JP3774246B2 - Container sealing surface inspection - Google Patents

Container sealing surface inspection Download PDF

Info

Publication number
JP3774246B2
JP3774246B2 JP10463395A JP10463395A JP3774246B2 JP 3774246 B2 JP3774246 B2 JP 3774246B2 JP 10463395 A JP10463395 A JP 10463395A JP 10463395 A JP10463395 A JP 10463395A JP 3774246 B2 JP3774246 B2 JP 3774246B2
Authority
JP
Japan
Prior art keywords
sealing surface
container
light
sensor means
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10463395A
Other languages
Japanese (ja)
Other versions
JPH0843320A (en
Inventor
ジエイムズ・エー・リングリーン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owens Brockway Glass Container Inc
Original Assignee
Owens Brockway Glass Container Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Brockway Glass Container Inc filed Critical Owens Brockway Glass Container Inc
Publication of JPH0843320A publication Critical patent/JPH0843320A/en
Application granted granted Critical
Publication of JP3774246B2 publication Critical patent/JP3774246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9054Inspection of sealing surface and container finish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Abstract

Apparatus for inspecting the sealing surfaces (36) of containers (22) that includes a light source (42) positioned to direct a narrow beam (44) of light energy at an acute angle onto the sealing surface of a container as the container is rotated about its central axis. A light sensor (46) is disposed to receive the narrow beam (45) of light energy reflected from the sealing surface, and provides an output signal that varies as a function of position of incidence of the reflected light beam on the sensor. The sensor is coupled to associated electronics (52) for providing information indicative of container height, and a signal for controlling separation of a container from the conveyor system when height of the container, warp or dip of the container sealing surface, or cocked finish at the container exceeds predetermined standards. <IMAGE>

Description

【0001】
【産業上の利用分野】
本発明は容器の検査、特に容器の密封面におけるレベルの変化量を測定する方法および装置に関連する。
【0002】
【従来の技術】
米国特許第3,313,409号は、一連の検査ステーションを通り1個の星形車が容器を移送するガラス容器を検査する装置を開示している。検査ステーションの1つにおいて、各容器の選択された寸法パラメータは、センサが容器パラメータの変化量の関数として変化する出力信号を提供するように、上記容器を上記センサに結合したローラに接触させ、かつ上記容器をその中央軸線の周りに回転させることにより検査される。特に、容器の高さ、密封面の歪および下向傾斜、および容器口部の上向傾斜は、上記容器が回転するにつれて容器密封面に接触するローラにより測定される。上記ローラは線形可変差動変成器(LVDT)センサに結合され、密封面におけるレベル(高さ)の偏差または変位量を表示するアナログ電気信号を提供する。これらの信号は適当な電子装置に送られ、もしも測定信号が所定の標準値および規格からはずれている時には、容器を移送ラインから分離するため排除プランジャを付勢する。
前記特許に開示され、これの譲受人に譲渡された検査システムは実質的な商業上の成功を得てはいるが、改良点が望まれたまま残されている。容器密封面に接触するローラは、機械的摩耗を受けやすい。これらのローラは前記密封面における汚染を生じることもある。これらのローラの寸法は、関連使用できる容器の寸法、および検出できるレベル変化量の寸法(分解能)を制限する。可動部品は保守および修理を必要とする。本発明の一般目的は、当技術における前記欠陥を処理しかつ克服する上記容器密封面におけるレベルの変化量に対して、容器の密封面を検査する装置および寸法を提供することにある。
【0003】
【発明が解決しようとする課題】
本発明の一目的は、計量装置が測定面に接触しない電気光学技術を用いる、容器の密封面のレベル変化量を測定する装置と方法を提供することにある。本発明の他の一目的は、上記目的を達成する一方で、延長された作動寿命にわたって経済的に満足されかつ確実な、前記特性をもった方法および装置を提供することにある。本発明のさらに他の一目的および特定目的は、密封面における容器の高さを測定し、密封面における歪および下向傾斜を測定し、かつ容器口部の上向傾斜を測定する電気光学的非接触方法および装置を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、光エネルギーの狭いビームを密封面上に指向し、ビームが光センサに反射されることにより、容器の密封面におけるレベルの変化量を電気光学的に測定する方法および装置を意図するものである。上記センサは、このセンサ上に反射された光ビームの入射位置の関数として変化する電気出力を提供するものである。このように、容器密封面のレベルのどんな変化量も、上記反射された光ビームがセンサ上に衝突する点または位置で対応変化量を生じるので、上記センサは密封面レベルの一次関数として変化する出力信号を供給する。
本発明の現在の好適実施例による容器口部の密封面を検査する装置は、上記容器がその中心軸線周りに回転する時に、容器の密封面上に光エネルギーの狭いビームを指向するように配置された光源を含む。光センサは上記密封面で反射した光エネルギーの狭いビームを受信するように配置され、かつ上記反射した光ビームの、上記センサ上の入射位置の関数として変化する出力を提供する。上記センサは関連電子装置に結合され、容器の高さを表示する情報、および上記容器の高さ、容器の密封面の歪または下向傾斜、または容器の上向傾斜が予め決められた標準値を越える時に、前記コンベヤシステムから容器を分離させる制御用信号を提供する。
【0005】
本発明の好適実施例の光源および光センサは、容器の密封面上方に配置され、そして相互に関してかつ容器密封面に関して方向づけられるので、上記容器密封面上に入射し、そして、容器密封面から反射されたビームは、上記密封面に直角な平面内に在る。本発明の一実施例において、2個の光源/センサ組が上記容器の横方向対向面に配置され、各センサについては、このセンサに密接する容器密封面のレベルの関数として変化する出力信号を供給する。上記2個のセンサは電子回路に結合され、上記2個のセンサ出力信号の組合せ関数として密封面のレベルの変化量を測定する。このように、密封面の下向傾斜および上向傾斜容器口部は、センサ出力信号間の差の関数として識別および測定することもでき、一方歪みのある密封面は、センサ出力信号の和の関数として識別および測定することもできる。検査ステーションを通って移送される連続する容器の高さ、および高さの変化量は、上記センサのいずれか一方または両方の出力の関数として測定することもできる。
本発明は、その付加目的、特徴および利点と共に、下記の説明、添付の特許請求の範囲および添付図面から最も良く理解されよう。
【0006】
【実施例】
図1について説明すると、コンベヤ20は通常星形車(図示せず)およびすべり板21を含み、密封面検査ステーション24の位置内へ連続する容器22をもたらすように、成形容器の源に配置され、かつ連接される。上記星形車コンベヤ容器検査配列は、例えば前記米国特許第3,313,409号に発表されている。駆動ローラのようなびん回転装置26は、上記コンベヤにより容器が固定位置に保持される時に、ステーション24で各容器22に接触し、かつその中心軸線25の周りに容器を回転させるように配置される。エンコーダ28は、容器回転の増分を表示する信号を供給するため容器回転機構に連接される。スイッチのような検出器30は、ステーション24に容器22の存在を表示する信号を提供するように配置される。
【0007】
図1に示された本発明の実施において、容器22は円筒形本体32および本体肩部35から上方に突出するほぼ円筒形の首部34を備えた成形ガラスびんからなる。上記容器口部は、軸方向表面仕上キャップ密封面36に終る首部34の上部を含み、上記密封面36は本発明に従って検査される。らせんねじ山38は容器口を取り巻く口部壁の外面内に一体成形されるか、もしくはリップまたは肩部40が口部壁の外面上に成形され、それをおおってキャップを容器に付加するため常法どおりキャップスカートがクリンプされる。本発明は、上記キャップを嵌める密封面36のレベルの高さおよび変化量を検査する方法および装置に向けられている。
レーザまたは白熱光源のような、光源42はステーション24の容器22の密封面36上方に置かれ、密封面36上に鋭角をなして下方に光エネルギーの狭い視準されたビーム44を指向するように方向づけられる。カメラ46もまたステーション24の容器22の密封面36上方に置かれ、そして密封面36から反射されたビーム45を受信するように方向づけられる。カメラ46は集束レンズ48および光センサ50を含み、光センサ50はこのセンサ上の反射された光エネルギーの入射ばかりでなく、このセンサ上の入射の位置もまた表示する電気出力信号を供給する。情報処理装置52は、検査ステーション24の容器22の存在を表示する検出器30からの信号、および容器回転の増分を表示するエンコーダ28からの信号を受信する。カメラ46は同様に情報処理装置52に結合され、処理装置52からの制御信号を受信し、情報処理装置にセンサ50上の反射された光ビーム45の入射の位置を表示する出力信号を供給する。光源42は同様に処理装置52により制御される。
【0008】
図1の実施例の作動が、図2Aおよび2Bに示される。図2Aにおいて、入射ビーム44は点Aで密封面36と交わり、45で反射され、レンズ48を経て点Bにおいてセンサ50に衝突する。図2Bにおいて、ビーム44は密封面36内の下向傾斜すなわちくぼみ36a内の点A′に入射する。その結果として、反射した光ビーム45はレンズ48を通り異なる点B′でセンサ50に入射する。センサ50はセンサ上の入射の位置を表示する出力信号を情報処理装置52(図1)に供給するので、図2Bの上記出力信号は、図2Aの信号とは異なっている。従って、情報処理装置52は、くぼみ36aが出会う容器回転の点における密封面のレベルの変化量の表示、および図2Aの入射基準点Bと、図2Bの変化した入射点B′との間のずれに対応する大きさの表示を受信する。くぼみ36aが事実上弧状寸法である場合、図2の情況の変更したセンサ出力信号は、容器回転の多数の増分に対応して維持されよう。また他方では、隆起部36bが上記密封面と出会うならば、センサ50上の反射された光ビーム45の入射点B′は反対方向に変わり、情報処理装置52に対応表示を供給する。
【0009】
従って、図1の装置は、容器が回転する時の、下向傾斜、歪または上向傾斜の口部を示す密封面のレベルの変化ばかりでなく、容器が回転する時の、上記密封面の平均の高さもまた、情報処理装置52へ信号を供給する。密封面の高さのこのような平均および/または変化量は、適当に54で表示することもでき、かつ処理装置52内で対応する標準値またはしきい値と比較される。もしも平均密封面の高さが規格外にあれば、またはもしも歪、下向傾斜または上向傾斜密封面測定値が合格規格外にあれば、不合格信号が発生して、その容器を工程ラインから除外する適当な排除機構に信号を送る。
【0010】
光源42とセンサ50は、通常ステーション24の容器22の密封面36上方に配置されるので、入射光ビーム44と反射光ビーム45は上記密封面の基準面に直角な平面内に配置される。センサ50は、入射および反射光ビームの平面内にラテラル効果軸線を備えたラテラル効果ダイオードを含むこともできる。そのようなラテラルレフレクトダイオードは、ダイオード面上に反射された光ビームの入射の位置の関数として大きさが変化するアナログ信号として情報処理装置52にアナログ信号を供給する。別法として、センサ50は入射および反射光ビームの平面内に一直線に配置された複数の光感応素子を有する電荷結合素子(CCD)配列センサからなることもある。そのような配列においては、センサ配列は情報処理装置52により走査され、上記センサ配列上の反射光ビームの入射位置は、各種素子出力信号の振幅の関数として決定される。そのような配列センサは通常線形配列センサからなり、または1行または1列が密封面レベル測定目的のためモニタされる、マトリックス配列センサで構成することもできる。
【0011】
図3は変型検査ステーション24aを示し、それぞれの光ビーム44を下方に密封面に指向し、かつ容器の口の横方向対向側面からの反射された光ビーム45を受信するように、1対の光源/センサモジュール56,58が配置される。図3の対になった光源/センサ配列は、それぞれ光源/センサモジュール56,58の出力が、出力信号の組合せた関数として容器22の高さ特性を決定するため実時間で比較することもできるという固有利点を有する。すなわち、上向傾斜口部および密封面38の下向傾斜が容器の口の対向側面の密封面の高さの差の関数として測定される一方で、歪密封面はセンサ出力信号の和の関数として識別することもできる。再言すると、密封面高さの変化量の大きさは、54(図1)で表示することもでき、かつ排除信号の発生用の適当な標準値または規格と比較することもできる。
【図面の簡単な説明】
【図1】本発明の現在の一好適実施例による、容器の密封面を検出する装置の略示線図である。
【図2A】図1に説明した実施例の作動を説明する部分略示線図である。
【図2B】図1に説明した実施例の作動を説明する部分略示線図である。
【図3】本発明の変型実施例の部分略示線図である。
【符号の説明】
20 コンベヤ
21 すべり板
22 容器
24 検査ステーション
25 中心軸線
26 びん回転装置
28 エンコーダ
30 検出器
32 円筒形本体
34 円筒形首部(口部の一部)
35 肩部
36 密封面
36a 下向傾斜すなわちくぼみ
38 らせんねじ山
42 光源
44 視準された狭い光エネルギーの入射ビーム
45 反射した光ビーム
46 カメラすなわち光センサ手段
48 集束レンズ
50 光センサ
52 情報処理装置すなわち変化量検出手段
54 表示
56,58 光源/センサモジュール
[0001]
[Industrial application fields]
The present invention relates to a method and apparatus for inspecting containers, and in particular, measuring changes in level at the sealing surface of the container.
[0002]
[Prior art]
U.S. Pat. No. 3,313,409 discloses an apparatus for inspecting glass containers through which a single star wheel transports containers through a series of inspection stations. At one of the inspection stations, a selected dimensional parameter for each container causes the container to contact a roller coupled to the sensor such that the sensor provides an output signal that varies as a function of the amount of change in the container parameter. And inspected by rotating the container about its central axis. In particular, the height of the container, the distortion and downward inclination of the sealing surface, and the upward inclination of the container mouth are measured by a roller that contacts the container sealing surface as the container rotates. The roller is coupled to a linear variable differential transformer (LVDT) sensor and provides an analog electrical signal indicating the level deviation or displacement at the sealing surface. These signals are sent to the appropriate electronic device, and if the measurement signal deviates from a predetermined standard value and specification, the reject plunger is energized to separate the container from the transfer line.
Although the inspection system disclosed in the above-mentioned patent and assigned to its assignee has gained substantial commercial success, improvements remain desirable. Rollers that contact the container sealing surface are susceptible to mechanical wear. These rollers can also contaminate the sealing surface. The dimensions of these rollers limit the dimensions of the associated containers that can be used and the level (resolution) of the level variation that can be detected. Moving parts require maintenance and repair. It is a general object of the present invention to provide an apparatus and dimensions for inspecting a sealing surface of a container for variations in the level of the container sealing surface that addresses and overcomes the deficiencies in the art.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide an apparatus and a method for measuring a level change amount of a sealing surface of a container using an electro-optic technique in which a weighing device does not contact a measurement surface. Another object of the present invention is to provide a method and apparatus with the above characteristics that achieve the above objectives while being economically satisfactory and reliable over an extended operating life. Still another object and specific object of the present invention is to measure the height of the container at the sealing surface, measure strain and downward inclination at the sealing surface, and measure the upward inclination of the container mouth. It is to provide a non-contact method and apparatus.
[0004]
[Means for Solving the Problems]
The present invention contemplates a method and apparatus for directing a narrow beam of light energy onto a sealing surface and electro-optically measuring the level change in the sealing surface of the container by the beam being reflected by the optical sensor. Is. The sensor provides an electrical output that varies as a function of the incident position of the light beam reflected on the sensor. Thus, any change in the level of the container sealing surface will result in a corresponding change at the point or position where the reflected light beam impinges on the sensor, so that the sensor changes as a linear function of the sealing surface level. Supply output signal.
An apparatus for inspecting a sealing surface of a container mouth according to a presently preferred embodiment of the present invention is arranged to direct a narrow beam of light energy on the sealing surface of the container as the container rotates about its central axis. Light source included. An optical sensor is arranged to receive a narrow beam of light energy reflected by the sealing surface and provides an output that varies as a function of the incident position of the reflected light beam on the sensor. The sensor is coupled to the associated electronic device, information indicating the height of the container, and a standard value for which the height of the container, the distortion or downward inclination of the sealing surface of the container, or the upward inclination of the container is predetermined. A control signal is provided for separating containers from the conveyor system.
[0005]
The light source and light sensor of the preferred embodiment of the present invention are disposed above the sealing surface of the container and are oriented with respect to each other and with respect to the container sealing surface so that they are incident on and reflected from the container sealing surface. The resulting beam lies in a plane perpendicular to the sealing surface. In one embodiment of the present invention, two light source / sensor pairs are disposed on the laterally opposed surfaces of the container, and each sensor has an output signal that varies as a function of the level of the container sealing surface in close contact with the sensor. Supply. The two sensors are coupled to an electronic circuit and measure the level change of the sealing surface as a combined function of the two sensor output signals. Thus, the downwardly inclined and upwardly inclined container mouths of the sealing surface can also be identified and measured as a function of the difference between the sensor output signals, while the distorted sealing surface is the sum of the sensor output signals. It can also be identified and measured as a function. The height of successive containers transferred through the inspection station and the amount of change in height can also be measured as a function of the output of either or both of the above sensors.
The invention, together with its additional objects, features and advantages, will be best understood from the following description, the appended claims and the accompanying drawings.
[0006]
【Example】
Referring to FIG. 1, the conveyor 20 typically includes a star wheel (not shown) and a sliding plate 21 and is located at the source of the shaped container to provide a continuous container 22 into the location of the sealing surface inspection station 24. And connected. The star wheel conveyor container inspection arrangement is disclosed, for example, in the aforementioned U.S. Pat. No. 3,313,409. A bottle rotator 26, such as a drive roller, is arranged to contact each container 22 at station 24 and rotate the container about its central axis 25 when the conveyor holds the container in a fixed position. The The encoder 28 is connected to the container rotation mechanism for providing a signal indicating the increment of the container rotation. A detector 30 such as a switch is arranged to provide a signal to the station 24 indicating the presence of the container 22.
[0007]
In the practice of the present invention shown in FIG. 1, the container 22 comprises a molded glass bottle with a cylindrical body 32 and a generally cylindrical neck 34 protruding upwardly from a body shoulder 35. The container mouth includes an upper portion of the neck 34 that terminates in an axial surface finish cap sealing surface 36, which is inspected according to the present invention. The helical thread 38 is integrally formed in the outer surface of the mouth wall surrounding the container mouth, or a lip or shoulder 40 is formed on the outer surface of the mouth wall to cover it and add a cap to the container. The cap skirt is crimped as usual. The present invention is directed to a method and apparatus for inspecting the level height and variation of the sealing surface 36 for fitting the cap.
A light source 42, such as a laser or incandescent light source, is placed above the sealing surface 36 of the container 22 of the station 24 and is directed at an acute angle on the sealing surface 36 to direct a narrow collimated beam 44 of light energy downward. Oriented to. A camera 46 is also placed over the sealing surface 36 of the container 22 of the station 24 and is directed to receive the beam 45 reflected from the sealing surface 36. The camera 46 includes a focusing lens 48 and an optical sensor 50 that provides an electrical output signal that displays not only the incidence of reflected light energy on the sensor, but also the location of the incidence on the sensor. The information processing device 52 receives a signal from the detector 30 that indicates the presence of the container 22 at the inspection station 24 and a signal from the encoder 28 that indicates the increase in container rotation. Similarly, the camera 46 is coupled to the information processing device 52, receives a control signal from the processing device 52, and supplies the information processing device with an output signal that displays the position of incidence of the reflected light beam 45 on the sensor 50. . The light source 42 is similarly controlled by the processing device 52.
[0008]
The operation of the embodiment of FIG. 1 is shown in FIGS. 2A and 2B. In FIG. 2A, incident beam 44 intersects sealing surface 36 at point A, is reflected at 45, and strikes sensor 50 at point B via lens 48. In FIG. 2B, the beam 44 is incident at a point A ′ in the downward slope or depression 36a in the sealing surface 36. As a result, the reflected light beam 45 passes through the lens 48 and enters the sensor 50 at a different point B ′. Since the sensor 50 supplies an output signal indicating the position of incidence on the sensor to the information processing device 52 (FIG. 1), the output signal in FIG. 2B is different from the signal in FIG. 2A. Accordingly, the information processing device 52 displays the amount of change in the level of the sealing surface at the point of container rotation where the indentation 36a meets, and between the incident reference point B in FIG. 2A and the changed incident point B ′ in FIG. 2B. A display having a size corresponding to the shift is received. If the recess 36a is substantially arcuate in size, the modified sensor output signal of FIG. 2 will be maintained in response to multiple increments of container rotation. On the other hand, if the raised portion 36 b meets the sealing surface, the incident point B ′ of the reflected light beam 45 on the sensor 50 changes in the opposite direction and supplies a corresponding display to the information processing device 52.
[0009]
Thus, the apparatus of FIG. 1 not only changes the level of the sealing surface that indicates a downwardly inclined, distorted or upwardly inclined mouth as the container rotates, but also the sealing surface when the container rotates. The average height also provides a signal to the information processing device 52. Such an average and / or amount of change in the height of the sealing surface may be suitably displayed at 54 and compared to a corresponding standard value or threshold value within the processor 52. If the average sealing surface height is out of specification, or if the strain, down-tilt or up-tilt sealing surface measurements are out of acceptance, a fail signal is generated and the container is removed from the process line. Signals the appropriate exclusion mechanism to exclude from.
[0010]
Since the light source 42 and the sensor 50 are normally disposed above the sealing surface 36 of the container 22 of the station 24, the incident light beam 44 and the reflected light beam 45 are disposed in a plane perpendicular to the reference surface of the sealing surface. The sensor 50 can also include a lateral effect diode with a lateral effect axis in the plane of the incident and reflected light beams. Such a lateral reflect diode supplies an analog signal to the information processing device 52 as an analog signal whose magnitude changes as a function of the position of incidence of the light beam reflected on the diode surface. Alternatively, sensor 50 may comprise a charge coupled device (CCD) array sensor having a plurality of photosensitive elements arranged in a straight line in the plane of the incident and reflected light beams. In such an array, the sensor array is scanned by the information processing device 52, and the incident position of the reflected light beam on the sensor array is determined as a function of the amplitude of the various element output signals. Such array sensors usually consist of linear array sensors, or can consist of matrix array sensors where one row or column is monitored for sealing surface level measurement purposes.
[0011]
FIG. 3 shows a modified inspection station 24a, with a pair of light beams 44 directed downward to a sealing surface and receiving reflected light beams 45 from laterally opposed sides of the container mouth. Light source / sensor modules 56 and 58 are arranged. The paired light source / sensor array of FIG. 3 can also be compared in real time to determine the height characteristics of the container 22 as the output of the light source / sensor modules 56, 58, respectively, as a function of the combined output signals. It has the inherent advantage of That is, the upwardly inclined mouth and the downward slope of the sealing surface 38 are measured as a function of the height difference between the sealing surfaces of the opposite sides of the container mouth, while the strain sealing surface is a function of the sum of the sensor output signals. Can also be identified. In other words, the magnitude of the change in sealing surface height can be displayed at 54 (FIG. 1) and compared to an appropriate standard value or standard for the generation of an exclusion signal.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an apparatus for detecting a sealing surface of a container according to a presently preferred embodiment of the present invention.
2A is a partial schematic diagram illustrating the operation of the embodiment described in FIG. 1. FIG.
FIG. 2B is a partial schematic diagram illustrating the operation of the embodiment described in FIG. 1;
FIG. 3 is a partial schematic diagram of a modified embodiment of the present invention.
[Explanation of symbols]
20 Conveyor 21 Sliding plate 22 Container 24 Inspection station 25 Center axis 26 Bottle rotation device 28 Encoder 30 Detector 32 Cylindrical body 34 Cylindrical neck (part of mouth)
35 shoulder 36 sealing surface 36a downward slope or depression 38 helical thread 42 light source 44 collimated narrow light energy incident beam 45 reflected light beam 46 camera or light sensor means 48 focusing lens 50 light sensor 52 information processing device That is, change amount detecting means 54 display 56, 58 light source / sensor module

Claims (12)

容器(22)の口部(34)を検査するための検査装置であって、該容器(22)は、容器キャップに密封係合すべく軸方向に面した密封面(36)によって囲まれた開放口と中心軸(25)を備え、前記検査装置は、
前記中心軸(25)と一致する回転軸を中心として前記容器(22)を回転させるための回転手段(26)、
前記回転手段内の容器の密封面(36)上に該密封面(36)に対して鋭角にて光エネルギーの入射ビーム(44)を送るように位置決めされた光源(42)、
前記密封面(36)で反射した光エネルギー(45)を受けるように配置された光センサ手段(46)、及び
前記容器の密封面(36)でのレベルの変化(36a、36b)を検出するための検出手段(52)
を含み、前記光源(42)及び前記光センサ手段(46)は、前記容器(22)の密封面(36)上方に配置され、且つ、前記入射ビーム(44)及び前記容器の密封面(36)から反射するビーム(45)が前記密封面(36)に垂直な平面内にあるように位置決めされている、上記検査装置において、
前記光源(42)から前記光センサ手段(46)への光(44、45)が、容器(22)の回転軸たる中心軸(25)に平行で且つ検査される密封面(36)の半径に等しい距離だけ離れた平面内にあり、
前記入射ビーム(44)は、前記密封面(36)と1つの位置又は点(A、A’、A”)で交わる細い視準ビームであり、その反射光ビーム(45)は、前記光センサ手段(46)上にて対応する位置又は点(B、B’、B”)に突き当たり、
前記検出手段(52)は、対応する位置又は点(B、B’、B”)での前記センサ手段(46、50)上の(B、B’、B”)の位置を前記光源(42)及び前記センサ手段(46)に対する密封面(36)の実際のレベルとして解釈することにより、密封面(36)のレベルの変化(36a、36b)を検出するように構成され、
該変化(36a、36b)は、容器(22)が回転している時に前記光センサ手段(46、50)上における反射光ビーム(45)の入射位置の関数として前記検出手段(52)により検出されることを特徴とする上記検査装置。
An inspection device for inspecting a mouth (34) of a container (22), the container (22) being surrounded by an axially facing sealing surface (36) for sealing engagement with a container cap includes an open port and the central axis and (25), said inspection device,
A rotating means (26) for rotating the container (22) around a rotation axis coinciding with the central axis (25);
A light source (42) positioned to deliver an incident beam (44) of light energy onto the sealing surface (36) of the container in the rotating means at an acute angle to the sealing surface (36 );
Optical sensor means (46) arranged to receive light energy (45) reflected by the sealing surface (36) , and detecting level changes (36a, 36b) at the sealing surface (36) of the container. Detection means for (52)
The light source (42) and the light sensor means (46) are disposed above the sealing surface (36) of the container (22), and the incident beam (44) and the sealing surface (36 of the container). In which the beam (45) reflected from the sealing surface (36) is in a plane perpendicular to the sealing surface (36),
Radiation of the sealing surface (36) where the light (44, 45) from the light source (42) to the light sensor means (46) is parallel to the central axis (25) which is the rotational axis of the container (22) and is inspected. In a plane separated by a distance equal to
The incident beam (44) is a narrow collimated beam that intersects the sealing surface (36) at one position or point (A, A ′, A ″), and its reflected light beam (45) is the optical sensor. Hitting the corresponding position or point (B, B ′, B ″) on the means (46),
Said detecting means (52), the corresponding position or point (B, B ', B ") said light sensor means at (46, 50) point on the (B, B', B") of the position of the Configured to detect a change (36a, 36b) in the level of the sealing surface (36) by interpreting it as the actual level of the sealing surface (36) relative to the light source (42) and the light sensor means (46);
The change (36a, 36b) is detected by the detection means (52) as a function of the incident position of the reflected light beam (45) on the light sensor means (46 , 50 ) when the container (22) is rotating. It is the inspection apparatus according to claim and Turkey.
協同する第1光源(42)及び第1光センサ手段(46)の第1対(56)、並びに協同する第2光源(42)及び第2光センサ手段(46)の第2対(58)が、回転軸(25)の横方向に対向した両側に配置され、そして
それぞれの入射ビーム(44)及び反射ビーム(45)が、容器の密封面(36)に垂直で且つ容器の口の幅に応じた距離だけ互いに離れた平面内にある、請求項1に記載の装置。
A first pair (56) of cooperating first light source (42) and first light sensor means (46), and a second pair (58) of cooperating second light source (42) and second light sensor means (46). Are arranged on opposite sides of the axis of rotation (25) and the respective incident beam (44) and reflected beam (45) are perpendicular to the sealing surface (36) of the container and the width of the container mouth The apparatus of claim 1, wherein the apparatus is in a plane separated from each other by a distance corresponding to .
前記変化の検出手段(52)が、前記第1及び第2対(56、58)の各々における反射光ビーム(45)の入射位置の変化の組合せ関数として、前記密封面(36)のレベルの変化を検出するための手段を含む、請求項2に記載の装置。  The change detection means (52) is adapted to detect the level of the sealing surface (36) as a combined function of changes in the incident position of the reflected light beam (45) in each of the first and second pairs (56, 58). The apparatus of claim 2 including means for detecting a change. 前記第1及び第2対(56、58)の各々が、関連する反射ビーム(45)の入射位置の関数として変化する電気信号を与え、そして
前記変化の検出手段(52)が、前記信号の和に応答する手段を含む、請求項3に記載の装置。
Each of the first and second pairs (56, 58) provides an electrical signal that varies as a function of the incident position of the associated reflected beam (45), and the change detection means (52) comprises 4. The apparatus of claim 3, comprising means for responding to the sum.
前記第1及び第2対(56、58)の各々が、関連する反射ビーム(45)の入射位置の関数として変化する電気信号を与え、そして
前記変化の検出手段(52)が、前記信号の差に応答する手段を含む、請求項3に記載の装置。
Each of the first and second pairs (56, 58) provides an electrical signal that varies as a function of the incident position of the associated reflected beam (45), and the change detection means (52) comprises 4. The apparatus of claim 3, including means for responding to the difference.
前記光センサ手段(46)が、ラテラル効果軸線を前記平面内に備えるように位置決めされたラテラル効果ダイオードを備えたセンサ(50)を含む、請求項1〜5のいずれか一項に記載の装置。  6. Apparatus according to any one of the preceding claims, wherein the light sensor means (46) comprises a sensor (50) comprising a lateral effect diode positioned to comprise a lateral effect axis in the plane. . 前記光センサ手段(46)が、前記平面内に配置されるように位置決めされた光感応素子の配列を備えたセンサ(50)を含む、請求項1〜のいずれか一項に記載の装置。Said light sensor means (46) comprises a sensor (50) having an array of positioning light sensitive element to be placed in the plane, according to any one of claims 1 to 5 . 前記光センサ手段(46)が集束レンズ(48)を含む請求項1〜7のいずれか一項に記載の装置。8. Apparatus according to any one of the preceding claims, wherein the light sensor means (46) comprises a focusing lens (48). 前記光源(42)がレーザからなる請求項1〜8のいずれか一項に記載の装置。  9. A device according to any one of the preceding claims, wherein the light source (42) comprises a laser. 容器(22)の口部を検査する方法であって、前記容器(22)は、容器キャップに密封係合すべく軸方向に面した密封面(36)によって囲まれた開放口と中心軸(25)を備え、前記方法は、
(a)該軸(25)を中心として容器(22)を回転させること、
(b)容器を回転させつつ、光エネルギーの入射ビーム(44)を容器の密封面(36)上に該密封面(36)に対して鋭角にて送り、それにより、前記密封面(36)に垂直な平面内にて密封面(36)から該ビームを反射させること、
(c)密封面(36)から反射した光ビーム(45)を受けるべく、前記垂直な平面内に光センサ手段(46)を位置決めすること、
(d)容器(22)の密封面(36)の変化(36a、36b)を検出するための手段(52)を設けること、
のステップを含む上記方法において、
(a’)検査する領域にて回転する密封面(36)が、光源(42)から光センサ手段(46)への光(44、45)が進む平面内に沿って接線方向に移動し、
(b’)前記入射ビーム(44)が、前記密封面(36)と1つの位置又は点(A、A’、A”)で交わる細い視準ビームであり、その反射光ビーム(45)が、対応する点(B、B’、B”)にて前記光センサ手段(46)に突き当たり、前記センサ手段上のこの点の位置が、前記光センサ手段に対する密封面(36)のレベルにより変化し、
(d’)光センサ手段上の前記点(B、B’、B”)の位置が、容器(22)の密封面(36)の実際のレベルとして解釈され、該レベルの変化(36a、36b)が、容器が回転している時の前記反射光ビーム(45)の前記センサ手段(46)上における入射位置の変化の関数として検出される、
ことを特徴とする上記方法。
A method for inspecting the mouth of a container (22), said container (22) comprising an open mouth surrounded by an axially facing sealing surface (36) for sealing engagement with a container cap and a central shaft ( with 25) and, the method comprising
(A) rotating the container (22) about the axis (25);
(B) While rotating the container, an incident beam (44) of light energy is sent onto the sealing surface (36) of the container at an acute angle with respect to the sealing surface (36) , whereby the sealing surface (36) Reflecting the beam from the sealing surface (36) in a plane perpendicular to
(C) positioning the optical sensor means (46) in the vertical plane to receive the light beam (45) reflected from the sealing surface (36);
(D) providing means (52) for detecting changes (36a, 36b) in the sealing surface (36) of the container (22);
In the above method comprising the steps of:
(A ′) the sealing surface (36) rotating in the region to be inspected moves tangentially along the plane in which the light (44, 45) from the light source (42) to the optical sensor means (46) travels;
(B ′) The incident beam (44) is a narrow collimated beam that intersects the sealing surface (36) at one position or point (A, A ′, A ″), and its reflected light beam (45) is At the corresponding point (B, B ′, B ″) against the optical sensor means (46), the position of this point on the optical sensor means depending on the level of the sealing surface (36) relative to the optical sensor means Change,
(D ′) The position of the point (B, B ′, B ″) on the optical sensor means is interpreted as the actual level of the sealing surface (36) of the container (22) and the change in level (36a, 36b). ) is detected as the function of the change of the incident position in the optical sensor means (46) on the reflected light beam (45) when the container is rotating,
The method as described above.
(e)容器(22)を回転させつつ、容器(22)の密封面(36)上に該密封面(36)に対して鋭角にて光エネルギーの第2の細い視準ビーム(44)を送り、その際、該第2ビーム(44)を、密封面(36)に垂直な第2平面内において(A、A’)として入射させて該密封面(36)から反射させること、
(f)前記密封面(36)から反射した第2光ビーム(45)を受けるべく第2光センサ手段を位置決めすること、及び
(g)容器が回転している時の前記センサ手段上における前記反射光ビーム(45)の入射位置の変化の組み合わせ関数として、容器の密封面(36)のレベルの変化を検出すること、
の付加ステップを含む請求項10に記載の方法。
(E) While rotating the container (22), a second narrow collimated beam (44) of light energy at an acute angle with respect to the sealing surface (36) on the sealing surface (36) of the container (22). Sending, wherein the second beam (44) is incident as a point (A, A ') in a second plane perpendicular to the sealing surface (36) and reflected from the sealing surface (36);
(F) in the sealing surface (36) a second light beam (45) to position the second optical sensor means to receive the reflected from, and (g) on the optical sensor means when the container is rotating Detecting a change in the level of the sealing surface (36) of the container as a combined function of a change in the incident position of the reflected light beam (45) ;
The method according to claim 10 , comprising the additional steps of:
前記平面が、容器の口の幅に応じた距離にて回転軸(25)の横方向に対向した両側にある請求項11に記載の方法。The method according to claim 11 , wherein the planes are on opposite sides of the axis of rotation (25) at a distance depending on the width of the mouth of the container.
JP10463395A 1994-04-07 1995-04-06 Container sealing surface inspection Expired - Fee Related JP3774246B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/223803 1994-04-07
US08/223,803 US5489987A (en) 1994-04-07 1994-04-07 Container sealing surface inspection

Publications (2)

Publication Number Publication Date
JPH0843320A JPH0843320A (en) 1996-02-16
JP3774246B2 true JP3774246B2 (en) 2006-05-10

Family

ID=22838034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10463395A Expired - Fee Related JP3774246B2 (en) 1994-04-07 1995-04-06 Container sealing surface inspection

Country Status (14)

Country Link
US (1) US5489987A (en)
EP (1) EP0676633B1 (en)
JP (1) JP3774246B2 (en)
KR (1) KR100346327B1 (en)
CN (1) CN1073233C (en)
AT (1) ATE262172T1 (en)
BR (1) BR9501476A (en)
CA (1) CA2146095C (en)
DE (1) DE69532695T2 (en)
DK (1) DK0676633T3 (en)
ES (1) ES2217271T3 (en)
PL (1) PL177700B1 (en)
PT (1) PT676633E (en)
ZA (1) ZA952850B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896195A (en) * 1997-05-15 1999-04-20 Owens-Brockway Glass Container Inc. Container sealing surface area inspection
US6175107B1 (en) 1998-05-27 2001-01-16 Owens-Brockway Glass Container Inc. Inspection of containers employing a single area array sensor and alternately strobed light sources
US6086216A (en) * 1998-12-22 2000-07-11 Goldfarb; Eric A. Bottle lantern
US6104482A (en) * 1999-12-02 2000-08-15 Owens-Brockway Glass Container Inc. Container finish check detection
US6256095B1 (en) 2000-01-21 2001-07-03 Owens-Brockway Glass Container Inc. Container sealing surface area inspection
US6654117B1 (en) 2001-09-04 2003-11-25 The Quaker Oats Company Bottle cap sensor apparatus and method
US6903814B1 (en) 2003-03-05 2005-06-07 Owens-Brockway Glass Container Inc. Container sealing surface inspection
US7010863B1 (en) 2004-01-26 2006-03-14 Owens-Brockway Glass Container Inc. Optical inspection apparatus and method for inspecting container lean
US7326025B2 (en) * 2004-05-04 2008-02-05 Texas Instruments Incorporated System for detecting warped carriers and associated methods
US7060999B2 (en) 2004-07-09 2006-06-13 Owens-Brockway Glass Container Inc. Apparatus and method for inspecting ribbed containers
US7480040B2 (en) * 2005-11-22 2009-01-20 Owens-Brockway Glass Container Inc. Method and apparatus for inspecting container sidewall contour
US20070115467A1 (en) * 2005-11-23 2007-05-24 Owens-Brockway Glass Container Apparatus and method for ensuring rotation of a container during inspection
EP2381246A1 (en) * 2010-04-26 2011-10-26 Becton Dickinson France Device, kit and method for inspection of an article
DE102012022474B4 (en) * 2012-11-19 2014-06-26 Khs Corpoplast Gmbh Inspection arrangement for container mouths
DE102015203726B4 (en) * 2015-03-03 2022-07-14 Syntegon Technology Gmbh Apparatus and method for inspecting a closure
DE102015211317B4 (en) * 2015-06-19 2021-04-01 Krones Ag Inspection method and device for checking the closure of containers
US10012598B2 (en) 2015-07-17 2018-07-03 Emhart S.A. Multi-wavelength laser check detection tool
USD789791S1 (en) * 2016-04-11 2017-06-20 Fredric L. Hill Water bottle
KR102134639B1 (en) * 2017-08-14 2020-07-17 구뎅 프리시젼 인더스트리얼 코포레이션 리미티드 Method and system of measuring air-tightness and container measured thereby
WO2019164551A1 (en) * 2018-02-22 2019-08-29 Trelleborg Sealing Solutions Us, Inc. System and method for detecting a condition of a seal

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3313409A (en) * 1964-02-07 1967-04-11 Owens Illinois Inc Apparatus for inspecting glassware
US3788741A (en) * 1972-07-26 1974-01-29 Syst Res Labor Inc Distance indicating optical probe
US3880750A (en) * 1974-06-06 1975-04-29 Owens Illinois Inc Sealing surface gauge
US4198164A (en) * 1976-10-07 1980-04-15 Ensco, Inc. Proximity sensor and method and apparatus for continuously measuring rail gauge
US4213702A (en) * 1978-10-02 1980-07-22 Powers Manufacturing, Inc Glass inspection method and apparatus
DE3114285C2 (en) * 1981-04-09 1983-05-19 Fa. Hermann Heye, 3063 Obernkirchen Testing device for the detection of muzzle defects in glass objects
DE3147086A1 (en) * 1981-11-27 1983-07-14 Krones Ag Hermann Kronseder Maschinenfabrik, 8402 Neutraubling DEVICE FOR CHECKING BOTTLE MOUTHS OR THE LIKE ON DAMAGES
US4488648A (en) * 1982-05-06 1984-12-18 Powers Manufacturing, Inc. Flaw detector
JPS5965243A (en) * 1982-10-06 1984-04-13 Toyo Glass Kk Bottle inspecting device
JPS60249204A (en) * 1984-05-24 1985-12-09 肇産業株式会社 Lighting apparatus
JPS61193009A (en) * 1985-02-22 1986-08-27 Toyo Glass Kk Inspecting device for top surface of opening of container
JPS6212845A (en) * 1985-07-10 1987-01-21 Kirin Brewery Co Ltd Detecting device for defect on screwed port part of bottle
DE3581085D1 (en) * 1985-11-15 1991-02-07 Hermann Peter DEVICE FOR DETECTING FAULTS, IN PARTICULAR Tears, IN TRANSPARENT BODIES ON AN OPTICAL WAY.
JPS63228049A (en) * 1986-10-27 1988-09-22 Fuji Electric Co Ltd Defect inspecting device
DE3801626C1 (en) * 1988-01-21 1988-12-29 Daimler-Benz Ag, 7000 Stuttgart, De Rotating circular scanner, working according to the triangulation principle, as optical seam position sensor for a welding torch
US4929828A (en) * 1988-02-29 1990-05-29 Emhart Industries, Inc. Inspecting glass containers for line-over finish defects with bifurcated fiber optic bundle
US4900916A (en) * 1988-03-02 1990-02-13 Ball Corporation System employing preconditioned radiation for detecting defects in transparent objects
US4945228A (en) * 1989-03-23 1990-07-31 Owens-Illinois Glass Container Inc. Inspection of container finish
US5200801A (en) * 1990-05-14 1993-04-06 Owens-Illinois Glass Container Inc. Inspection of container finish
JPH0743326B2 (en) * 1991-01-29 1995-05-15 東洋ガラス株式会社 Defect inspection method and apparatus for object end
CH683566A5 (en) * 1991-06-14 1994-03-31 Strausak Ag Method and apparatus for measuring bodies, in particular containers by means of an optical, non-focusing multibeam arrangement.

Also Published As

Publication number Publication date
PL308042A1 (en) 1995-10-16
PT676633E (en) 2004-08-31
ZA952850B (en) 1995-12-21
AU1626695A (en) 1995-10-19
BR9501476A (en) 1995-11-07
AU689536B2 (en) 1998-04-02
ES2217271T3 (en) 2004-11-01
KR100346327B1 (en) 2002-11-29
CN1073233C (en) 2001-10-17
KR950033416A (en) 1995-12-26
PL177700B1 (en) 2000-01-31
ATE262172T1 (en) 2004-04-15
CA2146095C (en) 2007-03-20
EP0676633A1 (en) 1995-10-11
CA2146095A1 (en) 1995-10-08
JPH0843320A (en) 1996-02-16
DE69532695D1 (en) 2004-04-22
US5489987A (en) 1996-02-06
CN1120157A (en) 1996-04-10
DE69532695T2 (en) 2005-02-10
EP0676633B1 (en) 2004-03-17
DK0676633T3 (en) 2004-07-12

Similar Documents

Publication Publication Date Title
JP3774246B2 (en) Container sealing surface inspection
US5896195A (en) Container sealing surface area inspection
US6256095B1 (en) Container sealing surface area inspection
US5610391A (en) Optical inspection of container finish dimensional parameters
US5291271A (en) Measurement of transparent container wall thickness
US4584469A (en) Optical detection of radial reflective defects
JP2000055829A (en) Single-region array sensor, device for inspecting container using alternate strobe light source, and its method
EP1288613A2 (en) Sidewall thickness measurement with a line shaped light beam or for several transparent containers
US3415370A (en) Empty bottle bottom and neck inspection machine using radiation sensitive means
JPH04231854A (en) Inspection for crack in container
JPS61288108A (en) Inspecting method for body concavity of glass bottle
MXPA98003794A (en) Inspection of the superficial sealing area of a recipie

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees