したが、線材2を螺旋状に巻回しながらドーナツ形状に形成することも可能である。
本発明におけるトランスは、一次巻線および二次巻線の少なくとも何れか一方にインダクタ1を用いることによって達成される。
なお、その基本構成は、従来のトランスと同様であるので、具体的な開示は省略する。
【0032】
【発明の効果】
本発明によれば、磁束のなかでコアを形成するため、磁性体が方向性を持つ場合、磁性体の方向が均一となる。
また、磁性粉末を電磁吸着しながら通電して硬化させるため、磁性粉末を理想的な分布で固定できる。
また、磁束のなかでコアを形成させるため、磁束密度を保つのに必要な最小量の磁性粉末だけを使用するので、材料費のコストを低減できる。
また、吸着する時の電流の値を変化することで完成したコイルのインダクタンスをコントロールできる。
【0033】
また、本発明をトロイダルコイルに適用した場合には、螺旋状に巻回した巻線をドーナツ形状にしてコアを形成するため、従来のようにドーナツ状のコアにコイルを巻く必要がなく工数が大幅に低減できる。
また、磁性粉末が緻密に充填できる。
また、磁性粉末に電気的振動が加わるため、さらに緻密に充填できる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係るインダクタ1を示す平面図である。
【図2】 図1に用いるコイル部を示す平面図である。
【図3】 図1のインダクタ1の縦断面図である。
【図4】 図1に用いる別のコイル部を示す平面図である。
【図5】 図1のインダクタ1の製造方法を示す説明図である。
【図6】 図1のインダクタ1の製造時の磁性粉末の吸着量と電流との関係を示すグラフである。
【図7】 図1のインダクタと従来のインダクタとの直流重畳特性を示すグラフである。
【図8】 本発明の一実施形態に係るインダクタ1の製造方法に使用する通電条件を示す説明図である。
【図9】 図1のインダクタ1を製造する際の容器への機械的振動を与える例を示す説明図である。
【図10】 図1のインダクタ1を製造する際の容器内を真空状態にするための例を示す説明図である。
【符号の説明】
1 インダクタ
2 線材
3 磁性粉末
4 コイル部
5 結着材
6 容器
7 電源
8 導線
9 結着材層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing an inductor having a hollow core applied to, for example, a power inductor used for a power source, a noise filter coil, a switching transformer, and the like.
[0002]
[Prior art]
Conventionally, various inductors and transformers are known.
For example, a coil formed by embedding the whole or a part of a winding in a magnetic medium made of a binder mixed with magnetic powder and a manufacturing method thereof are known (for example, see Patent Document 1).
Winding a mold with a hollow part of a predetermined shape, filling the hollow part with flaky magnetic powder or intermittently passing a direct current through the winding, and further impregnating and solidifying with an insulating resin into a predetermined shape A method of manufacturing a dust core for obtaining a molded dust core is known (see, for example, Patent Document 2).
[0003]
After preparing a coil with winding on an insulating bobbin centered on the center and a storage case with one open end, insert the coil into the storage case so that the central axes of both are aligned An inductor that fills with ferromagnetic powder so that the entire coil is embedded and then seals the opening of the storage case and a method for manufacturing the same are known (for example, see Patent Document 3).
[0004]
2. Description of the Related Art An inductor in which an electric wire having a coating layer made of soft magnetic powder and a thermoplastic polymer is prepared on the outer periphery of a core wire, and this is wound into an air core coil shape, and a manufacturing method thereof are known (for example, Patent Documents) 4).
A core for EMI countermeasures is known, which is made by mixing a magnetic material with high permeability and high resistivity into an insulating material that has clay-like elasticity and viscosity and solidifies when irradiated with heat or ultraviolet rays. (For example, see Patent Document 5).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 54-163354 [Patent Document 2]
JP-A-57-39516 [Patent Document 3]
JP-A-5-159934 [Patent Document 4]
JP-A-6-36937 [Patent Document 5]
JP-A-10-275994 [0006]
[Problems to be solved by the invention]
However, in the coil and the manufacturing method thereof according to Patent Document 1, since the whole or a part of the winding is embedded in the magnetic medium by solidifying the magnetic medium, the direction of the magnetic body is determined when the magnetic body has directionality. It is difficult to make uniform. In addition, since there is a deviation in the characteristics of the magnetic material, there is a problem that characteristics such as inductance vary.
Further, in the method of manufacturing a dust core and a dust core coil according to Patent Document 2, a dust core obtained by impregnating and solidifying an insulating resin and molded into a predetermined shape is obtained. It is difficult to make the body direction uniform. In addition, since there is a deviation in the characteristics of the magnetic material, there is a problem that characteristics such as inductance vary.
[0007]
In addition, in the inductor and the manufacturing method thereof according to Patent Document 3, after the coil is inserted into the storage case so that the central axes of both coincide, the ferromagnetic powder is filled so that the entire coil is embedded, After that, since the opening of the storage case is sealed, there is a problem that it is difficult to accurately fill the ferromagnetic powder and uneven filling tends to occur.
In addition, in the inductor and the manufacturing method thereof according to Patent Document 4, since the soft magnetic powder is solidified by the thermoplastic polymer, it is difficult to make the direction of the magnetic body uniform when the magnetic body has directionality. In addition, since there is a deviation in the characteristics of the magnetic material, there is a problem that characteristics such as inductance vary.
[0008]
In the EMI countermeasure core according to Patent Document 5, a magnetic material having a high magnetic permeability and a high resistivity is mixed in the insulating material to be solidified. It is difficult to make the body direction uniform. In addition, since there is a deviation in the characteristics of the magnetic material, there is a problem that characteristics such as inductance vary.
[0009]
On the other hand, the conventional toroidal core has a problem that it requires a complicated man-hour for winding into a toroidal shape by pressing. For this reason, there is a problem that the toroidal core is expensive.
Further, in the conventional toroidal core, there is a problem in that since there is a gap in the magnetic body, a leakage magnetic flux is generated, and the magnetic flux is easily biased in the vicinity of the gap. Therefore, when used as a switching converter, the leakage magnetic flux due to the gap causes a surge and noise due to switching off.
The transformer has the same problem as the inductor.
[0010]
The present invention has been made in order to solve such a conventional problem, and the object thereof is an inductor capable of making the direction of the magnetic body uniform when it is easy to manufacture and the magnetic body has directionality. It is in providing the manufacturing method of.
[0011]
[Means for Solving the Problems]
According to the first aspect of the present invention, a coil portion formed by forming a linear winding formed by spirally winding a wire rod in a container containing magnetic powder in a donut shape is arranged, and current is passed through the coil portion. Then, the step of forming the core part by adsorbing the magnetic powder by electromagnetic adsorption around the coil part, and with the core part formed, the coil part is taken out of the container and electromagnetically adsorbed. A step of applying a binder to the coil portion together with the magnetic powder, and increasing a current value to the coil portion in a state where the binder is applied to the coil portion together with the magnetic powder that is electromagnetically adsorbed; And the step of curing the binder with heat generated from a portion to form a binder layer formed by coating the magnetic powder and the coil portion with the binder.
[0012]
According to a second aspect of the present invention, a coil portion formed by forming a linear winding formed by spirally winding a wire rod in a container containing magnetic powder in a donut shape is arranged, and current is passed through the coil portion. Then, the step of forming the core part by adsorbing the magnetic powder by electromagnetic adsorption around the coil part, and with the core part formed, the coil part is taken out of the container and electromagnetically adsorbed. A step of applying a binder to the coil part together with the magnetic powder, and heating the coil part with a heater in a state where the binder is applied to the coil part together with the magnetic powder that is electromagnetically adsorbed; And a step of forming a binder layer formed by heating and curing the binder and covering the magnetic powder and the coil portion with the binder.
[0013]
In the invention according to claim 3, a coil portion formed by forming a linear winding formed by spirally winding a wire in a donut shape in a container containing magnetic powder with a binder attached thereto, A step of forming a core part by passing an electric current through the coil part and electromagnetically attracting the magnetic powder to the coil part by electromagnetic adsorption around the coil part; and the coil part in a state where the core part is formed. Is removed from the container, the current value to the coil part is increased, and the binder is heated and cured to form a binder layer formed by coating the magnetic powder and the coil part with the binder. And a process.
[0014]
In the invention according to claim 4, a coil portion formed by forming a linear winding formed by spirally winding a wire in a donut shape in a container containing magnetic powder with a binder attached thereto, A step of forming a core part by passing an electric current through the coil part and electromagnetically attracting the magnetic powder to the coil part by electromagnetic adsorption around the coil part; and the coil part in a state where the core part is formed. Is removed from the container, the coil part is heated with a heater, and the binder is heated and cured to form a binder layer formed by coating the magnetic powder and the coil part with the binder. And a step of performing.
[0015]
According to a fifth aspect of the present invention, a coil portion formed by winding a plurality of wires simultaneously in a spiral shape in a container containing magnetic powder and forming a donut shape is provided, and a current is passed through the coil portion. A step of forming the core part by adsorbing the magnetic powder around the coil part by electromagnetic adsorption, and with the core part formed, the coil part is taken out of the container and together with the magnetic powder being electromagnetically adsorbed A step of applying a binding material to the coil portion, and a state in which the binding material is applied to the coil portion together with the magnetic powder that has been electromagnetically adsorbed to increase the current value to the coil portion and generate heat from the wire. And the step of curing the binder and forming a binder layer formed by coating the magnetic powder and the wire with the binder.
[0016]
According to a sixth aspect of the present invention, a coil portion formed by forming a linear winding formed by spirally winding a plurality of wire rods into a container containing magnetic powder in a donut shape is disposed, and the coil portion is disposed in the coil portion. A step of forming a core part by energizing an electric current and adsorbing the magnetic powder around the coil part by electromagnetic adsorption, and with the core part formed, the coil part is taken out from the container and electromagnetically adsorbed. Applying the binder to the coil portion together with the magnetic powder, and applying the binder to the coil portion together with the magnetically adsorbed magnetic powder in a heater. And a step of forming a binder layer formed by heating and curing to coat the magnetic powder and the wire with the binder.
[0017]
According to a seventh aspect of the present invention, there is provided a coil portion formed by forming a linear winding formed by spirally winding a plurality of wire rods in a container containing a magnetic powder having a binding material attached thereto in a donut shape. A step of forming a core portion by energizing a current to the coil portion and electromagnetically attracting the magnetic powder to the coil portion by electromagnetic adsorption around the coil portion; A binder layer formed by taking out the coil portion from the container, increasing the current value to the coil portion, heat-curing the binder, and coating the magnetic powder and the coil portion with the binder. And a step of forming the structure.
[0018]
According to an eighth aspect of the present invention, there is provided a coil portion formed by forming a linear winding formed by spirally winding a plurality of wire rods in a container containing a magnetic powder having a binding material attached thereto in a donut shape. A step of forming a core portion by energizing a current to the coil portion and electromagnetically attracting the magnetic powder to the coil portion by electromagnetic adsorption around the coil portion; The coil part is taken out from the container, the coil part is heated with a heater, the binder is heated and cured, and the magnetic powder and the coil part are covered with the binder. And a step of forming a layer.
[0019]
The invention according to claim 9 is the inductor manufacturing method according to any one of claims 1 to 8, wherein only the exterior of the binder layer is cured, and the magnetic powder inside is bound to the binder. It is characterized by not being restrained by the material.
The invention according to claim 10 is the method of manufacturing an inductor according to any one of claims 1 to 8, wherein the binder layer includes an outer sheath and the magnetic powder in the inside being restrained by the binder. It is characterized by.
According to an eleventh aspect of the present invention, in the inductor manufacturing method according to any one of the first to eighth aspects, a direct current, an alternating current, a pulsating current, a rectangle, or a direct current is superimposed on the current supplied to the coil portion. It is characterized by alternating current.
The invention according to claim 12 is the inductor manufacturing method according to any one of claims 1, 2, 5, and 6, wherein the coil portion is coupled with the magnetic powder that is electromagnetically adsorbed. It is characterized by being immersed in a dressing.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
1 and 3 show an inductor 1 according to an embodiment of the present invention.
The inductor 1 according to the present embodiment is electromagnetically attracted to the coil portion 4 by electromagnetic attraction generated when the coil portion 4 formed by forming a linear winding formed by spirally winding the wire 2 into a donut shape is energized. The magnetic powder 3 is used as a core portion, and the coil portion 4 is continuously energized and the binder material 5 is applied to the core portion together with the coil portion 4. Thereafter, the binder material 5 is heated by the heat generated by the coil portion 4. It is formed by covering with a binder layer 9 formed by curing.
[0021]
As shown in FIG. 2, the coil portion 4 includes, for example, a linear winding formed by spirally winding an enamel-coated copper wire having a wire diameter (diameter) of 1 mm with a concentric diameter of 11 mm and a pitch of 2 mm 30 times. And a donut shape having an inner diameter of 8 mm and an outer diameter of 30 mm.
Here, the wire 2 is made of, for example, a copper wire, an aluminum wire or the like having an insulating film such as enamel or polyurethane. The diameter and length can be arbitrarily determined according to the purpose of use.
Further, as the magnetic powder 3, for example, an Fe—Si—B amorphous alloy powder having a stoichiometric composition represented by an atomic ratio of (Fe0.97Cr0.03) 76 (Si0.5B0.5) 22C2 or the like was used. . The powder particle size is 45 μm or less or 150 μm or less. Further, when comparing the inductance and direct current superposition characteristics of a coil formed of an amorphous alloy of 45 μm or less and an amorphous alloy of 150 μm or less, the amorphous alloy of 150 μm or less was excellent.
The binder 5 is made of, for example, a thermosetting resin, a solvent-based adhesive, water glass, or the like.
[0022]
In the inductor 1 according to the present embodiment, for example, as shown in FIG. 3, the magnetic powder 3 is attracted to the inner side 4 a and the outer side 4 b of the coil part 4 by energizing the coil part 4 to form a core part, The core portion is formed so as to be surrounded by the binder layer 9.
Therefore, according to the inductor 1 which concerns on this embodiment, unlike the conventional toroidal core, a reactor without a gap in a core part is realizable.
Thus, if it is made gapless, it becomes possible to reduce a leakage magnetic flux, and it can prevent the increase in winding green resistance by a proximity effect, and can reduce a copper loss.
In addition, it is possible to prevent an increase in core loss iron loss by eliminating magnetic flux bias in the vicinity of the gap.
Further, when used as a switching converter, the leakage magnetic flux due to the gap causes a surge and noise due to switching off of the switching. However, according to the inductor 1 according to the present embodiment, such a problem can be solved. It becomes possible.
[0023]
As described above, it is not easy to wind the already formed toroidal core, and there is a problem in mass production by mechanization in particular. For this reason, there existed a malfunction that a reactor became expensive.
On the other hand, according to the inductor 1 according to the present embodiment, the magnetic powder 3 is used for the coil portion 4, the procedure for winding the toroidal core is omitted, and the toroidal reactor is configured at a low price with almost only material costs. There is an advantage that you can.
According to the inductor 1 according to the present embodiment, the magnetic powder 3 forming the core portion is adsorbed on the inner side 4a and the outer side 4b of the coil portion 4 to form the core portion, and this core portion is the binder layer 9. Because it is surrounded and formed by, it does not leak out.
In addition, since the magnetic direction of the magnetic powder 3 in the core is made uniform during electromagnetic adsorption, the direction of the magnetic body cannot be made uniform when the magnetic body has directionality as in the prior art. Does not occur.
[0024]
In the present embodiment, the case where the binder layer 9 forms an exterior and the magnetic powder 3 inside the core is not restrained by the binder 5 has been described. However, the binder is inside the core. The magnetic powder 3 may be bonded together.
In this case, the magnetic powder 3 inside the core binds the magnetic powder 3 with the binder 5 while keeping the magnetic direction of the magnetic powder 3 uniform during electromagnetic adsorption. When the body has directionality, the problem that the direction of the magnetic body cannot be made uniform does not occur.
[0025]
Next, a method for manufacturing the inductor 1 according to the present embodiment will be described with reference to FIG. 5 (corresponding to claims 1 to 4 and claim 9).
First, as shown in FIG. 5 (a), a coil part 4 is arranged in a container 6 containing magnetic powder 3, and the coil part 4 is connected to a power source 7 via a conducting wire 8, and the coil part 4 is supplied with a current 6A. Energization is performed to form a core portion that adsorbs the magnetic powder 3 by electromagnetic adsorption around the coil portion 4.
Here, adsorption | suction of the magnetic powder 3 is demonstrated based on FIG. When the current to the coil part 4 was 3 A or less, the attractive force was poor. A suitable amount of adsorption was obtained when the current to the coil part 4 exceeded 3A and reached 8A. When the current to the coil part 4 exceeds 8 A, the attractive force becomes strong, and the magnetic powder 3 has leaked from the outside of the coil part 4. From the above results, in the present embodiment, it was determined that the energization current value is 4A to 8A, preferably 6A to 8A.
[0026]
Next, as shown in FIG. 5B, the coil portion 4 is taken out from the container 6 with the magnetic powder 3 electromagnetically adsorbed, and the binder 5 is applied to the wire 2 together with the magnetic powder 3 that has been electromagnetically adsorbed. To do.
Next, as shown in FIG. 5C, the current value to the coil portion 4 is increased, and the binder 5 is cured by heat generated from the coil portion 4 to form the binder layer 9. After the binder layer 9 is cured, the power is turned off. This operation is performed at room temperature.
Here, when an epoxy resin was used as the binder 5 and the current value 6A during electromagnetic adsorption was increased to 20A, the epoxy resin was cured in about 2 minutes.
Thus, the target inductor 1 can be obtained as shown in FIG.
When the DC superposition characteristics (100 kHz, 1 V) of the choke coil were taken with respect to the obtained inductor 1 and the known same type inductor, the obtained inductor 1 is required to have the necessary DC superposition value as shown in FIG. It was confirmed that the inductance value was obtained. Here, for example, when the DC superimposition value IL = 20 A, it was confirmed that the inductance value is 5 μH or more.
Here, the current applied to the wire 2 is superimposed on the direct current shown in FIG. 8 (a), the alternating current shown in FIG. 8 (b), the pulsating flow shown in FIG. 4 (c), and the rectangle shown in FIG. 8 (d). Either an alternating current or an alternating current obtained by superimposing the direct current shown in FIG. 8E may be used.
[0027]
Moreover, in this embodiment, the coil part 4 is arranged in the container 6 containing the magnetic powder 3, the current is supplied to the coil part 4, and the core part that adsorbs the magnetic powder 3 by electromagnetic adsorption around the coil part 4. After the formation, the magnetic powder 3 is taken out from the container 6 in the state of electromagnetic adsorption, and the binder 5 is applied to the coil portion 4 together with the magnetic powder 3 that is electromagnetically adsorbed. In a state in which the binder 5 is applied to the part 4, the current value to the coil part 4 is increased, the binder 5 is cured by heat generated from the coil part 4, and the magnetic powder 5 and the coil part 4 are bound to each other. 5 is formed, the coil part 4 is arranged in the container 6 containing the magnetic powder 3, the current is supplied to the coil part 4, and the coil part 4 is surrounded by electromagnetic adsorption. After forming the core that adsorbs the magnetic powder 3, the magnetic powder 3 is electromagnetically adsorbed. In the state, it is taken out from the container 6, and the binder 5 is applied to the coil portion 4 together with the magnetic powder 3 that is electromagnetically adsorbed, and the binder 5 is applied to the coil portion 4 together with the magnetic powder 3 that is electromagnetically adsorbed Then, the coil part 4 is heated by, for example, a heater (not shown) such as an oven to heat and cure the binder 5 so that the magnetic powder 3 and the coil part 4 are covered with the binder 5. (Claim 2).
[0028]
Moreover, in this embodiment, the coil part 4 is arranged in the container 6 containing the magnetic powder 3, the current is supplied to the coil part 4, and the core part that adsorbs the magnetic powder 3 by electromagnetic adsorption around the coil part 4. After the formation, the magnetic powder 3 is taken out from the container 6 in the state of electromagnetic adsorption, and the binder 5 is applied to the coil portion 4 together with the magnetic powder 3 that is electromagnetically adsorbed. In a state in which the binder 5 is applied to the part 4, the current value to the coil part 4 is increased, the binder 5 is cured by heat generated from the coil part 4, and the magnetic powder 5 and the coil part 4 are bound to each other. 5 is formed. For example, the coil part 4 is arranged in a container 6 containing the magnetic powder 3 to which the binder 5 is adhered by spraying or dipping. The magnetic powder 3 was adsorbed around the coil part 4 by electromagnetic adsorption. After the magnetic part 3 is formed, the magnetic powder 3 and the coil part 4 are taken out from the container 6 with the magnetic powder 3 electromagnetically adsorbed, and the current value to the coil part 4 is increased to heat and cure the binder 5. A binder layer 9 formed by covering with the binder 5 may be formed (claim 3).
[0029]
Moreover, in this embodiment, the coil part 4 is arranged in the container 6 containing the magnetic powder 3, the current is supplied to the coil part 4, and the core part that adsorbs the magnetic powder 3 by electromagnetic adsorption around the coil part 4. After the formation, the magnetic powder 3 is taken out from the container 6 in the state of electromagnetic adsorption, and the binder 5 is applied to the coil portion 4 together with the magnetic powder 3 that is electromagnetically adsorbed. In a state in which the binder 5 is applied to the part 4, the current value to the coil part 4 is increased, the binder 5 is cured by heat generated from the coil part 4, and the magnetic powder 5 and the coil part 4 are bound to each other. 5 is formed. For example, the coil part 4 is arranged in a container 6 containing the magnetic powder 3 to which the binder 5 is adhered by spraying or dipping. The magnetic powder 3 was adsorbed around the coil part 4 by electromagnetic adsorption. After forming the portion, the magnetic powder 3 is taken out from the container 6 while being electromagnetically adsorbed, and the coil portion 4 is heated by a heater (not shown) such as an oven to heat the binder 5. The binder layer 9 may be formed by curing and coating the magnetic powder 3 and the coil portion 4 with the binder 5 (claim 4).
[0030]
In this embodiment, for example, as shown in FIG. 9, cam mechanisms 10A and 10B capable of applying mechanical vibration are attached to the container 6, and the magnetic powder 3 is mechanically vibrated during electromagnetic adsorption to provide magnetic powder. The filling degree of 3 may be increased. Further, as shown in FIG. 10, a vacuum pump 11 may be attached to the container 6 to increase the filling degree of the magnetic powder 3 by making the container 6 in a vacuum state during electromagnetic adsorption.
Further, in the present embodiment, the case where the binder layer 9 forms an exterior and the internal magnetic powder 3 is not restrained by the binder 5 has been described. The magnetic powder 3 may penetrate and bind together (claim 10).
In the present embodiment, the binding material 5 is applied to the coil portion 4 together with the magnetic powder 3 that is electromagnetically adsorbed in a state where the magnetic powder 3 is electromagnetically adsorbed, but may be immersed in the binding material 5 ( Claim 12).
[0031]
Moreover, although this embodiment demonstrated the case where the coil part 4 formed by spirally winding the one wire 2 was used, as shown in FIG. 4, for example, two wires 2 are simultaneously spiraled. The coil part 4 may be formed by being wound around (Claim 5 to Claim 8). Of course, the number of the wires 2 is arbitrary as long as it is two or more.
Moreover, although this embodiment demonstrated the case where a linear coil | winding was formed in a donut shape, it is also possible to form in a donut shape, winding the wire 2 helically.
The transformer in the present invention is achieved by using the inductor 1 for at least one of the primary winding and the secondary winding.
Since the basic configuration is the same as that of a conventional transformer, a specific disclosure is omitted.
[0032]
【The invention's effect】
According to the present invention, since the core is formed in the magnetic flux, when the magnetic body has directionality, the direction of the magnetic body becomes uniform.
In addition, since the magnetic powder is cured by energization while electromagnetically adsorbing, the magnetic powder can be fixed in an ideal distribution.
Further, since the core is formed in the magnetic flux, only the minimum amount of magnetic powder necessary to maintain the magnetic flux density is used, so that the material cost can be reduced.
Moreover, the inductance of the completed coil can be controlled by changing the value of the current when attracted.
[0033]
In addition, when the present invention is applied to a toroidal coil, since the core is formed by forming a spirally wound winding in a donut shape, it is not necessary to wind the coil around the donut-shaped core as in the conventional case, and man-hours are increased. It can be greatly reduced.
Also, the magnetic powder can be densely filled.
Further, since electric vibration is applied to the magnetic powder, it can be filled more densely.
[Brief description of the drawings]
FIG. 1 is a plan view showing an inductor 1 according to an embodiment of the present invention.
FIG. 2 is a plan view showing a coil portion used in FIG.
3 is a longitudinal sectional view of the inductor 1 of FIG.
4 is a plan view showing another coil unit used in FIG. 1. FIG.
FIG. 5 is an explanatory diagram showing a method for manufacturing the inductor 1 of FIG. 1;
6 is a graph showing the relationship between the amount of magnetic powder adsorbed and the current when the inductor 1 of FIG. 1 is manufactured. FIG.
FIG. 7 is a graph showing DC superposition characteristics of the inductor of FIG. 1 and a conventional inductor.
FIG. 8 is an explanatory diagram showing energization conditions used in the method for manufacturing the inductor 1 according to one embodiment of the present invention.
FIG. 9 is an explanatory view showing an example in which mechanical vibration is applied to the container when the inductor 1 of FIG. 1 is manufactured.
10 is an explanatory view showing an example for making the inside of the container in a vacuum state when the inductor 1 of FIG. 1 is manufactured; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inductor 2 Wire material 3 Magnetic powder 4 Coil part 5 Binder 6 Container 7 Power supply 8 Conductor 9 Binder layer

Claims (12)

磁性粉末を入れた容器に線材を螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を吸着してコア部を形成する工程と、
前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布する工程と、
電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布した状態で、前記コイル部への電流値を高め、前記コイル部からの発熱で前記結着材を硬化させ、前記磁性粉末と前記コイル部とを前記結着材で被覆して成る結着材層を形成する工程と
を備えたことを特徴とするインダクタの製造方法。
A coil part formed by forming a linear winding formed by winding a wire in a spiral shape in a container containing magnetic powder in a donut shape is arranged, and a current is passed through the coil part to surround the coil part. Forming a core portion by adsorbing the magnetic powder by electromagnetic adsorption;
With the core portion formed, the step of taking out the coil portion from the container and applying a binder to the coil portion together with the magnetic powder that is electromagnetically adsorbed;
In a state where the binder is applied to the coil part together with the magnetic powder that is electromagnetically adsorbed, the current value to the coil part is increased, and the binder is cured by heat generated from the coil part, and the magnetic powder And a step of forming a binder layer formed by coating the coil portion with the binder.
磁性粉末を入れた容器に線材を螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を吸着してコア部を形成する工程と、
前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布する工程と、
電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布した状態で、前記コイル部を加熱器にて加熱し、前記結着材を加熱硬化して前記磁性粉末と前記コイル部とを前記結着材で被覆して成る結着材層を形成する工程と
を備えたことを特徴とするインダクタの製造方法。
A coil part formed by forming a linear winding formed by winding a wire in a spiral shape in a container containing magnetic powder in a donut shape is arranged, and a current is passed through the coil part to surround the coil part. Forming a core portion by adsorbing the magnetic powder by electromagnetic adsorption;
With the core portion formed, the step of taking out the coil portion from the container and applying a binder to the coil portion together with the magnetic powder that is electromagnetically adsorbed;
In a state where a binder is applied to the coil part together with the magnetic powder that is electromagnetically adsorbed, the coil part is heated with a heater, and the binder is heated and cured to provide the magnetic powder and the coil part. And a step of forming a binder layer formed by coating the binder with the binder.
結着材を付着した磁性粉末を入れた容器内に線材を螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を前記コイル部に電磁吸着してコア部を形成する工程と、
前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、前記コイル部への電流値を高めて前記結着材を加熱硬化して前記磁性粉末と前記コイル部とを前記結着材で被覆して成る結着材層を形成する工程と
を備えたことを特徴とするインダクタの製造方法。
A coil part formed by forming a linear winding formed by spirally winding a wire in a donut shape is placed in a container containing magnetic powder with a binder attached thereto, and a current is passed through the coil part. Forming a core part by electromagnetically adsorbing the magnetic powder to the coil part by electromagnetic adsorption around the coil part;
In a state where the core portion is formed, the coil portion is taken out from the container, the current value to the coil portion is increased, the binder is heated and cured, and the magnetic powder and the coil portion are bonded to the binder. And a step of forming a binder layer formed by coating with an inductor.
結着材を付着した磁性粉末を入れた容器内に線材を螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を前記コイル部に電磁吸着してコア部を形成する工程と、
前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、前記コイル部を加熱器にて加熱し、前記結着材を加熱硬化して前記磁性粉末と前記コイル部とを前記結着材で被覆して成る結着材層を形成する工程と
を備えたことを特徴とするインダクタの製造方法。
A coil part formed by forming a linear winding formed by spirally winding a wire in a donut shape is placed in a container containing magnetic powder with a binder attached thereto, and a current is passed through the coil part. Forming a core part by electromagnetically adsorbing the magnetic powder to the coil part by electromagnetic adsorption around the coil part;
With the core portion formed, the coil portion is taken out from the container, the coil portion is heated with a heater, the binder is heat-cured, and the magnetic powder and the coil portion are bound together. And a step of forming a binder layer formed by coating with a material.
磁性粉末を入れた容器に複数の線材を同時に螺旋状に巻回するとともにドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を吸着してコア部を形成する工程と、
前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布する工程と、
電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布した状態で、前記コイル部への電流値を高め、前記線材からの発熱で前記結着材を硬化させ、前記磁性粉末と前記線材とを前記結着材で被覆して成る結着材層を形成する工程と
を備えたことを特徴とするインダクタの製造方法。
A coil portion formed by winding a plurality of wires simultaneously in a spiral shape in a container containing magnetic powder and forming a donut shape is arranged, and an electric current is passed through the coil portion to cause electromagnetic adsorption around the coil portion. Adsorbing the magnetic powder to form a core part;
With the core portion formed, the step of taking out the coil portion from the container and applying a binder to the coil portion together with the magnetic powder that is electromagnetically adsorbed;
In a state where a binder is applied to the coil part together with the magnetic powder that is electromagnetically adsorbed, the current value to the coil part is increased, and the binder is cured by heat generated from the wire, and the magnetic powder And a step of forming a binder layer formed by coating the wire with the binder. A method for manufacturing an inductor, comprising:
磁性粉末を入れた容器に複数の線材を同時に螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を吸着してコア部を形成する工程と、
前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布する工程と、
電磁吸着されている前記磁性粉末とともに前記コイル部に結着材を塗布した状態で、加熱器にて前記結着材を加熱硬化して前記磁性粉末と前記線材とを前記結着材で被覆して成る結着材層を形成する工程と
を備えたことを特徴とするインダクタの製造方法。
A coil part formed by forming a linear winding formed by spirally winding a plurality of wires in a container containing magnetic powder in a donut shape is arranged, and a current is passed through the coil part to supply the coil part. Forming a core part by adsorbing the magnetic powder by electromagnetic adsorption around
With the core portion formed, the step of taking out the coil portion from the container and applying a binder to the coil portion together with the magnetic powder that is electromagnetically adsorbed;
In a state where the binder is applied to the coil portion together with the magnetic powder that is electromagnetically adsorbed, the binder is heated and cured with a heater to coat the magnetic powder and the wire with the binder. And a step of forming a binder layer comprising: a method of manufacturing an inductor.
結着材を付着した磁性粉末を入れた容器内に複数の線材を同時に螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を前記コイル部に電磁吸着してコア部を形成する工程と、
前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、前記コイル部への電流値を高めて前記結着材を加熱硬化して前記磁性粉末と前記コイル部とを前記結着材で被覆して成る結着材層を形成する工程と
を備えたことを特徴とするインダクタの製造方法。
A coil portion formed by forming a linear winding formed by spirally winding a plurality of wire rods in a donut shape in a container containing magnetic powder with a binder attached thereto is arranged, and current is supplied to the coil portion. And forming a core part by electromagnetically adsorbing the magnetic powder to the coil part by electromagnetic adsorption around the coil part;
In a state where the core portion is formed, the coil portion is taken out from the container, the current value to the coil portion is increased, the binder is heated and cured, and the magnetic powder and the coil portion are bonded to the binder. And a step of forming a binder layer formed by coating with an inductor.
結着材を付着した磁性粉末を入れた容器内に複数の線材を同時に螺旋状に巻回して成る直線状の巻線をドーナツ状に形成して成るコイル部を配し、前記コイル部に電流を通電して該コイル部の周囲に電磁吸着により前記磁性粉末を前記コイル部に電磁吸着してコア部を形成する工程と、
前記コア部を形成した状態で、前記コイル部を前記容器より取り出し、前記コイル部を加熱器にて加熱し、前記結着材を加熱硬化して前記磁性粉末と前記コイル部とを前記結着材で被覆して成る結着材層を形成する工程と
を備えたことを特徴とするインダクタの製造方法。
A coil portion formed by forming a linear winding formed by spirally winding a plurality of wire rods in a donut shape in a container containing magnetic powder with a binder attached thereto is arranged, and current is supplied to the coil portion. And forming a core part by electromagnetically adsorbing the magnetic powder to the coil part by electromagnetic adsorption around the coil part;
With the core portion formed, the coil portion is taken out from the container, the coil portion is heated with a heater, the binder is heat-cured, and the magnetic powder and the coil portion are bound together. And a step of forming a binder layer formed by coating with a material.
請求項1ないし請求項8の何れか1項記載のインダクタの製造方法において、
前記結着材層は、外装のみが硬化し、内部の前記磁性粉末が前記結着材により拘束されていない
ことを特徴とするインダクタの製造方法。
In the manufacturing method of the inductor according to any one of claims 1 to 8,
In the method of manufacturing an inductor, only the exterior of the binder layer is cured, and the magnetic powder inside is not constrained by the binder.
請求項1ないし請求項8の何れか1項記載のインダクタの製造方法において、
前記結着材層は、外装および内部の前記磁性粉末が前記結着材により拘束されている
ことを特徴とするインダクタの製造方法。
In the manufacturing method of the inductor according to any one of claims 1 to 8,
The manufacturing method of an inductor, wherein the binder layer has the outer and inner magnetic powders restrained by the binder.
請求項1ないし請求項8の何れか1項載のインダクタの製造方法において、
前記コイル部に通電する電流は、直流、交流、脈流、矩形あるいは直流を重畳した交流である
ことを特徴とするインダクタの製造方法。
In the manufacturing method of the inductor given in any 1 paragraph of Claims 1 thru / or 8,
A method of manufacturing an inductor, wherein the current to be passed through the coil section is a direct current, an alternating current, a pulsating current, a rectangle, or an alternating current in which a direct current is superimposed.
請求項1、請求項2、請求項5、請求項6の何れか1項記載のインダクタの製造方法において、
前記コイル部を電磁吸着している磁性粉末とともに前記結着材に浸漬する
ことを特徴とするインダクタの製造方法。
In the manufacturing method of the inductor according to any one of claims 1, 2, 5, and 6,
The inductor is manufactured by immersing the coil part in the binder together with magnetic powder that is electromagnetically adsorbed.
JP2002373881A 2002-12-25 2002-12-25 Inductor manufacturing method Expired - Fee Related JP3774436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373881A JP3774436B2 (en) 2002-12-25 2002-12-25 Inductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373881A JP3774436B2 (en) 2002-12-25 2002-12-25 Inductor manufacturing method

Publications (2)

Publication Number Publication Date
JP2004207443A JP2004207443A (en) 2004-07-22
JP3774436B2 true JP3774436B2 (en) 2006-05-17

Family

ID=32812053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373881A Expired - Fee Related JP3774436B2 (en) 2002-12-25 2002-12-25 Inductor manufacturing method

Country Status (1)

Country Link
JP (1) JP3774436B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159964A (en) * 2006-12-26 2008-07-10 Nec Tokin Corp Drum-sleeve type inductor
JP5529669B2 (en) * 2010-07-30 2014-06-25 Necトーキン株式会社 Magnetic element manufacturing method and magnetic element
JP6885092B2 (en) * 2017-02-15 2021-06-09 スミダコーポレーション株式会社 Manufacturing method of coil parts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055973B2 (en) * 1980-08-22 1985-12-07 東北金属工業株式会社 Manufacturing method of powder magnetic core and powder magnetic core coil
JP2958807B2 (en) * 1990-10-30 1999-10-06 株式会社トーキン Inductor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004207443A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
US6392525B1 (en) Magnetic element and method of manufacturing the same
CN1627457B (en) Magnetic component and its making method
TWI362047B (en) Inductor and manufacture method thereof
JP5561536B2 (en) Reactor and converter
JP2001185421A (en) Magnetic device and manufacuring method thereof
JP2009033051A (en) Core for reactor
JP6165115B2 (en) Soft magnetic composite material and magnetic core, reactor and reactor manufacturing method using the same
KR20050007450A (en) Low profile high current multiple gap inductor assembly
US20180151284A1 (en) Magnetic element
JP2958807B2 (en) Inductor and manufacturing method thereof
JP2017037888A (en) Magnetic powder mold coil and method of manufacturing the same
KR20150056771A (en) Optimal inductor
JP2002313632A (en) Magnetic element and its manufacturing method
JP6532198B2 (en) Method of manufacturing magnetic core using soft magnetic composite material, method of manufacturing reactor
KR102098623B1 (en) Molded Inductor and manufacturing method thereof
JP2011129593A (en) Reactor
TW202113883A (en) Inductor device and method of fabricating the same
JP3774436B2 (en) Inductor manufacturing method
JP2013222741A (en) Reactor
WO2017110567A1 (en) Composite material molded body, reactor and method for producing composite material molded body
CN110402474A (en) Coil molding body and reactor
JPH1167522A (en) Wire wound electronic component
JP3138490B2 (en) Manufacturing method of chip inductor
JP2005005644A (en) Wire wound electronic component and resin composition
JP2004158570A (en) Choke coil and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060217

R150 Certificate of patent or registration of utility model

Ref document number: 3774436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees