JP3774055B2 - Tapered roller bearing - Google Patents

Tapered roller bearing Download PDF

Info

Publication number
JP3774055B2
JP3774055B2 JP00582398A JP582398A JP3774055B2 JP 3774055 B2 JP3774055 B2 JP 3774055B2 JP 00582398 A JP00582398 A JP 00582398A JP 582398 A JP582398 A JP 582398A JP 3774055 B2 JP3774055 B2 JP 3774055B2
Authority
JP
Japan
Prior art keywords
tapered roller
inner ring
small
raceway
roller bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00582398A
Other languages
Japanese (ja)
Other versions
JPH11210761A (en
Inventor
和文 中川
一巳 安達
一徳 浦上
晃次 増岡
崇 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP00582398A priority Critical patent/JP3774055B2/en
Priority to US09/227,545 priority patent/US6086261A/en
Priority to DE19964620.1A priority patent/DE19964620B4/en
Priority to DE19900858A priority patent/DE19900858B4/en
Publication of JPH11210761A publication Critical patent/JPH11210761A/en
Application granted granted Critical
Publication of JP3774055B2 publication Critical patent/JP3774055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のデファレンシャル、トランスミッション等に組み込まれる円すいころ軸受に関する
【0002】
【従来の技術】
円すいころ軸受は、ラジアル荷重とアキシャル荷重、およびそれらの合成荷重を負荷するのに適した軸受で、負荷能力も大きい。そのため、自動車や建設機械の動力伝達装置(デファレンシャル、トランスミッション)等における回転要素の支持用に多く用いられている。
【0003】
図6は、円すいころ軸受の一形態を例示している。この円すいころ軸受は、円すい状の軌道面11aを有する外輪11と、円すい状の軌道面12aを有し、この軌道面12aの小径側に小鍔面12b、大径側に大鍔面12cを有する内輪12と、外輪11の軌道面11aと内輪12の軌道面12aとの間に転動自在に配された複数の円すいころ13と、円すいころ13を円周所定間隔に保持する保持器14とを備えている。
【0004】
軸受使用時、円すいころ13は軌道面11aおよび軌道面12aから受ける合成力によって内輪12の大鍔面12cに押し付けられ、その大端面13aを大鍔面12cによって接触案内されながら軌道面上を転がり運動する。一方、軸受使用時、円すいころ13の小端面13bと内輪12の小鍔面12bとは接触せず、両者の間には僅かな隙間が存在する。そのため、軸受製造工程において、内輪12の鍔面および円すいころ13の端面は、滑り接触が生じる大鍔面12cと大端面13aについてのみ摩耗低減等を目的として研削仕上げを施し、滑り接触が生じない小鍔面12bと小端面13bについては研削仕上げを行っていない。
【0005】
上記のような円すいころ軸受を、保持器14、複数の円すいころ13、及び内輪12からなる組付体を、内輪12の小鍔面12b側を下に向けた状態で外輪11の軌道面11aに上方から挿入して組立てた場合、組立時の状態(初期状態)において、円すいころ13は軌道面上の正規の位置に座らず(保持器14、内輪12に対する自由度により、挿入時の円すいころ13の姿勢が定まらないため)、図7(a)に示すように、その小端面13bが内輪12の小鍔面12bに接触し、大端面13aと大鍔面12cとの間に隙間δができた状態になる。この初期状態から、スラスト荷重Faを作用させた状態で、軸受を所要回数回転させると{図7(c)}、円すいころ13が大鍔面12c側に隙間δ分だけ軸方向移動して、大端面13aが大鍔面12cに接触し、円すいころ13が正規の位置に落ち着く{図7(b)}。
【0006】
【発明が解決しようとする課題】
図7(a)に示す初期状態で軸受を相手装置の装着部位に固定し予圧を設定して本運転を行うと、円すいころ13の大鍔面12c側への軸方向移動によって予圧抜けが生じ、要求される軸受機能が得られなくなる。そこで、従来より、本運転に先立って、図7(a)に示す初期状態の軸受を相手装置の装着部位に仮組付けし、円すいころ13が図7(b)に示す正規の位置に落ち着くまで馴らし運転を行った後、軸受を装着部位に固定し所定の予圧を付与するようにしている。この場合、初期状態における隙間δの大きさ及びばらつきの範囲が大きいと、円すいころ13が正規の位置に落ち着くまでの馴らし運転時間が多く必要となり、予圧設定完了までの所要時間が長くなる。
【0007】
従って、馴らし運転時間の短縮化の観点から、図7(a)に示す初期状態の隙間δの大きさ及びばらつき範囲は可及的に小さくすることが望ましいが、従来の円すいころ軸受では以下の点が問題となる。
【0008】
図8に拡大して示すように、従来の円すいころ軸受における内輪12の小鍔面12bは、軌道面12aに配された円すいころ3の小端面13bに対して外側に傾斜した形状になっており、そのため、小端面13b側の面取り寸法・形状のばらつきによって(一般に円すいころの小端面は鍛造面のままであり、面取り寸法・形状のばらつきが大きい。この面取り寸法・形状のばらつきは、円すいころ相互間に存在する他、円すいころ自体の円周方向にも存在する。)、組立時の状態(初期状態)における小端面13bと小鍔面12bとの接触点が変動する。例えば、小端面13b側の面取りが同図で実線で示すものであった場合、初期状態における接触点はP3、P4であるが、小端面13b側の面取りが同図で点線で示すものであった場合、初期状態における接触点は外径側に移動してP3’、P4’になる。円すいころ13を大端面側に軸方向移動させて、大端面を大鍔面に接触させた時の、点P3・P4間の隙間の値をδ3、点P3’・P4’間の隙間の値をδ4とすると、δ3<δ4となり、面取り寸法のばらつきに起因した接触点の変動に伴って隙間δの値が変動する。そのため、隙間δを精度良く規制することが困難である。
【0009】
また、小端面13b側の面取り寸法・形状のばらつきによって、隙間δの値が変動するので、内輪12の溝幅寸法(W’)および円すいころの長さ寸法(L’)を精度良く管理したとしても、隙間δのばらつきが不可避的に大きくなる。
【0010】
円すいころの小端面側の面取り寸法・形状のばらつきに起因した隙間δの変動(ばらつき)は、ある1つの円すいころ軸受についてみた場合、組み込まれた複数の円すいころ相互間に生じ、各円すいころが正規の位置に落ち着くまでの時間差をもたらす。そのため、軸受として落ち着き状態になるまでの馴らし運転回数(軸受の回転回数:落ち着き回数)が多くなる。また、隙間δのばらつきが軸受相互間にも存在するので、軸受ごとに落ち着き回数のばらつきが生じる。この問題を、溝幅寸法(W’)および長さ寸法(L’)の管理幅(寸法公差)の縮小、隙間δの大きさの基準値の縮小によって対応しようとすると、加工コストおよび管理コストの増大につながる。
【0011】
さらに、通常、内輪12の溝幅寸法(W’)の管理は端面を寸法基準として行っているが、誤差が積算されやすく、溝幅寸法(W’)のばらつきを小さくすることが困難であった。この問題を解消するために、小鍔面12bを寸法基準として溝幅寸法(W’)を管理することが考えられる。しかし、従来の小鍔面12bは傾斜形状であり、基準位置のとり方によって溝幅寸法(W’)に差異が生じるため、溝幅寸法(W’)を精度良く仕上げることは困難である。
【0012】
本発明は、上述した従来技術上の問題点に鑑み、コスト性を考慮しつつ、この種の円すいころ軸受における馴らし運転時間を短縮し、予圧設定作業の効率化を図ることを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本発明では、円すい状の軌道面を有する外輪と、円すい状の軌道面を有し、この軌道面の小径側に小鍔面、大径側に大鍔面を有する内輪と、外輪の軌道面と内輪の軌道面との間に転動自在に配された複数の円すいころと、円すいころを円周所定間隔に保持する保持器とを備え、軸受使用時、円すいころの大端面が内輪の大鍔面によって接触案内される円すいころ軸受において、内輪の小鍔面を、この内輪の軌道面に配された円すいころの小端面と平行な面で、かつ、この円すいころの軸方向移動範囲を画する内輪の溝幅の一端を規定する面にした。
【0014】
図5に拡大して示すように、内輪2の小鍔面2bを、軌道面2aに配された円すいころ3の小端面3bと平行な面にすることによって、隙間δに対する小端面3b側の面取り寸法・形状のばらつきの影響を排除することができる。例えば、小端面3b側の面取りが同図で実線で示すものであった場合、組立時の状態(初期状態)における接触点はP5、P6であり、小端面3b側の面取りが同図で点線で示すものであった場合、初期状態における接触点は外径側に移動してP5’、P6’になる。円すいころ3を大端面側に軸方向移動させて、大端面を大鍔面に接触させた時の、点P5・P6間の隙間の値をδ5、点P5’・P6’間の隙間の値をδ6とすると、小鍔面2bと小端面3bとが平行であるため、δ5=δ6となり、接触点が変動しても隙間δの値は変動しない。従って、小端面3b側の面取り寸法・形状のばらつきに起因した隙間δのばらつきがなくなる。
【0015】
ある1つの円すいころ軸受についてみた場合、組み込まれた複数の円すいころ相互間に、小端面側の面取り寸法・形状のばらつきに起因した隙間δのばらつきがなくなるので、各円すいころが正規の位置に落ち着くまでの時間差が短縮される。そのため、軸受として落ち着き状態になるまでの馴らし運転回数(軸受の回転回数:落ち着き回数)が少なくなる。また、軸受ごとの落ち着き回数のばらつきも抑制される。
【0016】
また、上記のような形状の小鍔面を寸法基準として大鍔面を仕上げ加工することにより、小鍔面から大鍔面までの溝幅寸法(W)を精度良く管理することができる。
【0017】
上記のような形状の小鍔面は、円すいころの軸方向移動範囲を画する内輪の溝幅の一端を規定する面であり、かつ、隙間δの管理、溝幅寸法(W)の管理の基準となるため、精度確保のため、研削加工面とするのが望ましいが、所要の精度が確保できれば、コスト低減のため、旋削加工面としても良い。
【0018】
円すいころを内輪の軌道面に配し、円すいころの大端面を内輪の大鍔面に接触させた時の、内輪の小鍔面と円すいころの小端面との間の隙間δをδ≦0.4mmの寸法範囲内に規制することができる。δ≦0.4mmとは、隙間δの最大値が0.4mmを超えないという意味である。δ≦0.4mmとしたのは以下の理由による。
【0019】
内輪と円すいころとのマッチングにより、図7(a)に示す初期状態の隙間δがδ>0.5mm(内輪の小鍔面が円すいころの小端面に対して外側に傾斜した形状の円すいころ軸受)、δ≦0.45mm(内輪の小鍔面が円すいころの小端面と平行な形状の円すいころ軸受)となるように円すいころ軸受を組立て、図7(a)に示す初期状態から図7(b)に示す状態に落ち着くまでの馴らし運転回数(軸受の回転回数:落ち着き回数)を求めたところ、下記に示す結果が得られた。
【0020】

Figure 0003774055
上記のように、δ≦0.45mmの場合に落ち着き回数が少なくなり良好な結果が得られた。特に、δ≦0.4mmの場合では、落ち着き回数が少なく、かつ、ばらつきも小さくなる傾向が認められた。そこで、本発明では、より好ましい範囲としてδ≦0.4mmを選択した。
【0021】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0022】
図1に示すように、この実施形態の円すいころ軸受は、円すい状の軌道面1aを有する外輪1と、円すい状の軌道面2aを有し、この軌道面2aの小径側に小鍔面2b、大径側に大鍔面2cを有する内輪2と、外輪1の軌道面1aと内輪2の軌道面2aとの間に転動自在に配された複数の円すいころ3と、円すいころ3を円周所定間隔に保持する保持器4とで構成される。軸受使用時、円すいころ3は軌道面1aおよび軌道面2aから受ける合成力によって内輪2の大鍔面2cに押し付けられ、その大端面3aを大鍔面2cによって接触案内されながら軌道面上を転がり運動する。軸受使用時、円すいころ3の小端面3bと内輪2の小鍔面2bとは接触せず、両者の間には僅かな隙間が存在する。
【0023】
図2は、内輪2を示している。内輪2は、鋼素材から鍛造→旋削→熱処理→研削という工程を経て製造される。通常、研削加工は、端面、内径面、軌道面2a、および大鍔面2cに対して行われるが、この実施形態では、小鍔面2bを同図で鎖線で示す(軌道面2aに配された)円すいころ3の小端面3bと略平行になるように旋削加工し、さらに、研削加工を施して小端面3bと平行になる面に仕上げている。尚、所要の精度が確保できれば、小鍔面2bを旋削加工によって、小端面3bと平行になる面に仕上げても良い。
【0024】
大鍔面2cは、例えば上記のような小鍔面2bを寸法基準として、小鍔面2bからの溝幅寸法(W)をインプロセスゲージで測定しながら、研削加工によって仕上げることができる。これにより、溝幅寸法(W)を、狙い寸法に対して所定の寸法公差内に精度良く仕上げることができる。一般に、インプロセスゲージによる研削加工とは、研削加工時にゲージを当て、このゲージにより研削完了寸法を検出して、研削を終了する加工である。
【0025】
内輪2の溝幅寸法(W)は、小鍔面2bと、大鍔面2cにおける円すいころ3の大端面3aとの接触位置Pとの間の寸法(円すいころ3の軸線と平行な方向の寸法)であり、小鍔面2bは溝幅の一端を規定する面になる。
【0026】
図3に示すように、円すいころ3は、曲率(端面アール:図面では誇張して示している。)をもった大端面3aを一端に有し、曲率をもたないフラットな小端面3bを他端に有する。大端面3aの中心領域には、ぬすみ部3a1が設けられている。大端面3a(ぬすみ部3a1を除く。)および転動面3cは研削加工によって仕上げられるが、通常、小端面3bは鍛造面のままである。円すいころ3の長さ寸法(L)は、狙い寸法に対して所定の寸法公差内に仕上げられる。尚、長さ寸法(L)は、小端面3bと、大端面3aにおける大鍔面2cとの接触位置Pとの間の寸法(円すいころ3の軸線と平行な方向の寸法)である。
【0027】
この実施形態の円すいころ軸受を、従来軸受と同様に、保持器4、複数の円すいころ3、及び内輪2からなる組付体を、内輪2の小鍔面2b側を下に向けた状態で外輪1の軌道面1aに上方から挿入して組立てた場合、組立時において、円すいころ3は軌道面上の正規の位置に座らず、その小端面3bが内輪2の小鍔面2bに接触し、大端面3aと大鍔面2cとの間に隙間δができた状態になる。この初期状態から、スラスト荷重を作用させた状態で、軸受を所要回数回転させると、円すいころ3が大鍔面2c側に隙間δ分だけ軸方向移動して、図1に示すように、大端面3aが大鍔面2cに接触し、円すいころ3が正規の位置に落ち着く。
【0028】
前述したように、図1に示す状態に落ち着くまでの馴らし運転回数(軸受の回転回数:落ち着き回数)を短縮するためには、上記隙間δ(円すいころ3の軸方向移動距離)のばらつきの範囲を可及的に小さくすることが望ましい。この実施形態では、内輪2の溝幅寸法(W)と円すいころ3の長さ寸法(L)を所定の寸法公差内に仕上げると共に、内輪2の小鍔面2bを円すいころ3の小端面3bと平行な面に加工し、かつ、円すいころ3を内輪2の軌道面2aに配し、大端面3aを大鍔面2cに接触させた時の、小鍔面2bと小端面3bとの間の隙間δを測定することにより、隙間δの値がδ≦0.4mmの寸法範囲内に入るように規制している。そのため、馴らし運転回数(落ち着き回数)が、前述した測定結果の4回以内(平均2.96回)を確実にクリアーでき、馴らし運転を比較的短時間で完了することができる。また、溝幅寸法(W)および長さ寸法(L)の管理幅(寸法公差)、隙間δの大きさの基準値を、許容範囲内で大きく設定することが可能であるので、加工コストおよび管理コストの低減の点で有利である。
【0029】
【発明の効果】
本発明によれば、円すいころの小端面側の面取り寸法・形状のばらつきに起因した隙間δのばらつき要因がなくなり、隙間δの大きさの基準値を許容範囲内で大きく設定しても、隙間δ自体のばらつきが小さくなるので、馴らし運転時における円すいころの落ち着き状態が短時間で得られ、この種の円すいころ軸受における馴らし運転時間を短縮し、予圧設定作業の効率化を図ることができる。また、内輪の溝幅寸法および円すいころの長さ寸法の管理幅(寸法公差)、隙間δの大きさの基準値を許容範囲内で大きく設定した場合でも良好な結果が得られるので、加工コストおよび管理コストの低減の点で有利である。
【図面の簡単な説明】
【図1】実施形態の円すいころ軸受を示す断面図である。
【図2】図1に示す円すいころ軸受の内輪を示す断面図である。
【図3】図1に示す円すいころ軸受の円すいころを示す断面図である。
【図4】隙間δの測定時の状態を示す断面図である。
【図5】図4におけるA部の拡大断面図である。
【図6】従来の円すいころ軸受を示す断面図である。
【図7】従来の円すいころ軸受における組立時の状態(初期状態)を示す断面図(図a)、馴らし運転後の状態を示す断面図(図b)、馴らし運転時の状態を示す断面図(図c)である。
【図8】従来の円すいころ軸受における、小鍔面と小端面の周辺部を示す部分拡大断面図である。
【符号の説明】
1 外輪
1a 軌道面
2 内輪
2a 軌道面
2b 小鍔面
2c 大鍔面
3 円すいころ
3a 大端面
3b 小端面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tapered roller bearing incorporated in an automobile differential, transmission or the like.
[Prior art]
Tapered roller bearings are suitable for carrying radial loads, axial loads, and their combined loads, and have a large load capacity. Therefore, it is often used for supporting rotating elements in power transmission devices (differential, transmission) of automobiles and construction machines.
[0003]
FIG. 6 illustrates an example of a tapered roller bearing. This tapered roller bearing has an outer ring 11 having a conical raceway surface 11a, a conical raceway surface 12a, and a small flange surface 12b on the small diameter side of the raceway surface 12a and a large flange surface 12c on the large diameter side. An inner ring 12 having a plurality of tapered rollers 13 which are rotatably arranged between the raceway surface 11a of the outer ring 11 and the raceway surface 12a of the inner ring 12, and a retainer 14 which holds the tapered rollers 13 at a predetermined circumferential interval. And.
[0004]
When the bearing is used, the tapered roller 13 is pressed against the large collar surface 12c of the inner ring 12 by a combined force received from the raceway surface 11a and the raceway surface 12a, and rolls on the raceway surface while the large end surface 13a is contacted and guided by the large collar surface 12c. Exercise. On the other hand, when the bearing is used, the small end surface 13b of the tapered roller 13 and the small flange surface 12b of the inner ring 12 are not in contact with each other, and there is a slight gap therebetween. Therefore, in the bearing manufacturing process, the flange surface of the inner ring 12 and the end surface of the tapered roller 13 are subjected to a grinding finish only for the large flange surface 12c and the large end surface 13a where the sliding contact occurs, and the sliding contact does not occur. The small surface 12b and the small end surface 13b are not ground.
[0005]
The tapered roller bearing as described above is assembled with the cage 14, the plurality of tapered rollers 13, and the inner ring 12, and the raceway surface 11a of the outer ring 11 with the small collar surface 12b side of the inner ring 12 facing downward. In the assembled state (initial state), the tapered roller 13 does not sit at a proper position on the raceway surface (the conical shape at the time of insertion depends on the degree of freedom with respect to the cage 14 and the inner ring 12). 7 (a), the small end surface 13b contacts the small collar surface 12b of the inner ring 12, and a gap δ is formed between the large end surface 13a and the large collar surface 12c. Will be ready. When the bearing is rotated a required number of times with the thrust load Fa applied from this initial state {FIG. 7 (c)}, the tapered roller 13 moves axially toward the large flange surface 12c by the gap δ, The large end surface 13a comes into contact with the large flange surface 12c, and the tapered roller 13 settles at a normal position {FIG. 7 (b)}.
[0006]
[Problems to be solved by the invention]
In the initial state shown in FIG. 7A, when the bearing is fixed to the mounting portion of the counterpart device and the preload is set and the main operation is performed, the preload loss occurs due to the axial movement of the tapered roller 13 toward the large flange surface 12c. The required bearing function cannot be obtained. Therefore, conventionally, prior to the actual operation, the bearing in the initial state shown in FIG. 7A is temporarily assembled to the mounting portion of the counterpart device, and the tapered roller 13 settles at the normal position shown in FIG. 7B. After the acclimation operation is performed, the bearing is fixed to the mounting site and a predetermined preload is applied. In this case, if the size of the gap δ and the range of variation in the initial state are large, a lot of habituation operation time is required until the tapered roller 13 settles at the normal position, and the time required for completion of the preload setting becomes long.
[0007]
Therefore, from the viewpoint of shortening the operating time, it is desirable to reduce the size and variation range of the initial gap δ shown in FIG. 7A as much as possible. However, in the conventional tapered roller bearing, The point becomes a problem.
[0008]
As shown in FIG. 8 in an enlarged manner, the small flange surface 12b of the inner ring 12 in the conventional tapered roller bearing has a shape inclined outward with respect to the small end surface 13b of the tapered roller 3 disposed on the raceway surface 12a. Therefore, due to variations in chamfer dimensions and shapes on the small end surface 13b side (generally, the small end surfaces of tapered rollers remain forged surfaces, and there are large variations in chamfer dimensions and shapes. The variations in chamfer dimensions and shapes are conical. In addition to existing between the rollers, it also exists in the circumferential direction of the tapered roller itself.) The contact point between the small end surface 13b and the small collar surface 12b in the assembled state (initial state) varies. For example, when the chamfer on the small end surface 13b side is shown by a solid line in the figure, the contact points in the initial state are P3 and P4, but the chamfer on the small end surface 13b side is shown by a dotted line in the figure. In this case, the contact point in the initial state moves to the outer diameter side to become P3 ′ and P4 ′. When the tapered roller 13 is moved in the axial direction toward the large end surface and the large end surface is brought into contact with the large flange surface, the value of the clearance between the points P3 and P4 is δ3, and the value of the clearance between the points P3 ′ and P4 ′ If δ4, then δ3 <δ4, and the value of the gap δ varies with the variation of the contact point due to the variation in the chamfer dimension. Therefore, it is difficult to accurately regulate the gap δ.
[0009]
In addition, since the value of the gap δ fluctuates due to variations in the chamfer dimension and shape on the small end face 13b side, the groove width dimension (W ′) of the inner ring 12 and the length dimension (L ′) of the tapered roller are accurately controlled. However, the variation of the gap δ is inevitably increased.
[0010]
Variation (variation) in the clearance δ due to variations in chamfer dimensions and shapes on the small end face side of tapered rollers occurs between a plurality of incorporated tapered rollers when viewed from a single tapered roller bearing. This will cause a time difference until it settles in the normal position. Therefore, the number of habituation operations (the number of rotations of the bearing: the number of times of calming) until the bearing becomes settled increases. In addition, since there is a variation in the gap δ between the bearings, a variation in the number of calms occurs for each bearing. If it is attempted to deal with this problem by reducing the control width (dimensional tolerance) of the groove width dimension (W ′) and the length dimension (L ′) and reducing the reference value of the size of the gap δ, the processing cost and the management cost Leads to an increase in
[0011]
Further, the groove width dimension (W ′) of the inner ring 12 is normally managed with the end face as a dimension reference, but errors are likely to be integrated, and it is difficult to reduce the variation in the groove width dimension (W ′). It was. In order to solve this problem, it is conceivable to manage the groove width dimension (W ′) with the small flange surface 12b as a dimensional reference. However, the conventional facet 12b has an inclined shape, and the groove width dimension (W ′) varies depending on the reference position. Therefore, it is difficult to accurately finish the groove width dimension (W ′).
[0012]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems in the prior art, and aims to shorten the operating time for this type of tapered roller bearing and to improve the efficiency of preload setting work while considering cost.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has an outer ring having a conical raceway surface, a conical raceway surface, a small flange surface on the small diameter side of the raceway surface, and a large collar surface on the large diameter side. Provided with an inner ring, a plurality of tapered rollers rotatably arranged between the raceway surface of the outer ring and the raceway surface of the inner ring, and a cage for holding the tapered rollers at a predetermined circumferential interval. In a tapered roller bearing in which the large end surface of the roller is contact-guided by the large collar surface of the inner ring, the small collar surface of the inner ring is a surface parallel to the small end surface of the tapered roller disposed on the raceway surface of the inner ring, and this A surface defining one end of the groove width of the inner ring that defines the axial movement range of the tapered roller was used.
[0014]
As shown in FIG. 5 in an enlarged manner, the small collar surface 2b of the inner ring 2 is a surface parallel to the small end surface 3b of the tapered roller 3 disposed on the raceway surface 2a, so that the small end surface 3b side with respect to the gap δ is obtained. The influence of variations in chamfer dimensions and shapes can be eliminated. For example, when the chamfering on the small end surface 3b side is indicated by a solid line in the figure, the contact points in the assembled state (initial state) are P5 and P6, and the chamfering on the small end surface 3b side is the dotted line in the figure. In this case, the contact point in the initial state moves to the outer diameter side to become P5 ′ and P6 ′. When the tapered roller 3 is axially moved toward the large end surface and the large end surface is brought into contact with the large flange surface, the value of the clearance between the points P5 and P6 is δ5, and the value of the clearance between the points P5 ′ and P6 ′ When δ6 is set, since the small flange surface 2b and the small end surface 3b are parallel, δ5 = δ6, and the value of the gap δ does not change even if the contact point changes. Accordingly, the variation in the gap δ due to the variation in the chamfer dimension and shape on the small end surface 3b side is eliminated.
[0015]
When looking at a single tapered roller bearing, there is no gap δ variation due to variations in chamfer dimensions and shapes on the small end face side between multiple incorporated tapered rollers, so each tapered roller is in its normal position. Time difference to settle down is shortened. For this reason, the number of habituation operations (the number of rotations of the bearing: the number of times of calming) until the bearing becomes settled is reduced. In addition, variations in the number of times of settling for each bearing are suppressed.
[0016]
Further, by finishing the large rib surface with the small rib surface having the above shape as a dimensional standard, the groove width dimension (W) from the small rib surface to the large rib surface can be managed with high accuracy.
[0017]
The facet of the shape as described above is a surface that defines one end of the groove width of the inner ring that defines the axial movement range of the tapered roller, and management of the gap δ and management of the groove width dimension (W). Since it is a standard, it is desirable to use a ground surface for ensuring accuracy. However, if the required accuracy can be ensured, it may be a turning surface for cost reduction.
[0018]
When the tapered roller is disposed on the raceway surface of the inner ring and the large end surface of the tapered roller is brought into contact with the large collar surface of the inner ring, the gap δ between the small collar surface of the inner ring and the small end surface of the tapered roller is δ ≦ 0 It can be regulated within a dimension range of 4 mm. δ ≦ 0.4 mm means that the maximum value of the gap δ does not exceed 0.4 mm. The reason why δ ≦ 0.4 mm is set is as follows.
[0019]
By matching between the inner ring and the tapered roller, the gap δ in the initial state shown in FIG. 7A is δ> 0.5 mm (the tapered roller having a shape in which the face of the inner ring is inclined outward with respect to the small end surface of the tapered roller). The tapered roller bearing is assembled so that δ ≦ 0.45 mm (the tapered surface of the inner ring is parallel to the tapered end surface of the tapered roller), and the initial state shown in FIG. When the number of acclimatization operations (the number of rotations of the bearing: the number of times of calming) until the state shown in 7 (b) was settled was determined, the following results were obtained.
[0020]
Figure 0003774055
As described above, when δ ≦ 0.45 mm, the number of times of settling was reduced, and good results were obtained. In particular, in the case of δ ≦ 0.4 mm, there was a tendency that the number of times of calming was small and the variation was small. Therefore, in the present invention, δ ≦ 0.4 mm is selected as a more preferable range.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0022]
As shown in FIG. 1, the tapered roller bearing of this embodiment has an outer ring 1 having a conical raceway surface 1a and a conical raceway surface 2a, and a small flange surface 2b on the small diameter side of the raceway surface 2a. An inner ring 2 having a large flange surface 2c on the large-diameter side, a plurality of tapered rollers 3 disposed so as to roll between a raceway surface 1a of the outer ring 1 and a raceway surface 2a of the inner ring 2, and a tapered roller 3 It is comprised with the holder | retainer 4 hold | maintained at predetermined intervals of the circumference. When the bearing is used, the tapered roller 3 is pressed against the large collar surface 2c of the inner ring 2 by the combined force received from the raceway surface 1a and the raceway surface 2a, and rolls on the raceway surface while the large end surface 3a is contacted and guided by the large collar surface 2c. Exercise. When the bearing is used, the small end surface 3b of the tapered roller 3 and the small flange surface 2b of the inner ring 2 are not in contact with each other, and a slight gap exists between them.
[0023]
FIG. 2 shows the inner ring 2. The inner ring 2 is manufactured from a steel material through a process of forging → turning → heat treatment → grinding. Usually, the grinding is performed on the end face, the inner diameter surface, the raceway surface 2a, and the large collar surface 2c. In this embodiment, the small collar surface 2b is indicated by a chain line in FIG. I) Turning so as to be substantially parallel to the small end surface 3b of the tapered roller 3, and further grinding to finish the surface parallel to the small end surface 3b. If the required accuracy can be ensured, the small surface 2b may be finished to a surface parallel to the small end surface 3b by turning.
[0024]
The large flange surface 2c can be finished by grinding while measuring the groove width dimension (W) from the small flange surface 2b with an in-process gauge with the small flange surface 2b as described above as a dimensional reference, for example. Thereby, the groove width dimension (W) can be accurately finished within a predetermined dimensional tolerance with respect to the target dimension. In general, grinding with an in-process gauge is a process in which a gauge is applied at the time of grinding, a grinding completion dimension is detected by this gauge, and grinding is finished.
[0025]
The groove width dimension (W) of the inner ring 2 is the dimension between the small collar surface 2b and the contact position P of the large collar surface 2c with the large end surface 3a of the tapered roller 3 (in the direction parallel to the axis of the tapered roller 3). ) And the facet 2b is a surface that defines one end of the groove width.
[0026]
As shown in FIG. 3, the tapered roller 3 has a large end face 3a having a curvature (end face R: exaggerated in the drawing) at one end, and a flat small end face 3b having no curvature. Have at the other end. In the center region of the large end surface 3a, a shading portion 3a1 is provided. The large end surface 3a (excluding the fillet portion 3a1) and the rolling surface 3c are finished by grinding, but the small end surface 3b is usually a forged surface. The length dimension (L) of the tapered roller 3 is finished within a predetermined dimensional tolerance with respect to the target dimension. The length dimension (L) is a dimension (a dimension in a direction parallel to the axis of the tapered roller 3) between the small end surface 3b and the contact position P between the large end surface 3a and the large flange surface 2c.
[0027]
In the tapered roller bearing of this embodiment, as in the conventional bearing, the assembly comprising the retainer 4, the plurality of tapered rollers 3, and the inner ring 2 is placed with the small collar surface 2b side of the inner ring 2 facing downward. When assembled by inserting into the raceway surface 1a of the outer ring 1 from above, the tapered roller 3 does not sit at a regular position on the raceway surface, and its small end surface 3b contacts the small flange surface 2b of the inner ring 2. Thus, a gap δ is formed between the large end surface 3a and the large collar surface 2c. When the bearing is rotated a required number of times in a state where a thrust load is applied from this initial state, the tapered roller 3 moves axially by the gap δ toward the large flange surface 2c, and as shown in FIG. The end surface 3a comes into contact with the large collar surface 2c, and the tapered roller 3 settles in a proper position.
[0028]
As described above, in order to reduce the number of acclimation operations until the state shown in FIG. 1 is settled (the number of rotations of the bearing: the number of times of calming), the range of variation in the gap δ (the axial movement distance of the tapered roller 3) It is desirable to reduce as much as possible. In this embodiment, the groove width dimension (W) of the inner ring 2 and the length dimension (L) of the tapered roller 3 are finished within a predetermined dimensional tolerance, and the small flange surface 2b of the inner ring 2 is made the small end face 3b of the tapered roller 3. Between the small flange surface 2b and the small end surface 3b when the tapered roller 3 is disposed on the raceway surface 2a of the inner ring 2 and the large end surface 3a is brought into contact with the large collar surface 2c. By measuring the gap δ, the value of the gap δ is regulated to fall within the dimension range of δ ≦ 0.4 mm. Therefore, the number of habituation operations (the number of times of calming down) can be reliably cleared within 4 times (average 2.96 times) of the measurement results described above, and the habituation operation can be completed in a relatively short time. In addition, since the control width (dimensional tolerance) of the groove width dimension (W) and length dimension (L) and the reference value of the size of the gap δ can be set large within an allowable range, the processing cost and This is advantageous in terms of reducing management costs.
[0029]
【The invention's effect】
According to the present invention, there are no variations in the gap δ due to variations in the chamfer dimensions and shapes on the small end face side of the tapered roller, and even if the reference value of the size of the gap δ is set within a permissible range, the gap Since the variation of δ itself is reduced, the tapered state of the tapered roller during the acclimation operation can be obtained in a short time, and the acclimation operation time of this type of tapered roller bearing can be shortened and the preload setting work can be made more efficient. . In addition, good results can be obtained even if the control width (dimension tolerance) of the groove width dimension of the inner ring and the length dimension of the tapered roller (size tolerance) and the standard value of the gap δ are set within the allowable range. This is advantageous in terms of reducing management costs.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a tapered roller bearing of an embodiment.
2 is a cross-sectional view showing an inner ring of the tapered roller bearing shown in FIG. 1. FIG.
3 is a cross-sectional view showing a tapered roller of the tapered roller bearing shown in FIG. 1. FIG.
FIG. 4 is a cross-sectional view showing a state when a gap δ is measured.
5 is an enlarged cross-sectional view of a portion A in FIG.
FIG. 6 is a cross-sectional view showing a conventional tapered roller bearing.
FIG. 7 is a cross-sectional view (FIG. A) showing a state (initial state) during assembly of a conventional tapered roller bearing, a cross-sectional view (FIG. B) showing a state after a conditioned operation, and a cross-sectional view showing a state during a conditioned operation. (Fig. C).
FIG. 8 is a partially enlarged cross-sectional view showing a peripheral portion of a small flange surface and a small end surface in a conventional tapered roller bearing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outer ring 1a Raceway surface 2 Inner ring 2a Raceway surface 2b Small collar surface 2c Large collar surface 3 Tapered roller 3a Large end surface 3b Small end surface

Claims (10)

円すい状の軌道面を有する外輪と、円すい状の軌道面を有し、この軌道面の小径側に小鍔面、大径側に大鍔面を有する内輪と、外輪の軌道面と内輪の軌道面との間に転動自在に配された複数の円すいころと、円すいころを円周所定間隔に保持する保持器とを備え、軸受使用時、円すいころの大端面が内輪の大鍔面によって接触案内される円すいころ軸受において、
上記内輪の小鍔面が、この内輪の軌道面に配された円すいころの小端面と平行な面であり、かつ、この円すいころの軸方向移動範囲を画する内輪の溝幅の一端を規定する面であることを特徴とする円すいころ軸受。
An outer ring having a conical raceway surface, an inner ring having a conical raceway surface, a small flange surface on the small diameter side and a large collar surface on the large diameter side, a raceway surface of the outer ring, and a raceway of the inner ring It has a plurality of tapered rollers that are arranged so as to be able to roll between them, and a cage that holds the tapered rollers at a predetermined circumferential distance. When the bearing is used, the large end surface of the tapered roller is caused by the large collar surface of the inner ring. In tapered roller bearings that are contact-guided,
The small ring surface of the inner ring is a plane parallel to the small end surface of the tapered roller disposed on the raceway surface of the inner ring, and defines one end of the groove width of the inner ring that defines the axial movement range of the tapered roller. Tapered roller bearings characterized by having a surface to be used.
上記円すいころを内輪の軌道面に配し、円すいころの大端面を内輪の大鍔面に接触させた時の、内輪の小鍔面と円すいころの小端面との間の隙間δがδ≦0.4mmの寸法範囲内に規制されていることを特徴とする請求項1記載の円すいころ軸受。When the tapered roller is arranged on the raceway surface of the inner ring and the large end surface of the tapered roller is brought into contact with the large collar surface of the inner ring, the gap δ between the small collar surface of the inner ring and the small end surface of the tapered roller is δ ≦ The tapered roller bearing according to claim 1, wherein the tapered roller bearing is regulated within a dimensional range of 0.4 mm. 上記内輪の小鍔面が研削加工面であることを特徴とする請求項1又は2記載の円すいころ軸受。The tapered roller bearing according to claim 1 or 2, wherein the surface of the inner ring is a ground surface. 上記内輪の小鍔面が旋削加工面であることを特徴とする請求項1又は2記載の円すいころ軸受。The tapered roller bearing according to claim 1 or 2, wherein the small collar surface of the inner ring is a turning surface. 円すい状の軌道面を有し、この軌道面の小径側に小鍔面、大径側に大鍔面を有する円すいころ軸受用内輪の製造方法であって、
上記小鍔面を、上記軌道面に円すいころを配した時にその小端面と平行になる面に加工し、この小鍔面を寸法基準として、上記大鍔面までの溝幅寸法(W)をインプロセスゲージで測定しながら、上記大鍔面を研削加工によって仕上げることを特徴とする円すいころ軸受用内輪の製造方法。
A method of manufacturing an inner ring for a tapered roller bearing having a tapered raceway surface, a small flange surface on the small diameter side of the raceway surface, and a large flange surface on the large diameter side,
The small surface is processed into a surface parallel to the small end surface when a tapered roller is disposed on the raceway surface, and the groove width dimension (W) to the large surface is determined based on the small surface. A method for producing an inner ring for a tapered roller bearing, wherein the large collar surface is finished by grinding while measuring with an in-process gauge.
上記内輪の小鍔面を研削によって仕上げることを特徴とする請求項5記載の円すいころ軸受用内輪の製造方法。6. The method for manufacturing an inner ring for a tapered roller bearing according to claim 5, wherein a small flange surface of the inner ring is finished by grinding. 上記内輪の小鍔面を旋削によって仕上げることを特徴とする請求項5記載の円すいころ軸受用内輪の製造方法。6. The method for manufacturing an inner ring for a tapered roller bearing according to claim 5, wherein a small flange surface of the inner ring is finished by turning. 円すい状の軌道面を有する外輪と、円すい状の軌道面を有し、この軌道面の小径側に小鍔面、大径側に大鍔面を有する内輪と、外輪の軌道面と内輪の軌道面との間に転動自在に配された複数の円すいころと、円すいころを円周所定間隔に保持する保持器とを備え、軸受使用時、円すいころの大端面が内輪の大鍔面によって接触案内される円すいころ軸受の製造方法であって、
上記内輪の小鍔面を、この内輪の軌道面に円すいころを配した時にその小端面と平行になる面に加工し、この小鍔面を寸法基準として、上記大鍔面までの溝幅寸法(W)をインプロセスゲージで測定しながら、上記大鍔面を研削加工によって仕上げると共に、上記円すいころの長さ寸法(L)を所定の寸法公差内に管理し、かつ、上記円すいころを内輪の軌道面に配し、円すいころの大端面を内輪の大鍔面に接触させた時の、内輪の小鍔面と円すいころの小端面との間の隙間δを測定することにより、上記隙間δをδ≦0.4mmの寸法範囲内に規制することを特徴とする円すいころ軸受の製造方法。
An outer ring having a conical raceway surface, an inner ring having a conical raceway surface, a small flange surface on the small diameter side and a large collar surface on the large diameter side, a raceway surface of the outer ring, and a raceway of the inner ring It has a plurality of tapered rollers that are arranged so as to be able to roll between them, and a cage that holds the tapered rollers at a predetermined circumferential distance. When the bearing is used, the large end surface of the tapered roller is caused by the large collar surface of the inner ring. A method of manufacturing a tapered roller bearing to be contact-guided,
The small ring surface of the inner ring is machined into a surface that is parallel to the small end surface when a tapered roller is arranged on the raceway surface of the inner ring, and the groove width dimension to the large rib surface is measured using the small rib surface as a dimensional reference. While measuring (W) with an in-process gauge, the large collar surface is finished by grinding, and the length dimension (L) of the tapered roller is controlled within a predetermined dimensional tolerance, and the tapered roller is By measuring the gap δ between the small collar surface of the inner ring and the small edge surface of the tapered roller when the large end surface of the tapered roller is in contact with the large collar surface of the inner ring A method of manufacturing a tapered roller bearing, characterized in that δ is regulated within a dimensional range of δ ≦ 0.4 mm.
上記内輪の小鍔面を研削によって仕上げることを特徴とする請求項8記載の円すいころ軸受の製造方法。9. The method of manufacturing a tapered roller bearing according to claim 8, wherein the small flange surface of the inner ring is finished by grinding. 上記内輪の小鍔面を旋削によって仕上げることを特徴とする請求項8記載の円すいころ軸受の製造方法。9. The method of manufacturing a tapered roller bearing according to claim 8, wherein a small flange surface of the inner ring is finished by turning.
JP00582398A 1997-11-21 1998-01-14 Tapered roller bearing Expired - Lifetime JP3774055B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP00582398A JP3774055B2 (en) 1997-11-21 1998-01-14 Tapered roller bearing
US09/227,545 US6086261A (en) 1998-01-14 1999-01-11 Tapered roller bearing
DE19964620.1A DE19964620B4 (en) 1998-01-14 1999-01-12 Method for producing a tapered roller bearing
DE19900858A DE19900858B4 (en) 1998-01-14 1999-01-12 Tapered roller bearings

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-321333 1997-11-21
JP32133397 1997-11-21
JP00582398A JP3774055B2 (en) 1997-11-21 1998-01-14 Tapered roller bearing

Publications (2)

Publication Number Publication Date
JPH11210761A JPH11210761A (en) 1999-08-03
JP3774055B2 true JP3774055B2 (en) 2006-05-10

Family

ID=26339834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00582398A Expired - Lifetime JP3774055B2 (en) 1997-11-21 1998-01-14 Tapered roller bearing

Country Status (1)

Country Link
JP (1) JP3774055B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022044273A (en) * 2020-09-07 2022-03-17 Ntn株式会社 Conical roller bearing

Also Published As

Publication number Publication date
JPH11210761A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
CN101371055B (en) Rolling bearing and method for the production thereof
US4718781A (en) Pre-stressed ball bearing and method and tool for its manufacture
EP1035339B2 (en) Roller bearing and a method of producing the same
JP6798780B2 (en) Tapered roller bearing
EP2525110A1 (en) Rolling bearing unit with combination seal ring, and method for manufacturing same
US5826988A (en) Cage for needle roller bearings and method of producing same
JP3046645B2 (en) Method of manufacturing raceway for split bearings
JPH06246546A (en) Manufacture of bearing ring for rolling bearing
US20150300410A1 (en) Bearing ring for roller bearing, roller bearing, and power transmission device
US5921685A (en) Tapered roller bearing for vehicle
JP2005106234A (en) Conical roller bearing and method for working conical roller bearing
KR102507430B1 (en) Hub unit bearing and manufacturing method therefor, automobile and manufacturing method therefor
EP1312819B1 (en) Bearing device and method of manufacturing the bearing device
JP3774055B2 (en) Tapered roller bearing
JP2006009891A (en) Roller bearing
JP2003004051A (en) Trail ring of shell shape needle roller bearing and its manufacturing method
JP6472671B2 (en) Tapered roller bearing
US5218764A (en) Method of manufacturing a rotary bearing assembly having an insertion hole
JPH09236131A (en) Roller bearing
JP2006194320A (en) Method of manufacturing roller bearing and roller bearing
JP3799555B2 (en) Ball rolling element
JP2005048881A (en) Manufacturing method of raceway ring of combination bearing, single row bearing and multi-row bearing, and combination bearing, single row bearing and multi-row bearing
JP4284951B2 (en) Method of manufacturing bearing ring for ball bearing
JP2004060860A (en) Roller bearing, roller for roller bearing and manufacturing method
JP2005090615A (en) Automatic centering roller bearing and machining method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term