JP3772237B2 - Multiphase state distribution measuring apparatus and multiphase state distribution measuring method - Google Patents
Multiphase state distribution measuring apparatus and multiphase state distribution measuring method Download PDFInfo
- Publication number
- JP3772237B2 JP3772237B2 JP2001327843A JP2001327843A JP3772237B2 JP 3772237 B2 JP3772237 B2 JP 3772237B2 JP 2001327843 A JP2001327843 A JP 2001327843A JP 2001327843 A JP2001327843 A JP 2001327843A JP 3772237 B2 JP3772237 B2 JP 3772237B2
- Authority
- JP
- Japan
- Prior art keywords
- matrix
- dielectric constant
- distribution
- state distribution
- multiphase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
【0001】
【発明の属する技術分野】
本願発明は、混相流の静電容量、電位差等を測定して、混相流の誘電率、導電率(電気伝導率)等の分布状態を求め、その混相流の混相状態分布CTの画像を再構成して混相流の粒子等の分布状態を計測する装置と方法に関し、例えば、石油、天然ガス、穀物、土砂、上下水、食品、薬品等の輸送管、或いは産業機器、化学工業機器、原子力発電所機器、薬品や食品の製造機器等の混相流の分布状態を計測・監視する装置、或いは人間や動物の血管等の混相流の状態分布を検査・診断する装置に使用する混相流分布状態計測装置と混相流分布状態計測方法に関する。
【0002】
【従来の技術】
従来、固体、気体、液体等の混相流を扱うパイプラインや機器においては、管路等の閉塞防止、輸送の効率化、混合の効率化、抵抗低減、腐食防止等のために、管路等を移動する混相流の粒子等の分布状態や粒子等の挙動を観察している。最近これらの観察に、管路等の混相流の誘電率、導電率(電気伝導率)等の分布から、混相状態分布CT(コンピュータートモグラフィ)の画像を再構成して表示し、混相状態分布を計測する装置や方法が提案されている。
【0003】
図1、図2を参照して、従来の混相状態分布CTの画像を再構成して表示する混相状態分布計測装置と混相流分布状態計測方法を説明する。
図1は、混相状態分布計測装置のブロック図で、図2(a),(b)は、図1のX2−X2部分とX1−X1部分の断面図を示し、図1(c)は、管路の断面の解像度を説明する図である。図1、図2は、管路内の混相流が固気2相流(気体に粒子等の固体が混じった流れ)の場合の例である。
【0004】
図1において、1は、混相流を輸送する管路、2は、センサー、221〜2212は、後述するコンデンサのリード線、3は、静電容量計測手段、4は、画像再構成手段、5は、誘電率分布CTの再構成画像を表示する装置である。
図2において、11は、管路1の内壁面、12は、粒子、13は、センサー2の計測空間、21,211〜2112は、コンデンサ用電極、221〜2212は、電極21〜2112に接続されたリード線、23は、絶縁材、矢印Zは、粒子12の移動方向を示す。
【0005】
センサー2は、絶縁材23と12個の電極211〜2112から成る。12個の電極は、66種類に組み合わされ、66個のコンデンサを形成する。即ち、211−212,213,・・・,2112、212−213,214・・・,2112、213−214,215,・・・,2112、214−215,216,・・・,2112、215−216,217,・・・,2112、216−217,218,・・・,2112、217−218,219,・・・,2112、218−219,2110,・・・,2112、219−2110,2111,2112、2110−2111,2112、2111−2112の組合せにより、66個のコンデンサを形成する。
【0006】
静電容量計測手段3は、リード線221〜2212を介して前記66個のコンデンサの静電容量を計測する。各コンデンサの静電容量は、そのコンデンサを構成する一対の電極間の気体と粒子の誘電率により決まる。
【0007】
画像再構成手段4は、コンピューターから成り、66個のコンデンサの静電容量に基づいて、管路1の計測空間13の誘電率分布を演算し、計測空間13の誘電率分布CTの再構成画像信号を発生する。誘電率分布は、計測空間13の粒子12の分布に対応しているから、再構成画像信号は、計測空間13の粒子の分布状態を表している。
【0008】
計測空間13の誘電率分布の演算は、図2(c)のように管路1の断面を32×32=1024個(m個)のメッシュに分割し、1024個のメッシュ毎の誘電率を求める。メッシュの個数は、再構成画像の解像度に対応する。
ここで静電容量の個数をn個、求める誘電率の個数(メッシュの個数)をm個とすると、静電容量行列C(n×1行列)、誘電率分布行列E(m×1行列)、センシティビティマップ行列Se(n×m行列)の関係は、
【数1】
で表される。なお(1)式は、周知であるが、後述する。
式(1)において、Cは、実際に計測され、Seは事前に計算できるから、未知のEは、既知のCおよびSeから求めることができる。
【0009】
(1)式のEを求めるには、Seの逆行列を求めればよいが、Seは正方行列でないため、逆行列は存在しない。そこで従来は、次の2つの方法が用いられている。
第1の方法は、LBP法(Liner Back Projection method)で、(1)式のSeを転置してCとかけ
【数2】
とし、(2)式からEを求めている。
【0010】
第2の方法は、NR法(Newton−Raphson method)で、(2)式のCに実際に計測して得たC(0)を代入し、そのときのEを初期値E(0)とすると、
【数3】
となる。
E(0)を(1)式に代入し、そのときのCをC(1)とすると、
【数4】
となる。
【0011】
C(0)とC(1)から静電容量の誤差△C(1)は、
【数5】
となる。
(2)式に△C(1)を代入すると、誘電率の誤差△E(1)は、
【数6】
となる。
△E(1)を用いて(3)式のE(0)を補正し、補正したEをE(1)とすると、
【数7】
となる。
【0012】
(7)式のE(1)を(1)式に代入してC(2)を求める。これをk回反復することにより誘電率の誤差△Eを小さくし、Eの精度、即ち再構成画像の再現性を高めることができる。
ここで(1)式について説明する。
図2のセンサー2の12個(n個)の電極の基準電極iと対向電極jとの間の静電容量Ci,jと管路1の計測空間13の位置ベクトルr(=x,y)における粒子の誘電率分布ε(r)との関係は、
【数8】
となる。ここで、iは、1から11(n−1)までの値をとり、jは、i+1から12(n)までの値をとる。Γjは、基準電極iと対向電極jとの間の電気力線が及ぶ範囲、ε0は、真空の誘電率、Vcは、i電極に印加する電圧、Vi(r)は、iが基準電極であるときの管路内の電位(ポテンシャル)である。
ここで例えば、管路内面で、
【数9】
のラプラス方程式を仮定し、微分方程式を計算することにより、未知のV(r)を求めることができる。
そしてCi,jの式を離散化して行列式で表すと、前記(1)式の
C=SeE
となる。ここでSeは、前記センシティビティマップで、前記ε0、Vc、∇V(r)から成る。
【0013】
【発明が解決しようとする課題】
図3は、各手法により再構成した誘電率分布CTの再構成画像の例を示し、図のRは、相関値を示す。
図3(a)は、図2の計測空間13の粒子分布モデルで、白い部分は粒子が部分布している箇所を示し、(イ)は、計測区間13の中央部に、(ロ)は、計測空間13の下半分に、(ハ)は、計測空間13の4箇所に分布している例である。
図3(b)は、LBP法による再構成画像を、図3(c)は、NR法による再構成画像を示す。
【0014】
LBP法は、図3(b)の再構成画像から分かるように再現性が悪く、特に(ロ)、(ハ)の場合が悪い。NR法は、図3(c)の再構成画像から分かるように、LBP法よりも再現性はよいが、充分ではない。
【0015】
NR法は、前記(3)〜(7)式の演算を反復すことにより、再構成画像の再現性は向上するが、解が安定していない。ここで反復回数をkとすると、図3(c)の再構成画像は、k=2の場合であるが、kが3より大きくなると再現性が悪くなってしまう。したがってkが幾つのときに最適の再構成画像が得られるかを判断することができない。図3(c)の場合には、事前に分かっている図3(a)の粒子分布モデルと比較できるから、k=2の場合が最適の再構成画像と判断できるが、未知の粒子分布の場合には、比較する粒子分布画像がないため、k=2の場合が最適か否かを判断するのは困難である。
【0016】
なおNR法の改良型である閾値付きNR法も知られているが、閾値付きNR法は、解の収束性はあるが、最適の解を判断するのが難しい。
【0017】
本願発明は、LBP法、NR法、閾値付きNR法の前記問題点を解決し、計測空間の誘電率又は導電率分布CTの再構成画像の精度を高め、解を安定的に収束させ、時々刻々変化する混相流の分布状態を確実に、効率的に、計測できる混層流状態分布計測装置及び混層流状態分布計測方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
本願発明の混相状態分布計測装置は、センサーにより混相流のn個の静電容量又は電位差を測定し、そのn個の静電容量又は電位差に基づいて、混相流のm個の誘電率又は導電率を演算して混相流状態分布CTの画像を再構成する画像再構成手段を備えた混相流状態分布計測装置において、画像再構成手段は、n×1行列の静電容量又は電位差行列C、n×m行列のセンシティビティマップSe、及びn×m行列の誘電率又は導電率分布行列Eとが、C=SeEの関係にあり、そのC=SeEを列で分解して、
【数1】
とし、その式を反復計算して誘電率又は導電率分布行列Eを求め、その反復計算の際、
【数2】
とおき、反復回数をkとして評価関数を、
【数3】
とし、この評価関数が1に近づく誘電率又は導電率分布行列Eを求めることを特徴とする。
【0019】
本願発明の混相状態分布計測装置は、前記の混相状態分布計測装置において、静電容量又は電位差行列C、センシティビティマップSe、及び誘電率又は導電率分布行列Eを、ノルム、
【数4】
で正規化し、
【数5】
とすることを特徴とする。
【0020】
本願発明の混相状態分布計測方法は、センサーにより混相流のn個の静電容量又は電位差を測定し、そのn個の静電容量又は電位差に基づいて、画像再構成手段により混相流のm個の誘電率又は導電率を演算して混相流状態分布CTの画像を再構成する混相流状態分布計測方法において、n×1行列の静電容量又は電位差行列C、n×m行列のセンシティビティマップSe、及びn×m行列の誘電率又は導電率分布行列Eとが、C=SeEの関係にあり、そのC=SeEを列で分解して、
【数6】
とし、その式を反復計算して誘電率又は導電率分布行列Eを求め、その反復計算の際、
【数7】
とおき、反復回数をkとして評価関数を、
【数8】
とし、この評価関数が1に近づく誘電率又は導電率分布行列Eを求めることを特徴とする。
【0021】
本願発明の混相状態分布計測方法は、前記混相状態分布計測方法において、静電容量又は電位差行列C、センシティビティマップSe、及び誘電率又は導電率分布行列Eを、ノルム、
【数9】
で正規化し、
【数10】
とすることを特徴とする。
【発明の実施の形態】
本願発明の実施の形態に係る混相状態分布計測装置と方法を、図1、図2を参照して説明する。
センサー2、静電容量計測手段3、画像表示手段5は、前記した従来のものと同じである。
【0022】
画像再構成手段4は、コンピューターから成り、次の手順で混相状態分布CTの画像を再構成する。
【0023】
まず前記(1)式を列で分解し、
【数1】
とする。ここでSeiは、i列目のSe、Eiはi列目のEであり、Seiは、n×1行列となる。
(8)式をCのノルムで正規化して、
【数2】
とする。││は要素の2乗和であるノルムを表し、
【数3】
である。
【0024】
したがって(9)式は、
【数4】
と表せる。またEi′は、
【数5】
と定義する。ここで「′」は、正規化されていることを示す。
【0025】
次に計測により得た静電容量をC′(0)、またLBP法により求めたEをE′(0)とすると、
【数6】
となる。
E′(0)を(10)式に代入し、E′(0)のときのCをC′(1)とすると、
【数7】
となる。
【0026】
C′(0)とC′(1)とから静電容量の誤差△C′(1)は、
【数8】
となる。
よって(14)から、
【数9】
となる。
【0027】
(15)式を初期値E′(0)に加え、加えたEをE′(1)とすると、
【数10】
となる。
【0028】
よって反復解の一般式は、
【数11】
となる。ここで、kは反復回数であり、Imはm行m列の単位行列である。
【0029】
以上のように静電容量Cの誤差と誘電率Eの誤差の補正をk回反復すことにより再現性のよい誘電率分布(粒子分布)に対応する再構成画像を得ることができる。
【0030】
次に前記反復の際の評価関数について説明する。
前記(10)式の両辺にC′TをかけてSeの列で表すと、
【数12】
となる。これは、C′TC′が必ずセンシティビティマップSeを構成する列ベクトルSei′の線形結合、即ち和で与えられることを意味する。
【0031】
(18)式のC′TSei′を、
【数13】
とおくと(19)式は、
【数14】
となる。
【0032】
また(20)式は、γとE′の内積
【数15】
で表せる。
【0033】
評価関数を、
【数16】
とおく。
本願発明は、f(E(k))が1となるEを求めればよい。したがって、(17)式の反復回数kは、f(E(k))が1に近づく回数に選定すればよい。
図4は、反復回数kと評価関数値f(E(k))との関係を示す。本実施の形態の場合、評価関数値f(E(k))は、反復回数kが3000回で略1に近くなり、これ以上反復しても再構成画像は、ほとんど変わらない。この状態の再構成画像は、後述する図3(d)のようになる。
【0034】
次に本願発明の解の収束性について説明する。
前記(17)式の状態遷移行列Pを、
【数17】
とおく。いまE′(k-1)が行列Pの固有ベクトルに等しくなったとすると、λとPの固有値として、
【数18】
が成り立つから、
【数19】
となる。
したがって、k→∞でE′(k)の固有値λの絶対値が1を超えなければ必ず収束する。
【0035】
以上の反復計算、評価関数、収束性は、(8)式をノルムで正規化した場合について説明したが、正規化しない場合も、同様である。正規化すると、収束が早くなり、安定する。
以上説明した実施の形態においては、センサーが管路の計測空間の静電容量を計測し、その計測空間の誘電率分布に対応する誘電率分布CTの再構成画像を発生する例について説明したが、静電容量と誘電率との関係に限らず、電極間の電位差を計測し、計測空間の導電率(電気伝導率)の分布を求めることにより、例えば、気液2相流の分布状態CTの再構成画像を発生することもできる。
またセンサーの電極の個数は、12個に限るものではないし、計測空間のメッシュの個数(解像度)も32×32に限るものではない。図1、図2は、センサー1個を配置した例について説明したが、管路の長手方向にセンサーを複数個配置してもよい。
【0036】
【発明の効果】
本願発明の混相状態分布CTの再構成画像は、図3(d)のようになる。図3(d)の(イ)の場合(粒子が管路の中央部に分布している場合)の画像は、反復回数kが3000回のときのものであるが、このときの評価関数は、0.9972で略1に近くなる。図3(d)の再構成画像は、従来のLBP法、NR法の再構成画像(図3(b)、(c))に比べて、より図3(a)の粒子分布モデルに近く、高い精度の再構成画像であることが分かる。このことは、図3(d)の相関値Rが図3(b)、(c)の相関値Rよりも高いことからも分かる。したがって、本願発明の混層状態分布計測装置及び混層状態分布計測方法によると、流体の混層状態分布を高精度で計測することができる。
【0037】
本願発明の混相状態分布CTの再構成画像は、安定的に収束し、かつ評価関数により収束状況を知ることができるから、画像再構成の演算の反復回数は、何回でよいかが分かり、従来のLBP法による場合のように、反復回数が何回目のときに最適の再構成画像が発生しているのか、判断に困ることはない。したがって本願発明混層状態分布計測装置及び混層状態分布計測方法によると、時々刻々変化する混相状態分布を、確実に、効率よく計測することができる。
【図面の簡単な説明】
【図1】本願発明の実施の形態及び従来の混相状態分布計測装置のブロック図である。
【図2】図1のセンサーと管路の断面図、及び計測空間のメッシュ図である。
【図3】本願発明の実施の形態及び従来の手法による再構成画像の例である。
【図4】本願発明の実施の形態に係る反復回数と評価関数値を示す。
【符号の説明】
1 管路
11 管路の内壁
12 粒子
13 計測空間
2 センサー
211〜2112 電極
221〜2212 リード線
23 絶縁材
3 静電容量計測手段
4 画像再構成手段
5 画像表示手段[0001]
BACKGROUND OF THE INVENTION
The present invention measures the capacitance, potential difference, etc. of the multiphase flow to determine the distribution state of the multiphase flow such as dielectric constant, conductivity (electrical conductivity), etc., and re-images the multiphase state distribution CT of the multiphase flow. Concerning an apparatus and method for measuring the distribution state of particles and the like in a mixed phase flow, for example, oil, natural gas, grain, earth and sand, water and sewage, food and medicine transport pipes, industrial equipment, chemical industry equipment, nuclear power Multiphase flow distribution state used in devices that measure and monitor the distribution state of multiphase flows such as power plant equipment, chemical and food manufacturing equipment, or devices that inspect and diagnose multiphase flow distributions such as blood vessels in humans and animals The present invention relates to a measuring device and a method for measuring a mixed phase distribution state.
[0002]
[Prior art]
Conventionally, in pipelines and equipment that handle multiphase flows such as solids, gases, and liquids, pipes, etc. are used to prevent clogging of pipes, improve transportation efficiency, improve mixing efficiency, reduce resistance, prevent corrosion, etc. The distribution state of particles, etc., and the behavior of particles, etc. are observed. Recently, in these observations, the multiphase state distribution CT (computer tomography) image was reconstructed and displayed from the distribution of the dielectric constant and conductivity (electrical conductivity) of the multiphase flow such as pipes, and the multiphase state distribution was displayed. There have been proposed devices and methods for measuring the above.
[0003]
With reference to FIGS. 1 and 2, a conventional multiphase state distribution measuring apparatus and multiphase flow distribution state measuring method for reconstructing and displaying an image of a multiphase state distribution CT will be described.
FIG. 1 is a block diagram of a multiphase state distribution measuring apparatus. FIGS. 2A and 2B are cross-sectional views of the X2-X2 portion and the X1-X1 portion of FIG. 1, and FIG. It is a figure explaining the resolution of the section of a pipe line. 1 and 2 are examples in the case where the multiphase flow in the pipe is a solid-gas two-phase flow (a flow in which a solid such as particles is mixed in a gas).
[0004]
In FIG. 1, 1 is a conduit for transporting a multiphase flow, 2 is a sensor, 221 to 2212 are capacitor leads, which will be described later, 3 is a capacitance measuring means, 4 is an image reconstruction means, 5 Is a device that displays a reconstructed image of the dielectric constant distribution CT.
In FIG. 2, 11 is an inner wall surface of the
[0005]
The
[0006]
The capacitance measuring means 3 measures the capacitances of the 66 capacitors via the
[0007]
The image reconstruction means 4 is composed of a computer, calculates the dielectric constant distribution in the
[0008]
The calculation of the dielectric constant distribution in the
Here, if the number of capacitances is n and the number of required dielectric constants (number of meshes) is m, the capacitance matrix C (n × 1 matrix) and the dielectric constant distribution matrix E (m × 1 matrix) The relationship of the sensitivity map matrix Se (n × m matrix) is
[Expression 1]
It is represented by The expression (1) is well known, but will be described later.
In equation (1), C is actually measured and Se can be calculated in advance, so that unknown E can be determined from known C and Se.
[0009]
In order to obtain E in equation (1), an inverse matrix of Se may be obtained. However, since Se is not a square matrix, there is no inverse matrix. Therefore, conventionally, the following two methods are used.
The first method is the LBP method (Liner Back Projection method), which transposes Se in equation (1) and multiplies it with C.
And E is obtained from equation (2).
[0010]
The second method is the NR method (Newton-Raphson method), in which C (0) obtained by actual measurement is substituted for C in equation (2), and E at that time is set as an initial value E (0) . Then
[Equation 3]
It becomes.
Substituting E (0) into equation (1) and letting C (1) be C
[Expression 4]
It becomes.
[0011]
From C (0) and C (1), the capacitance error ΔC (1) is
[Equation 5]
It becomes.
Substituting △ C (1) into equation (2), the dielectric constant error △ E (1) is
[Formula 6]
It becomes.
△ E (1) is used to correct E (0) in equation (3), and the corrected E is E (1) .
[Expression 7]
It becomes.
[0012]
Substituting E (1 ) of equation (7) into equation (1) , C (2) is obtained. By repeating this k times, the dielectric constant error ΔE can be reduced, and the accuracy of E, that is, the reproducibility of the reconstructed image can be improved.
Here, the expression (1) will be described.
Capacitance Ci, j between the reference electrode i and the counter electrode j of the twelve (n) electrodes of the
[Equation 8]
It becomes. Here, i takes a value from 1 to 11 (n−1), and j takes a value from i + 1 to 12 (n). Γ j is the range covered by the lines of electric force between the reference electrode i and the counter electrode j, ε 0 is the dielectric constant of vacuum, Vc is the voltage applied to the i electrode, and V i (r) is i This is the potential (potential) in the pipe line when it is the reference electrode.
Here, for example, on the inner surface of the pipeline,
[Equation 9]
An unknown V (r) can be obtained by assuming a Laplace equation and calculating a differential equation.
Then, when the expression of Ci, j is discretized and expressed as a determinant, C = SeE in the above expression (1).
It becomes. Here, Se is the sensitivity map and includes the ε 0 , Vc, and ∇V (r).
[0013]
[Problems to be solved by the invention]
FIG. 3 shows an example of a reconstructed image of the dielectric constant distribution CT reconstructed by each method, and R in the figure indicates a correlation value.
FIG. 3A is a particle distribution model of the
FIG. 3B shows a reconstructed image by the LBP method, and FIG. 3C shows a reconstructed image by the NR method.
[0014]
As can be seen from the reconstructed image in FIG. 3B, the LBP method has poor reproducibility, and in particular, the cases of (B) and (C) are bad. As can be seen from the reconstructed image in FIG. 3C, the NR method has better reproducibility than the LBP method, but is not sufficient.
[0015]
In the NR method, the reproducibility of the reconstructed image is improved by repeating the operations of the equations (3) to (7), but the solution is not stable. Here, assuming that the number of iterations is k, the reconstructed image in FIG. 3C is a case where k = 2, but if k is larger than 3, the reproducibility deteriorates. Therefore, it cannot be determined when k is optimal for obtaining an optimal reconstructed image. In the case of FIG. 3 (c), since it can be compared with the particle distribution model of FIG. 3 (a) known in advance, the case of k = 2 can be determined as the optimum reconstructed image. In this case, since there is no particle distribution image to be compared, it is difficult to determine whether k = 2 is optimal.
[0016]
An NR method with a threshold, which is an improved version of the NR method, is also known, but the thresholded NR method has a solution convergence property, but it is difficult to determine an optimal solution.
[0017]
The present invention solves the problems of the LBP method, the NR method, and the thresholded NR method, increases the accuracy of the reconstructed image of the dielectric constant or conductivity distribution CT in the measurement space, and stably converges the solution. An object of the present invention is to provide a mixed layer flow state distribution measuring apparatus and a mixed layer flow state distribution measuring method capable of reliably and efficiently measuring the distribution state of a multiphase flow that changes every moment.
[0018]
[Means for Solving the Problems]
The multiphase state distribution measuring apparatus of the present invention measures n capacitances or potential differences of a multiphase flow with a sensor, and based on the n capacitances or potential differences, m dielectric constants or conductivity of the multiphase flow. In the multiphase flow state distribution measuring apparatus provided with the image reconstruction means for reconstructing the image of the multiphase flow state distribution CT by calculating the rate, the image reconstruction means includes an n × 1 matrix capacitance or potential difference matrix C, The sensitivity map Se of the n × m matrix and the dielectric constant or conductivity distribution matrix E of the n × m matrix have a relationship of C = SeE, and the C = SeE is decomposed into columns,
[Expression 1]
And calculate the dielectric constant or conductivity distribution matrix E by iteratively calculating the equation,
[Expression 2]
And the evaluation function with the number of iterations as k,
[Equation 3]
And a dielectric constant or conductivity distribution matrix E in which the evaluation function approaches 1 is obtained.
[0019]
The multiphase state distribution measuring apparatus of the present invention is the above-described multiphase state distribution measuring apparatus, wherein the capacitance or potential difference matrix C, the sensitivity map Se, and the dielectric constant or conductivity distribution matrix E are set to a norm,
[Expression 4]
Normalized by
[Equation 5]
It is characterized by.
[0020]
The multiphase state distribution measuring method of the present invention measures n capacitances or potential differences of a multiphase flow with a sensor, and based on the n capacitances or potential differences, m pieces of the multiphase flow are obtained by image reconstruction means. In a multiphase flow state distribution measurement method for reconstructing an image of the multiphase flow state distribution CT by calculating the dielectric constant or conductivity of the liquid crystal, an n × 1 matrix capacitance or potential difference matrix C, n × m matrix sensitivity map Se and the dielectric constant or conductivity distribution matrix E of the n × m matrix have a relationship of C = SeE, and the C = SeE is decomposed into columns,
[Formula 6]
And calculate the dielectric constant or conductivity distribution matrix E by iteratively calculating the equation,
[Expression 7]
And the evaluation function with the number of iterations as k,
[Equation 8]
And a dielectric constant or conductivity distribution matrix E in which the evaluation function approaches 1 is obtained.
[0021]
The mixed phase state distribution measuring method of the present invention is the same as the mixed phase state distribution measuring method, wherein the capacitance or potential difference matrix C, the sensitivity map Se, and the dielectric constant or conductivity distribution matrix E are set to a norm,
[Equation 9]
Normalized by
[Expression 10]
It is characterized by.
DETAILED DESCRIPTION OF THE INVENTION
A multiphase state distribution measuring apparatus and method according to an embodiment of the present invention will be described with reference to FIGS.
The
[0022]
The image reconstruction means 4 is composed of a computer and reconstructs an image of the multiphase state distribution CT by the following procedure.
[0023]
First, the equation (1) is decomposed in a row,
[Expression 1]
And Here, Se i is Se in the i- th column, E i is E in the i- th column, and Se i is an n × 1 matrix.
(8) Normalize the equation with the norm of C,
[Expression 2]
And ││ represents the norm, which is the sum of squares of elements,
[Equation 3]
It is.
[0024]
Therefore, equation (9) is
[Expression 4]
It can be expressed. E i ′ is
[Equation 5]
It is defined as Here, “′” indicates normalization.
[0025]
Next, let C ′ (0) be the capacitance obtained by measurement, and E ′ (0) be E obtained by the LBP method.
[Formula 6]
It becomes.
E '(0) is (10) is substituted into equation, E' when the C when the (0) C '(1),
[Expression 7]
It becomes.
[0026]
From C ′ (0) and C ′ (1) , the capacitance error ΔC ′ (1) is
[Equation 8]
It becomes.
Therefore, from (14)
[Equation 9]
It becomes.
[0027]
If Eq. (15) is added to the initial value E ′ (0) and the added E is E ′ (1) ,
[Expression 10]
It becomes.
[0028]
Therefore, the general formula of the iterative solution is
[Expression 11]
It becomes. Here, k is the number of iterations, and Im is a unit matrix of m rows and m columns.
[0029]
As described above, it is possible to obtain a reconstructed image corresponding to the permittivity distribution (particle distribution) with good reproducibility by repeating the correction of the error of the capacitance C and the error of the permittivity E k times.
[0030]
Next, the evaluation function during the iteration will be described.
When both sides of the equation (10) are represented by a column of Se by applying C ′ T ,
[Expression 12]
It becomes. This means that C ′ T C ′ is always given by a linear combination, that is, a sum of column vectors Se i ′ constituting the sensitivity map Se.
[0031]
C ′ T Se i ′ in the equation (18)
[Formula 13]
(19) is
[Expression 14]
It becomes.
[0032]
(20) is the inner product of γ and E ′.
It can be expressed as
[0033]
The evaluation function is
[Expression 16]
far.
In the present invention, E in which f (E (k) ) is 1 may be obtained. Therefore, the number of iterations k in equation (17) may be selected as the number of times f (E (k) ) approaches 1.
FIG. 4 shows the relationship between the number of iterations k and the evaluation function value f (E (k) ). In the case of the present embodiment, the evaluation function value f (E (k) ) becomes nearly 1 when the number of iterations k is 3000, and the reconstructed image hardly changes even when the number of iterations is repeated. The reconstructed image in this state is as shown in FIG.
[0034]
Next, the convergence of the solution of the present invention will be described.
The state transition matrix P of the equation (17) is
[Expression 17]
far. If E ′ (k−1) is now equal to the eigenvector of the matrix P, the eigenvalues of λ and P are
[Formula 18]
Because
[Equation 19]
It becomes.
Therefore, if k → ∞ and the absolute value of the eigenvalue λ of E ′ (k) does not exceed 1, it will always converge.
[0035]
The above iterative calculation, evaluation function, and convergence have been described for the case where the equation (8) is normalized by the norm, but the same applies when not normalized. Normalization speeds up convergence and stabilizes.
In the above-described embodiment, the example has been described in which the sensor measures the capacitance of the measurement space of the pipe and generates a reconstructed image of the dielectric constant distribution CT corresponding to the dielectric constant distribution of the measurement space. For example, a gas-liquid two-phase flow distribution state CT is obtained by measuring the potential difference between the electrodes, and determining the conductivity (electrical conductivity) distribution in the measurement space, not limited to the relationship between the capacitance and the dielectric constant. It is also possible to generate a reconstructed image.
The number of sensor electrodes is not limited to 12, and the number of meshes in the measurement space (resolution) is not limited to 32 × 32. 1 and 2 describe an example in which one sensor is arranged, but a plurality of sensors may be arranged in the longitudinal direction of the pipeline.
[0036]
【The invention's effect】
A reconstructed image of the mixed phase state distribution CT of the present invention is as shown in FIG. In the case of (a) in FIG. 3D (when the particles are distributed in the central part of the pipe), the image is obtained when the number of iterations k is 3000. The evaluation function at this time is 0.9972, which is close to about 1. The reconstructed image of FIG. 3 (d) is closer to the particle distribution model of FIG. 3 (a) than the reconstructed images of the conventional LBP method and NR method (FIG. 3 (b), (c)), It can be seen that this is a highly accurate reconstructed image. This can also be seen from the fact that the correlation value R in FIG. 3 (d) is higher than the correlation value R in FIGS. 3 (b) and 3 (c). Therefore, according to the mixed layer state distribution measuring apparatus and the mixed layer state distribution measuring method of the present invention, the mixed layer state distribution of the fluid can be measured with high accuracy.
[0037]
Since the reconstructed image of the multiphase state distribution CT of the present invention converges stably and the convergence state can be known by the evaluation function, it is possible to know how many iterations of the image reconstruction operation are required. As in the case of the LBP method, it is not difficult to determine the optimum number of iterations when the optimum reconstructed image is generated. Therefore, according to the mixed layer state distribution measuring apparatus and the mixed layer state distribution measuring method of the present invention, it is possible to reliably and efficiently measure the mixed phase state distribution that changes every moment.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of the present invention and a conventional multiphase state distribution measuring apparatus.
FIG. 2 is a cross-sectional view of the sensor and the conduit of FIG. 1 and a mesh diagram of a measurement space.
FIG. 3 is an example of a reconstructed image according to an embodiment of the present invention and a conventional technique.
FIG. 4 shows the number of iterations and an evaluation function value according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001327843A JP3772237B2 (en) | 2001-10-25 | 2001-10-25 | Multiphase state distribution measuring apparatus and multiphase state distribution measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001327843A JP3772237B2 (en) | 2001-10-25 | 2001-10-25 | Multiphase state distribution measuring apparatus and multiphase state distribution measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003130835A JP2003130835A (en) | 2003-05-08 |
JP3772237B2 true JP3772237B2 (en) | 2006-05-10 |
Family
ID=19144003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001327843A Expired - Fee Related JP3772237B2 (en) | 2001-10-25 | 2001-10-25 | Multiphase state distribution measuring apparatus and multiphase state distribution measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3772237B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106486175A (en) * | 2016-12-08 | 2017-03-08 | 核动力运行研究所 | Nuclear power plant's foul drainage system sodium ion Indexes Abnormality diagnostic equipment and method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0647224B2 (en) * | 1987-08-11 | 1994-06-22 | アミテック株式会社 | Grinding device for rectangular frame |
JP2007033062A (en) * | 2005-07-22 | 2007-02-08 | Japan Atomic Energy Agency | Electric-type void ratio meter for instantaneously measuring void ratio in complicated flow path under high-temperature and high-pressure, and void ratio measuring method |
US8054094B1 (en) * | 2010-06-10 | 2011-11-08 | General Electric Company | Image reconstruction based constrained maximization |
JP2014202722A (en) * | 2013-04-10 | 2014-10-27 | 株式会社豊田中央研究所 | Mixed phase state distribution measuring device |
GB2514110B (en) * | 2013-05-13 | 2021-04-28 | Atout Process Ltd | Method And Apparatus For Providing A Visualisation Of A Multiphase Flow Of Material In A Pipe |
JP6194636B2 (en) * | 2013-05-24 | 2017-09-13 | 株式会社豊田中央研究所 | Multiphase distribution measuring device |
DE102014010238A1 (en) * | 2014-02-20 | 2015-09-03 | Krohne Ag | Flowmeter with a measuring device implementing a tomographic measuring principle |
-
2001
- 2001-10-25 JP JP2001327843A patent/JP3772237B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106486175A (en) * | 2016-12-08 | 2017-03-08 | 核动力运行研究所 | Nuclear power plant's foul drainage system sodium ion Indexes Abnormality diagnostic equipment and method |
CN106486175B (en) * | 2016-12-08 | 2018-02-09 | 核动力运行研究所 | Nuclear power plant's foul drainage system sodium ion Indexes Abnormality diagnostic device and method |
Also Published As
Publication number | Publication date |
---|---|
JP2003130835A (en) | 2003-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6915703B2 (en) | Capacitance meter | |
Rasteiro et al. | Electrical tomography: a review of configurations and applications to particulate processes | |
US10132847B2 (en) | Tomography of multiphase mixtures | |
US10261039B2 (en) | Method and apparatus for investigating permittivity in a target domain | |
CN102713592B (en) | Three dimensional imaging of a mass flow | |
Dos Reis et al. | Experimental study on different configurations of capacitive sensors for measuring the volumetric concentration in two-phase flows | |
CN102364334B (en) | Method for providing an image of an interior of a structure containing regions | |
AU2001240676A1 (en) | Capacitance meter | |
Wang et al. | A new visualisation and measurement technology for water continuous multiphase flows | |
Evgenidis et al. | Effect of bubble size on void fraction fluctuations in dispersed bubble flows | |
JP3772237B2 (en) | Multiphase state distribution measuring apparatus and multiphase state distribution measuring method | |
EA022686B1 (en) | A probe indicating intermaterial boundaries | |
do Nascimento Wrasse et al. | Capacitive multielectrode direct-imaging sensor for the visualization of two-phase flows | |
Giguère et al. | ERT algorithms for quantitative concentration measurement of multiphase flows | |
Grudzień et al. | Study of granular flow in silo based on electrical capacitance tomography and optical imaging | |
Suppan et al. | Thermal drifts of capacitive flow meters: Analysis of effects and model-based compensation | |
JP4643832B2 (en) | Multiphase state distribution measuring apparatus and multiphase state distribution measuring method | |
Soleimani | Three-dimensional electrical capacitance tomography imaging | |
US11493464B2 (en) | Determining an electrical property of interest of materials in a target region | |
Ghaly et al. | Design and Simulation of an 8-Lead Electrical Capacitance Tomographic System for Flow Imaging | |
Zhang et al. | Quantitative reconstruction of the exterior boundary shape of metallic inclusions using electrical capacitance tomography | |
Ghaly et al. | Image and Velocity Profile Reconstruction Using a Customized 8–16 Electrode Electrical Capacitance Tomography Sensor Based on LabVIEW Simulation | |
Donthi et al. | Capacitance based Tomography for industrial Applications | |
Yang et al. | Solid component fraction in multi-phase flows using electrical resistance tomography and kalman filter | |
CN112649054A (en) | Oil-gas-water three-phase flow real-time online detection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041022 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060130 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100224 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110224 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120224 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130224 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |