JP3771138B2 - Thermal storage capsule using ice nucleus active bacteria - Google Patents
Thermal storage capsule using ice nucleus active bacteria Download PDFInfo
- Publication number
- JP3771138B2 JP3771138B2 JP2001090903A JP2001090903A JP3771138B2 JP 3771138 B2 JP3771138 B2 JP 3771138B2 JP 2001090903 A JP2001090903 A JP 2001090903A JP 2001090903 A JP2001090903 A JP 2001090903A JP 3771138 B2 JP3771138 B2 JP 3771138B2
- Authority
- JP
- Japan
- Prior art keywords
- ice
- heat storage
- bacteria
- storage capsule
- active bacteria
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、氷核活性細菌を利用した蓄熱カプセルに関する。さらに詳述すると、本発明は、氷核活性細菌を利用して過冷却現象をなくす蓄熱カプセルにおける過冷却解除能の改良に関する。
【0002】
【従来の技術】
主に大規模な熱供給プラントで実用化されているカプセル型氷蓄熱システムでは蓄熱物質である水の過冷却解除が課題となっており、従来、過冷却を解除するための氷核活性物質として例えばヨウ化銀(AgI)や粘土鉱物の一種が実用化されているが、近年では、人工降雪や食品凍結の分野で実用化されている氷核活性細菌に高い過冷却解除効果が認められている。氷核活性細菌は安価で安全性も高いことから、AgIに替わる過冷却解除剤として非常に有効であると考えられている。例えば、特開平2−286777号公報、特表平5−502664号公報さらには特開平8−42984号公報などに過冷却解除部材として氷核活性細菌を用いる技術が記載されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上述のように生菌を過冷却解除部材として利用した蓄熱カプセルにおいては、主に微生物の代謝によって細胞表面が変質するため、長期の使用に際し、過冷却解除剤としての性能が徐々に低下し、凍結開始温度のばらつきが大きくなることから長期安定性に欠けるという問題がある。
【0004】
この点、上記の特開平8−42984号公報では、水中に生きている微生物が混入している場合は水質の経時変化が生じるので、これを極力避けるため、カプセル内部に封入する水は純水、蒸留水、きめの細かなフィルタにより濾過された水などを用い、あるいは、水に滅菌処理を施すか防腐剤を添加することにより水質が変化するのを抑えてもよいと記載されてはいる。しかし、これでも十分長期にわたり安定した過冷却解除能力を確保するには至らない。
【0005】
そこで本発明は、過冷却解除能の長期安定性を確保しうるようにした氷核活性細菌を利用した蓄熱カプセルを提供することを目的とする。
【0006】
【課題を解決するための手段】
ここで、氷核活性細菌の構造や、氷核活性細菌を核とする氷の形成メカニズムについては未だ明らかになっていない部分があるものの、本願発明者らは、種々の実験および検討の結果、氷核活性細菌の氷核活性発現がもっぱら細胞膜あるいは細胞壁の構造によってもたらされることから、これら細胞膜あるいは細胞壁の構造を維持しつつ細菌の増殖・汚染を防ぐことを知見するに至った。
【0007】
請求項1記載の発明は、かかる知見に基づくものであり、封入された水の過冷却解除剤として氷核活性細菌を利用した蓄熱カプセルにおいて、氷核活性細菌は245〜270nmの紫外線が照射されることによって殺菌され、尚かつ殺菌された後に凍結乾燥処理されてから蓄熱カプセル内に添加されたものであることを特徴としている。この場合、細胞膜あるいは細胞壁の構造を損なわない限り氷核活性能はそのまま維持されることに加え、細菌は死滅していることから、氷核活性細菌自体の代謝が失われ蓄熱カプセルの高い氷核活性能を長期にわたって安定に維持することが可能となる。
【0008】
このように死滅させた氷核活性細菌を利用する場合、放射線照射、特に紫外線照射によって氷核活性細菌を殺菌することが効果的である。これによれば、細胞膜あるいは細胞壁の構造を維持しつつ核酸を損傷させることにより、氷核活性能を保ちながら細菌を完全に死滅させることが可能となる。紫外線の波長は特に限定されることはなく、氷核活性能を維持しつつ効果的に核酸に損傷を与えうる全ての波長の紫外線が含まれるが、この中でも好ましいのは245〜270nmの波長のものである。
【0009】
また、放射線照射する場合、特にDNAがよく光を吸収する260nm付近の波長の紫外線を照射すれば氷核活性能を維持しながら核酸を死滅させることができて効果的である。また、紫外線以外にも、γ線、電子線などが効果的である。
【0010】
さらに、放射線照射以外には塩化ベンザルコニウム等を用いた薬品処理、加圧処理あるいは超音波破砕などによることが好ましい。これらの手段によって氷核活性細菌を殺菌し、氷核活性物質として利用することができる。また、殺菌処理をより完全なものとするには、これらの手段によって氷核活性細菌を殺菌処理した後さらに凍結乾燥することが好ましい。
【0011】
【発明の実施の形態】
以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。
【0012】
図1に本発明を適用した蓄熱カプセル1を示す。この蓄熱カプセル1は、殺菌して死滅させた氷核活性細菌3をカプセル内に封入された水2に添加することで構成したものである。水2としては滅菌水を用いることが好ましい。また、水2はカプセル内容積より少ない量が封入され、その差分は凍結時の体積膨張を吸収する気相4となっている。
【0013】
蓄熱カプセル1は、例えば図2に示すような蓄熱システムに適用される。図示する蓄熱システムは水を蓄熱物質とし、水を封入した蓄熱カプセル1、蓄熱カプセル1を充填した蓄熱槽5、冷熱を作る冷凍機6、不凍液(ブライン)7と冷媒8との熱交換を行う熱交換器9からなる。また、これらの他にコンプレッサ10、循環ポンプ11が設けられている。
【0014】
蓄熱時には、熱交換器9を介して冷却された不凍液7によって、蓄熱槽5内に充填した蓄熱カプセル1が冷却される。つまり、冷凍機6で作り出された冷熱は氷として蓄熱カプセル1内に蓄えられる。放熱時には氷が水に融解する際の潜熱を取り出すことによって、冷熱を放出して冷房に利用する。水の凝固点は0℃であるが、実際の現象では過冷却現象により0℃よりも低い温度で凍結を開始するので、氷を生成するためには不凍液7の温度をさらに下げる必要が生じている。
【0015】
ここで、この過冷却現象を解消あるいは減少させるために投入する氷核活性細菌2に関し、過冷却解除能の長期安定性確保を目的とする種々の実験と検討を行ったので実施例として示す。以下では、はじめに1.として微生物の性能に関する実験・検討を示し、続いて2.微生物の加工処理に関する実験・検討を示す。なお、本明細書でいう微生物は、氷核活性能を有する細菌を含む広い概念で用いている。また、殺菌されて死滅した氷核活性細菌は厳密な意味ではもはや氷核活性細菌でないかもしれないが、本明細書では死滅後のものを含めて「氷核活性細菌」と呼んでいる。
【0016】
【実施例】
1.微生物の性能(過冷却解除能力の比較)
ここでは、氷核活性遺伝子を有するとされる代表的な3つの菌種、シュードモナス シリンガエ(Psudomonas syringae)、エルビニア アナナス(Erwinia ananas)、キサントモナス キャンペストリス(Xanthomonas campestris) について、これらを添加した水の凍結開始温度を測定することにより、微生物の過冷却解除能能力を評価した。尚、以下、P.syringae、E.ananas、X.campestrisとそれぞれ略す。
【0017】
(微生物の調製)
使用した微生物のうち、P.syringae及びE.ananasについては菌株を入手し、凍結保存されている菌株を20℃の恒温槽で48時間震盪培養し、これを洗浄後、純水に再浮遊させたものを生菌試料として用いた。
【0018】
X.campestrisについては、試験研究用微生物遺伝資源(X.campestris pv.MAFF301035)の凍結保存されている菌株をPPDA培地で20℃、48時間、震盪培養し、生菌試料とした。
【0019】
生菌試料に含まれる菌数については、希釈した菌懸濁液を平板寒天培地上にまいて培養し、生じるコロニーの数から生菌数を算出するコロニー計数法を採用した。計測の結果、実験に使用した試料の生菌数は表1の通りである。
【表1】
(実験手順)
試験管に生菌試料1mlを分取し、8mlにメスアップして恒温槽内に設置した。尚、水については市販の蒸留水をオートクレーブで滅菌処理して使用した。恒温槽は空冷式であり、図3に示す温度プロファイルに沿って昇降温を繰り返し、試験管内に挿入した熱電対により微生物を添加した水の温度を2秒間隔で測定した。
【0020】
(実験結果)
それぞれの微生物を添加した水の冷却曲線の一例を図4に示す。いずれの微生物を添加した場合にも、水のみと比べ、高い過冷却解除能力を示している。
【0021】
次に過冷却解除能力の持続性を評価するために、融解・凝固の繰り返し試験を行った。図5に示すように、P.syringaeとE.ananasについては、150回程度までは安定して高い活性を示すが、その後凍結開始温度のばらつきが顕著になる傾向が見られた。また、X.campestrisでは高い過冷却解除能力を示すのは初期のみであり、活性の持続性はないと言える。400回以降、水の凍結は殆ど起こらなくなり、細菌の添加によって水が不凍化する傾向にあることがわかった。なお、図5中、矢印のポイントで水のオートクレーブ滅菌を施している。また、+(X.campestrisを示すプロット)について、300回以降プロットのない部分は凍結が起こらなかったことを示している。
【0022】
P.syringaeとE.ananasに見られる性能低下については、融解・凝固の繰り返しによるものではなく、時間経過に対する微生物の代謝の影響が強いと言える。生菌を使用していることから、測定中にも増殖、死滅を繰り返し、また完全な密閉系となっていないことから外部からの微生物の侵入により、試料溶液が汚染された結果であると考えられる。試料溶液のpHが測定開始時の6.2から500回では8.1までアルカリ性に推移していることからも、微生物の代謝により試料溶液の汚濁が進んでいることがわかる。
【0023】
解放系がもたらす試料の汚濁については、微生物を添加していない水の凍結開始温度の推移からも推測できる。図5に示す水の凍結開始温度のグラフで、矢印(表中左上側)で示したポイントで水にオートクレーブ滅菌を施した。滅菌後に水が不凍化し、その後凍結開始温度の大幅な低下が見られることから、測定中に混入する微生物が過冷却解除を促進していると考えられる。
【0024】
実際の使用に際しては、試料溶液は蓄熱カプセル内に完全に密封されていることから内部溶液の品質は保持され、性能の劣化は進まないと考えられるが、取り扱いの容易さと活性持続に対する信頼性を向上させるためにも、滅菌処理を施した死菌を利用することが望ましいと言える。
【0025】
こうした菌数が過冷却解除能に与える影響を評価するため、繰り返し試験開始時の生菌数を106、108、1011Cells/mlとしたとした時の凍結開始温度の推移を調べた。この結果を図6に示す。生菌数の変化に呼応して、連続試験の初期には氷核活性能にばらつきが見られるが、試験回数が増すにつれて、一定の値に落ち着く結果が得られた。これより、初期濃度で106〜1011Cells/ml程度の菌数の違いは、繰り返し使用に際し、過冷却解除能に顕著な違いを示さないことがわかった。
【0026】
2.微生物の加工処理
前章(1.微生物の性能)の検討から、低温微生物を過冷却解除剤として長期使用する場合、微生物の代謝による蓄熱材の劣化が懸念される。また、ハンドリングの容易さを考えた場合にも微生物は殺菌処理を施した死菌であることが望ましいと考えられるので、ここでは微生物の殺菌処理について検討した。
【0027】
(殺菌方法)
食品関係や医療分野において殺菌は非常に重要な役割を果たすことから、殺菌の定義についても微生物の死滅の度合いに応じた使い分けがなされている。一般的には加熱殺菌法と冷熱殺菌法とに大別され、表2のような種類がある。
【表2】
厚生省の定める食品衛生法にも詳細にわたる殺菌の基準が設けられているが、ここではカプセル蓄熱材への適用を前提に、コスト面も考慮し、対象とする菌の増殖を99%以上抑える程度の汎用的な殺菌方法について検討した。
【0028】
(殺菌処理が活性に及ぼす影響)
過冷却解除能力を維持した死菌を得るため、いくつかの殺菌法について、殺菌作用と過冷却解除能の有無について調べた。いずれもE.ananasの生菌を対象とし、煮沸、化学薬品処理、超音波破砕、加圧処理、紫外線照射の5の殺菌方法について検討した。処理条件等については下記の通りである。
【0029】
以上の殺菌処理を施した試料について、100回の融解・凝固の繰り返し試験による過冷却解除能力を調べた。尚、殺菌処理を施した試料について菌数カウントを行った結果、超音波処理及び塩化ベンザルコニウム0.1%添加の試料では殺菌後も増殖が認められ、殺菌効果のないことが確認されたので、過冷却解除実験からは除外した。
【0030】
殺菌効果の認められた4つの試料について、過冷却解除繰り返し試験の結果を図7に示す。いずれも殺菌処理を施した後も過冷却解除能力が持続することが認められるが、紫外線照射を施した試料で、過冷却解除能力が非常に高く、またその効果も安定していることがわかった。今回、汎用的な滅菌ランプとして波長が260nm付近の紫外線を照射したが、一般に、核酸の最大吸収帯が260nm前後であることから、照射を受けた微生物は核酸に損傷を受けるため死滅するとされている。なお、紫外線の波長は特に限定されることはなく、氷核活性能を維持しつつ効果的に核酸に損傷を与えうる全ての波長の紫外線が含まれるが、この中でも好ましいのは245〜270nmの紫外線、最も好ましいのは260nm付近の紫外線である。氷核活性細菌の活性発現部位は細胞膜あるいは細胞壁の構造にあると考えられていることから、細胞膜あるいは細胞壁の構造を維持しつつ、細菌の増殖を止める手法として紫外線照射は非常に有効な殺菌法であると言える。
【0031】
一般に、殺菌効果が最も強いのは加熱であるとされるが、氷核活性細菌では加熱による活性の失活が著しいことがわかった。塩化ベンザルコニウムについても同様に失活することが認められるため、薬品処理を行う場合には、活性を維持し得る、つまり細胞膜あるいは細胞壁を損傷しない薬品を選別する必要がある。
【0032】
加圧処理については時間経過に対する性能の変化が顕著に現れた。今回のフレンチプレスによる処理では10MPa程度の加圧であるが、通常、食品加工分野における加圧殺菌では100MPa以上の静水圧をかける。X.campestrisについて500MPaの加圧処理を施した試料が市販されているので、これについて過冷却解除試験を行った結果を図8に示す。尚、長期的な傾向を追うため、先の検討(図7)より測定を追加した結果も併せて記す。いずれの圧力においても、一時的に高い解除能力を示すが、その後性能は低下し、程度の違いはあるが似たような傾向が見られた。300MPaで3分間処理したX.campestrisについて、高圧処理によって細胞膜の一部が破られ、細胞内の構成成分が菌体外に漏出し、細胞内が空洞化している様子がTEMにより観察されている。過冷却解除は低温微生物の細胞膜(あるいは細胞壁)部分の構造が寄与していることから、細胞膜の破砕は性能の劣化をもたらすことは容易に想像されるが、こうした圧力処理による活性の経時変化についてはさらに検討する必要がある。
【0033】
紫外線照射試料に見られる高い過冷却解除能力の持続性と、微生物の採取時期による性能の違いについて調べるため、紫外線殺菌後の過冷却解除能の持続性を比較した。図9および図10に示すように、sampleA〜Cについては、対数増殖期、直線期、及び定常期にそれぞれ対応している。培養温度は15℃とし、その後の処理についても低温を維持した。繰り返し試験の結果、生菌による比較では過冷却解除能力は培養時間が長いほど高くなる傾向が見られたが(図6)、紫外線殺菌試料では図9に示すように対数増殖期(sampleA)>直線期(sampleB)>定常期(sampleC)と、逆の結果が得られた。対数増殖期に採取した微生物を紫外線殺菌した試料(sampleA)は、−1℃以上の高い過冷却解除能力を示し、かつ3ヶ月程度の連続試験においても初期の性能を維持することが実験的に確かめられた。
【0034】
(乾燥粉体の調製)
ハンドリングの容易さを考慮し、実用に資する微生物の状態としては乾燥粉体であることが望ましいと考えられる。そこでこれまでの検討を基に、最も活性の高かった殺菌済み試料について、乾燥粉体試料の調製を試みた。氷核活性細菌は加熱により失活することが確かめられたので、ここでは凍結乾燥法について検討した。一連の操作を図11に示す。
【0035】
凍結乾燥により、白色綿状のE.ananas粉体を調製した。これを8mlの滅菌水に添加し、前章と同様に過冷却解除実験を行った。
【0036】
結果を図12に示す。比較のため、E.ananasの生菌試料及び紫外線照射した試料についても併せて記した。図から分かる通り、乾燥粉体試料は高い過冷却解除能力を示すとともに、その効果が長期にわたり持続することがわかった。生菌試料については、100回程度の繰り返し試験では高い性能を維持するものの、150〜200回、時間にして2ヶ月程度で性能の低下が見られていたが、紫外線殺菌及びその乾燥粉体では2ヶ月以上経過しても性能が劣化しないことがわかった。こうした性能についてはさらに連続試験を続行し、傾向を追跡する必要があるが、これまでのところ、生菌に比べ劣化を大幅に遅らせる効果のあることが明らかになった。
【0037】
なお、上述の実施例は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば上述の説明では氷核活性細菌の殺菌に好適な紫外線を照射する場合を示したが、これは放射線照射の好適例であって、紫外線と同等に、あるいは同等とまでいかなくても氷核活性細菌を効果的に死滅させることができるものであれば、γ線や電子線その他の放射線等を紫外線と同様に適用することができる。また、超音波を用いれば、キャビテーションを発生させ細胞を破壊するなどして細菌の増殖能力を消失させ得る。超音波を用いる場合は、昇温を防ぐため冷やしながら操作する。さらに、殺菌処理をより完全なものとするには、これらの手段によって氷核活性細菌を殺菌処理した後さらに凍結乾燥することが好ましい。
【0038】
また、上述の実施形態では氷核活性細菌を利用した蓄熱カプセルについて説明したが、氷核活性能を備えた氷核活性細菌は製氷や造雪の際の氷核活性物質として用いても好適で、これにより製氷時等における過冷却防止ニーズに広く応えることが可能となる。
【0039】
【発明の効果】
以上の説明より明らかなように、請求項1記載の蓄熱カプセルによると、氷核活性細菌として死滅させたものを利用するようにしたことから、細胞膜あるいは細胞壁の構造を損なわない限り氷核活性能をそのまま維持できることに加え、蓄熱カプセルの高い氷核活性能を長期にわたって安定に維持することが可能となる。
【0040】
また、請求項1記載の発明によると、紫外線照射によって細胞膜あるいは細胞壁の構造を維持しつつ核酸を損傷させることにより、氷核活性能は保ちながら微生物を完全に死滅させることが可能となる。しかも、好ましい波長帯域である245〜270nmの紫外線を照射することとしているために、氷核活性能を維持しつつ効果的に核酸に損傷を与えうる。
【0041】
請求項2記載の発明によると、特にDNAがよく光を吸収する260nm付近の波長の紫外線を照射することにより、氷核活性能を維持しながら核酸を死滅させることができて効果的である。
【0045】
請求項3記載の発明によると、260nm付近の波長の紫外線を20分照射することにより、氷核活性能を維持しながら核酸を死滅させることができる。
【図面の簡単な説明】
【図1】本発明を適用した蓄熱カプセルの構成例を示す概略図である。
【図2】本発明の蓄熱カプセルを用いた蓄熱システムの一例を示す図である。
【図3】微生物を昇降温させるときの温度プロファイルの一例を示すグラフである。
【図4】微生物を添加した水の冷却曲線を示すグラフである。
【図5】生菌による融解・凝固繰り返し試験の結果を示すグラフである。
【図6】融解・凝固繰り返し試験における濃度影響を示すグラフである。
【図7】融解・凝固繰り返し試験の結果を示すグラフである。
【図8】圧力の違いによる過冷却解除能力の変化を示すグラフである。
【図9】紫外線殺菌試料の性能比較を示すグラフである。
【図10】培養過程におけるE.ananasの菌数変化を示すグラフである。
【図11】乾燥粉体試料を調整する場合の一連の動作例を示すフローである。
【図12】加工処理を施した微生物の過冷却解除能力の比較を示すグラフである。
【符号の説明】
1 蓄熱カプセル
2 水
3 氷核活性細菌[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat storage capsule using ice nucleus active bacteria. More specifically, the present invention relates to an improvement in the ability to release supercooling in a heat storage capsule that eliminates the supercooling phenomenon by utilizing ice nucleus active bacteria.
[0002]
[Prior art]
In capsule-type ice heat storage systems that are put to practical use mainly in large-scale heat supply plants, it has been a challenge to release supercooling of water, which is a heat storage material. For example, silver iodide (AgI) and a kind of clay mineral have been put into practical use, but in recent years, a high supercooling release effect has been recognized in ice nucleus active bacteria put into practical use in the fields of artificial snowfall and food freezing. Yes. Since ice nucleus active bacteria are inexpensive and highly safe, they are considered to be very effective as a supercooling release agent that replaces AgI. For example, JP-A-2-286777, JP-A-5-502664, and JP-A-8-42984 describe a technique using ice nucleation active bacteria as a supercooling release member.
[0003]
[Problems to be solved by the invention]
However, in the heat storage capsule using live bacteria as a supercooling release member as described above, the cell surface changes mainly due to the metabolism of microorganisms, so that the performance as a supercooling release agent gradually decreases during long-term use. However, there is a problem that long-term stability is lacking because of the large variation in freezing start temperature.
[0004]
In this regard, in the above-mentioned Japanese Patent Application Laid-Open No. 8-42984, when living microorganisms are mixed in the water, the water quality changes with time, so that the water enclosed in the capsule is pure water to avoid this as much as possible. It is described that water quality may be suppressed by using distilled water, water filtered through a fine filter, or by sterilizing water or adding a preservative. . However, even this does not ensure a stable overcool release capability for a sufficiently long period.
[0005]
Accordingly, an object of the present invention is to provide a heat storage capsule using ice nucleation active bacteria that can ensure long-term stability of the ability to release supercooling.
[0006]
[Means for Solving the Problems]
Here, although there is a part that has not yet been clarified about the structure of the ice nucleus active bacteria and the ice formation mechanism with the ice nucleus active bacteria as a nucleus, the present inventors have conducted various experiments and studies, Since the ice nucleus activity expression of the ice nucleus active bacteria is brought about exclusively by the structure of the cell membrane or cell wall, the inventors have found that the structure of the cell membrane or cell wall is maintained and the bacterial growth and contamination are prevented.
[0007]
The invention according to
[0008]
When utilizing the ice nucleus active bacteria killed in this way, it is effective to sterilize the ice nucleus active bacteria by irradiation with radiation , particularly ultraviolet irradiation . According to this, by damaging the nucleic acid while maintaining the structure of the cell membrane or cell wall, it becomes possible to completely kill the bacteria while maintaining the ice nucleus activity ability. The wavelength of ultraviolet rays is not particularly limited, and includes ultraviolet rays having all wavelengths that can effectively damage nucleic acids while maintaining the ice nucleus activity ability. Among these, ultraviolet rays having a wavelength of 245 to 270 nm are preferable. Is.
[0009]
In addition, when irradiating with radiation, it is effective to irradiate the nucleic acid while maintaining the ability to activate ice nuclei, particularly if the DNA is irradiated with ultraviolet rays having a wavelength of about 260 nm, which absorbs light well. In addition to ultraviolet rays, γ rays, electron beams and the like are effective.
[0010]
Furthermore, it is preferable to use chemical treatment using benzalkonium chloride or the like, pressurization treatment or ultrasonic crushing other than irradiation. By these means, ice nucleus active bacteria can be sterilized and used as an ice nucleus active substance. In order to make the sterilization treatment more complete, it is preferable to sterilize the ice nucleus active bacteria by these means and then freeze-dry them.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings.
[0012]
FIG. 1 shows a
[0013]
The
[0014]
At the time of heat storage, the
[0015]
Here, with respect to the ice nucleus
[0016]
【Example】
1. Microbial performance (Comparison of ability to release supercooling)
Here, three typical species that are considered to have ice nucleation activity genes, Psudomonas syringae, Erwinia ananas, and Xanthomonas campestris, were added water. By measuring the freezing start temperature, the ability of microorganisms to subcool was evaluated. Hereinafter, P.syringae, E.ananas, and X.campestris are abbreviated, respectively.
[0017]
(Preparation of microorganisms)
Among the microorganisms used, P. syringae and E. ananas strains were obtained, and the cryopreserved strain was shaken and cultured in a constant temperature bath at 20 ° C. for 48 hours, washed, and then resuspended in pure water. Was used as a sample of viable bacteria.
[0018]
For X. campestris, a strain of a microbial genetic resource for test research (X. campestris pv. MAFF301035) cryopreserved was cultured in PPDA medium at 20 ° C. for 48 hours with shaking to obtain a viable cell sample.
[0019]
For the number of bacteria contained in the viable cell sample, a colony counting method was employed in which the diluted cell suspension was spread on a plate agar medium and cultured, and the viable cell count was calculated from the number of colonies produced. As a result of the measurement, the viable cell count of the sample used in the experiment is as shown in Table 1.
[Table 1]
(Experimental procedure)
A sample of 1 ml of viable bacteria was collected in a test tube, made up to 8 ml, and placed in a thermostatic chamber. As for water, commercially available distilled water was used after sterilization by an autoclave. The thermostat was air-cooled, and the temperature was repeatedly raised and lowered along the temperature profile shown in FIG. 3, and the temperature of water added with microorganisms was measured at intervals of 2 seconds with a thermocouple inserted in the test tube.
[0020]
(Experimental result)
An example of the cooling curve of the water added with each microorganism is shown in FIG. Even when any microorganism is added, a higher supercooling release capability is shown compared to water alone.
[0021]
Next, in order to evaluate the sustainability of the supercooling release ability, repeated melting and solidification tests were performed. As shown in FIG. 5, P. syringae and E. ananas showed stable and high activity up to about 150 times, but thereafter there was a tendency that the variation in freezing start temperature became remarkable. Moreover, it can be said that X.campestris has a high supercooling release ability only in the initial stage and does not have sustained activity. After 400 times, it was found that the water hardly freezes and the water tends to become non-freezing by the addition of bacteria. In FIG. 5, water autoclave sterilization is performed at the points indicated by arrows. Further, with respect to + (plot showing X. campestris), a portion without a plot after 300 times indicates that freezing did not occur.
[0022]
The performance decline seen in P. syringae and E. ananas is not due to repeated melting and coagulation, but it can be said that the influence of microbial metabolism on the time course is strong. Because it uses live bacteria, it repeats growth and death during the measurement, and because it is not a completely closed system, it is thought that this is the result of contamination of the sample solution due to the entry of microorganisms from the outside. It is done. Since the pH of the sample solution has changed from 6.1 at the start of measurement to 500 times from 8.1 to 8.1, it can be seen that the contamination of the sample solution has progressed due to the metabolism of microorganisms.
[0023]
The contamination of the sample caused by the release system can be estimated from the transition of the freezing start temperature of water not added with microorganisms. In the graph of the water freezing start temperature shown in FIG. 5, the water was autoclaved at the points indicated by arrows (upper left in the table). Since water becomes non-freezing after sterilization and then a significant decrease in freezing start temperature is observed, it is considered that microorganisms mixed during the measurement promote supercooling release.
[0024]
In actual use, the sample solution is completely sealed in the heat storage capsule, so the quality of the internal solution is maintained and performance degradation is not expected to progress.However, it is easy to handle and reliable for sustained activity. In order to improve it, it can be said that it is desirable to use killed bacteria that have been sterilized.
[0025]
In order to evaluate the effect of this number of bacteria on the ability to release supercooling, the transition of the freezing start temperature when the number of viable bacteria at the start of repeated tests was 10 6 , 10 8 , and 10 11 Cells / ml was examined. . The result is shown in FIG. In response to changes in the number of viable bacteria, there was variation in ice nucleus activity at the beginning of the continuous test, but as the number of tests increased, the results settled to a constant value. From this, it was found that a difference in the number of bacteria of about 10 6 to 10 11 Cells / ml at the initial concentration does not show a significant difference in the ability to release supercooling upon repeated use.
[0026]
2. From the examination of the previous chapter on microorganism processing (1. Microbial performance), there is a concern that heat storage materials may deteriorate due to the metabolism of microorganisms when cryogenic microorganisms are used for a long time as supercooling release agents. Also, considering the ease of handling, it is considered desirable that the microorganism is a killed sterilized microorganism, so here the sterilization treatment of the microorganism was examined.
[0027]
(Sterilization method)
Since sterilization plays a very important role in the food-related and medical fields, the definition of sterilization is properly used according to the degree of microbial death. Generally, it is roughly classified into a heat sterilization method and a cold heat sterilization method.
[Table 2]
The food hygiene law established by the Ministry of Health and Welfare also provides detailed sterilization standards, but here it is premised on the application to capsule heat storage materials, taking into consideration the cost and the extent to suppress the growth of the target bacteria 99% or more The general-purpose sterilization method was examined.
[0028]
(Effect of sterilization treatment on activity)
In order to obtain killed bacteria that maintained the supercooling release ability, several sterilization methods were examined for the sterilization effect and the presence of supercooling release ability. All of these were live bacteria of E.ananas, and 5 sterilization methods of boiling, chemical treatment, ultrasonic crushing, pressure treatment, and ultraviolet irradiation were examined. The processing conditions are as follows.
[0029]
About the sample which gave the above sterilization process, the supercooling cancellation | release capability by the repeating test of 100 times of melting | dissolving / solidification was investigated. As a result of counting the number of bacteria for the sterilized sample, it was confirmed that the sample treated with ultrasonic treatment and benzalkonium chloride added at 0.1% showed growth even after sterilization and had no sterilizing effect. Therefore, it was excluded from the supercooling release experiment.
[0030]
FIG. 7 shows the results of repeated supercooling release test for four samples in which the bactericidal effect was recognized. In both cases, it is recognized that the ability to release the supercooling persists after the sterilization treatment, but it is found that the supercooling release ability is very high and the effect is stable in the samples irradiated with ultraviolet rays. It was. This time, as a general-purpose sterilization lamp, ultraviolet light having a wavelength of about 260 nm was irradiated. However, since the maximum absorption band of nucleic acid is generally around 260 nm, the irradiated microorganism is said to die because it is damaged by the nucleic acid. Yes. The wavelength of ultraviolet rays is not particularly limited, and includes ultraviolet rays having all wavelengths that can effectively damage nucleic acids while maintaining the ice nucleus activity ability. Among these, ultraviolet rays having a wavelength of 245 to 270 nm are preferable. Ultraviolet light, most preferably ultraviolet light near 260 nm. Because the active site of ice nucleus active bacteria is thought to be in the structure of the cell membrane or cell wall, UV irradiation is a very effective sterilization method to stop the growth of bacteria while maintaining the structure of the cell membrane or cell wall It can be said that.
[0031]
Generally, heating is considered to have the strongest bactericidal effect, but it was found that the activity inactivation due to heating is remarkable in ice nucleus active bacteria. Since benzalkonium chloride is also found to be deactivated in the same manner, when chemical treatment is performed, it is necessary to select a chemical that can maintain the activity, that is, does not damage the cell membrane or cell wall.
[0032]
With regard to the pressure treatment, the change in performance with respect to the passage of time appeared remarkably. In the treatment by the French press this time, the pressure is about 10 MPa, but usually the hydrostatic pressure of 100 MPa or more is applied in the pressure sterilization in the food processing field. Since the sample which performed the 500 MPa pressurization process about X.campestris is marketed, the result of having performed the subcooling cancellation | release test about this is shown in FIG. In addition, in order to follow a long-term tendency, the result of adding measurement from the previous examination (FIG. 7) is also described. At any pressure, a high release ability was temporarily exhibited, but thereafter the performance decreased, and a similar tendency was observed although the degree was different. Regarding X.campestris treated at 300 MPa for 3 minutes, a part of the cell membrane was broken by high pressure treatment, the components inside the cell leaked out of the cells, and the inside of the cell was hollowed out by TEM. . Since the structure of the cell membrane (or cell wall) part of cryogenic microorganisms contributes to the release of supercooling, it is easily imagined that disruption of the cell membrane will result in performance degradation. Needs further consideration.
[0033]
In order to investigate the persistence of the high supercooling release ability observed in the UV-irradiated samples and the difference in performance depending on the collection time of the microorganism, the sustainability of the supercooling release ability after UV sterilization was compared. As shown in FIGS. 9 and 10, samples A to C correspond to the logarithmic growth phase, the linear phase, and the stationary phase, respectively. The culture temperature was 15 ° C., and the low temperature was maintained for the subsequent treatment. As a result of repeated tests, the ability to release supercooling tended to increase as the culture time increased in comparison with viable bacteria (FIG. 6), but in the ultraviolet sterilized sample, the logarithmic growth phase (sample A)> as shown in FIG. The reverse result was obtained, where the linear phase (sample B)> the stationary phase (sample C). A sample (sample A) obtained by sterilizing a microorganism collected in the logarithmic growth phase with ultraviolet rays (sample A) exhibits a high supercooling release ability of −1 ° C. or higher and experimentally maintains the initial performance even in a continuous test of about 3 months. It was confirmed.
[0034]
(Preparation of dry powder)
Considering the ease of handling, it is considered that a dry powder is desirable as a state of microorganisms useful for practical use. Therefore, based on previous studies, we tried to prepare a dry powder sample for the sterilized sample with the highest activity. Since it was confirmed that ice nucleus active bacteria were inactivated by heating, the freeze-drying method was examined here. A series of operations is shown in FIG.
[0035]
White cotton-like E.ananas powder was prepared by lyophilization. This was added to 8 ml of sterilized water, and a supercooling release experiment was conducted as in the previous chapter.
[0036]
The results are shown in FIG. For comparison, the E.ananas live bacteria sample and the sample irradiated with ultraviolet rays are also shown. As can be seen from the figure, the dry powder sample showed a high supercooling release ability and the effect lasted for a long time. For live bacteria samples, high performance was maintained in repeated tests of about 100 times, but the performance was reduced 150 to 200 times in about 2 months in time. It was found that the performance did not deteriorate even after 2 months. For these performances, it is necessary to continue the continuous test and follow the trend, but so far it has been found that it has the effect of significantly delaying the deterioration compared to viable bacteria.
[0037]
The above-described embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, in the above description, the case of irradiating ultraviolet rays suitable for sterilization of ice nucleation active bacteria is shown. However, this is a preferable example of radiation irradiation, and ice nuclei may be equal to or not equivalent to ultraviolet rays. As long as the active bacteria can be effectively killed, γ rays, electron beams and other radiation can be applied in the same manner as ultraviolet rays. In addition, if ultrasonic waves are used, the ability to grow bacteria can be lost by generating cavitation and destroying cells. When using ultrasonic waves, operate while cooling to prevent temperature rise. Furthermore, in order to complete the sterilization treatment, it is preferable to sterilize the ice nucleation active bacteria by these means and then freeze-dry them.
[0038]
In the above-described embodiment, the heat storage capsule using ice nucleus active bacteria has been described. However, ice nucleus active bacteria having ice nucleus activity can be suitably used as ice nucleus active substances in ice making and snow making. Thus, it is possible to widely meet the needs for preventing overcooling during ice making.
[0039]
【The invention's effect】
As is clear from the above description, according to the heat storage capsule of
[0040]
According to the invention described in
[0041]
According to the second aspect of the present invention, the nucleic acid can be killed while maintaining the ability to activate ice nuclei, particularly by irradiating ultraviolet rays having a wavelength of about 260 nm where DNA absorbs light well.
[0045]
According to the third aspect of the invention, the nucleic acid can be killed while maintaining the ability to activate ice nuclei by irradiating with ultraviolet rays having a wavelength of about 260 nm for 20 minutes.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration example of a heat storage capsule to which the present invention is applied.
FIG. 2 is a diagram showing an example of a heat storage system using the heat storage capsule of the present invention.
FIG. 3 is a graph showing an example of a temperature profile when raising and lowering the temperature of microorganisms.
FIG. 4 is a graph showing a cooling curve of water added with microorganisms.
FIG. 5 is a graph showing the results of repeated thawing and coagulation tests with viable bacteria.
FIG. 6 is a graph showing the influence of concentration in a repeated melting / solidification test.
FIG. 7 is a graph showing the results of a melting / solidification repeated test.
FIG. 8 is a graph showing a change in supercooling release capability due to a difference in pressure.
FIG. 9 is a graph showing a performance comparison of ultraviolet sterilized samples.
FIG. 10 is a graph showing changes in the number of E.ananas bacteria during the culturing process.
FIG. 11 is a flow showing a series of operation examples when preparing a dry powder sample.
FIG. 12 is a graph showing a comparison of the ability to release supercooling of microorganisms subjected to processing.
[Explanation of symbols]
1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001090903A JP3771138B2 (en) | 2001-03-27 | 2001-03-27 | Thermal storage capsule using ice nucleus active bacteria |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001090903A JP3771138B2 (en) | 2001-03-27 | 2001-03-27 | Thermal storage capsule using ice nucleus active bacteria |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002286387A JP2002286387A (en) | 2002-10-03 |
JP3771138B2 true JP3771138B2 (en) | 2006-04-26 |
Family
ID=18945622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001090903A Expired - Fee Related JP3771138B2 (en) | 2001-03-27 | 2001-03-27 | Thermal storage capsule using ice nucleus active bacteria |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3771138B2 (en) |
-
2001
- 2001-03-27 JP JP2001090903A patent/JP3771138B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002286387A (en) | 2002-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200179542A1 (en) | Method for processing tissues | |
Ma et al. | Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation | |
US10306882B2 (en) | Biological sample vitrification carrier and usage thereof | |
EP1311153B1 (en) | High temperature cryogenic preservation of biologically active material | |
Gao et al. | Natural freezing as a wastewater treatment method: E. coli inactivation capacity | |
Yong et al. | Biobanking of human mesenchymal stem cells: future strategy to facilitate clinical applications | |
KR20080087148A (en) | Cryoprotective compositions and methods of using same | |
ES2935816T3 (en) | Sterile dermocosmetic emulsion and process for manufacturing said emulsion | |
JP2004537035A (en) | Method and apparatus for preparing a tissue sample for histological examination and pathological examination | |
JPS63287479A (en) | Biological freeze protection | |
Kiani et al. | Ultrasound-assisted freezing of Lactobacillus plantarum subsp. plantarum: The freezing process and cell viability | |
US20140193456A1 (en) | Method for Drying-Conservation of Natural Substances | |
JP3771138B2 (en) | Thermal storage capsule using ice nucleus active bacteria | |
CN109646398A (en) | A kind of nano-micelle and preparation method thereof, application | |
US20210137099A1 (en) | Ice-free vitrification and nano warming of large tissue samples | |
Herbert | Homografts and the bone bank | |
EP0587854A1 (en) | Method for the destruction of microorganisms and enzymes: mts process (mano-thermo-sonication) | |
CN107254446A (en) | A kind of method for separating and preparing of people's primary tumor cell | |
CN104222715B (en) | Method for killing Listeria monocytogenes in low-temperature stress enhanced pulsed electric field | |
Brian | Cryopreservation of plant protoplasts | |
JP5100998B2 (en) | Cryopreservation method of tooth extraction body | |
TAYLOR et al. | Preservation of skin grafts by refrigeration for reconstructive surgery | |
CN105018347B (en) | Haemophilus preiservative methods | |
BR102019023961A2 (en) | process for obtaining lyophilized animal skin, lyophilized animal skin, its use and kit | |
JP2021161098A (en) | Sample cooling method, method for manufacturing cooled product, and cooling tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040709 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040922 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041122 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050119 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20050218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060208 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130217 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130217 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140217 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |