JP3770485B2 - Method for loosely winding film material wound in a roll - Google Patents

Method for loosely winding film material wound in a roll Download PDF

Info

Publication number
JP3770485B2
JP3770485B2 JP2002235572A JP2002235572A JP3770485B2 JP 3770485 B2 JP3770485 B2 JP 3770485B2 JP 2002235572 A JP2002235572 A JP 2002235572A JP 2002235572 A JP2002235572 A JP 2002235572A JP 3770485 B2 JP3770485 B2 JP 3770485B2
Authority
JP
Japan
Prior art keywords
roll
cylinder
film
revolution
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002235572A
Other languages
Japanese (ja)
Other versions
JP2004075243A (en
Inventor
惣一郎 剱持
久司 小西
吉次 栄口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002235572A priority Critical patent/JP3770485B2/en
Publication of JP2004075243A publication Critical patent/JP2004075243A/en
Application granted granted Critical
Publication of JP3770485B2 publication Critical patent/JP3770485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば電子・電気産業分野で利用されるロール状に巻かれたフィルムないしはシート材料、特に金属箔とプラスチックフィルムとの積層フィルムのように熱膨張係数の異なる二種以上の材料層からなる積層フィルムが高い張力下で巻かれたロールを残留応力の緩和を目的として緩め巻きする方法に関する。
【0002】
【従来の技術】
例えばプラスチックフィルムに接着剤を用いて金属箔を貼り合わせたフィルムのような熱膨張係数の異なる2種類の材料層を接着剤で貼り合わせ、ロール状に巻いたものの接着剤を硬化させる場合、そのまま硬化させると硬化の熱処理時に皺が発生する。そこで、一旦強く巻いたロールを巻き解き同筒内面に緩く巻きなおし(以下、この作業を「緩め巻き」と称する)、残留応力を緩和した後に熱硬化処理を行う必要がある。
【0003】
従来、この緩め巻き作業は人手により行っていたが、フィルムの表面に皺を発生させずに緩め巻きを行うためには熟練が要求され、また所要時間も長く掛かった。特に、フィルム厚みが薄くて腰が無い場合には、人手による作業では皺を発生させずに緩め巻きすることができるフィルムの長さには限界があり、生産性の点でも制約条件になっていた。従って、緩め巻き作業を自動化することにより、これ等の問題点を解消する事が強く望まれていた。
【0004】
【発明が解決しようとする課題】
そこで、本発明の課題は、ロール状に巻かれたフィルムないしはシート状材料の緩め巻き作業を確実に行うことができ、自動化に適した方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明によれば、上記の課題を解決する手段として、
フィルム材料がロール状に巻かれたロールを自動的に緩め巻きする方法において、該ロールの中心を該ロールの外径より大きな内径を有する円筒の中心に対して適宜に決められた量だけ偏芯した状態で公転させ、且つ、この公転角度に対して一定の比例定数を乗じた回転角度によって該ロールを前記公転の方向と逆方向に自転させながら、フィルム材料を円筒の内面に沿って緩め巻いて行くことを特徴とするロール状に巻かれたフィルム材料の緩め巻き方法が提供される。
【0006】
【発明の実施の形態】
以下、本発明を実施の形態をより詳細に説明する。
【0007】
本発明の方法は、好ましくは、フィルム材料がロール状に巻かれたロールを、次式:
α=Tu/T
〔ここで、Tはフィルムの厚さであり、Tuは緩め巻きのピッチである。〕
で表わされる、1より大(通常、1.1〜3)である緩め巻き率αで緩め巻く方法であって、
該ロールの外径より大きな内径を有する円筒内にそれぞれの軸を平行に配置し、
該ロールの中心が前記円筒の中心から偏芯した状態で該ロールを巻き解くと同時に前記円筒の内面に沿って緩め巻きするように、前記ロールを前記円筒の中心に対して公転させつつ、前記ロールを前記公転の方向とは逆方向に自転させる際に、下記の条件(a)〜(b)を満たすように制御する。
【0008】
(a)前記ロールから巻き解かれるフィルムの長さと前記円筒の内面に沿って巻かれるフィルムの長さが一致しており、
(b)前記ロールの自転角度(θs)は、公転角度(Θ)に対して次式(5):
θs=(Θ−do・π/T)+(π/T)・(T・Tu・Θ/π−2T・Di・Θ/π+do0.5 (5)
〔式中、doはロールの外径、Diは円筒の内径、Tはフィルム材料の厚さ、Tuは円筒内面への緩め巻きのピッチを表す。〕
で表される関係にある。
【0009】
また、本発明の方法は、次の条件(c)を満たすように制御して行うことが好ましい。
【0010】
(c)前記ロールの中心の前記円筒からの偏芯量(ε)が公転角度(Θ)と次式(6):
ε=(Di−do)/2−(Tu−T)・Θ/2π−T・θs/2π (6)
で表される関係を満たす。
【0011】
これらの実施の形態を図1に即してさらに説明する。
【0012】
図1は、円筒1内に積層フィルム2を巻いたロール3を配置した状態の説明のための横断面図である。ロール3の中心4は円筒1の中心5から長さε(偏芯量)だけ偏芯している。ロール3は巻かれたフィルム2が巻き解かれる方向に円筒1の内面に沿っ矢印6の方向に公転し、同時に矢印7の方向に自転する。公転の方向6と自転の方向7とは逆方向である。このとき、緩め巻きのピッチTを所望の値にしたいとき、換言すると、所望緩め巻き率α(Tu/T)を所望値にしたいとき、ロール2は次の条件(a)および(b)が満たされるように運動させる。さらに、条件(c)が満たされるように運動させる。
【0013】
(a)前記ロールから巻き解かれるフィルムの長さと前記円筒の内面に沿って巻かれるフィルムの長さが一致する。
【0014】
即ち、円筒1の内面に沿って巻かれるフィルムに有害な張力や弛みを与えない為には、円筒1の内面に巻かれたフィルムの長さと、元のロールから巻き解かれたフィルムの長さは、等しくなくてはならない。
【0015】
(b)前記ロールの自転角度(θs)は、公転角度(Θ)に対して次式(5):
θs=(Θ−do・π/T)+(π/T)・(T・Tu・Θ/π−2T・Di・Θ/π+do0.5 (5)
〔式中、doはロールの外径、Diは円筒の内径、Tはフィルム材料の厚さ、Tuは円筒内面への緩め巻きのピッチを表す。〕
で表される関係にある。
【0016】
この条件(b)は、自転角度と公転角度との相対関係を規定したものである。この制約条件(b)は、結局、元のロールの自転角度は公転角度に対して一定の比例関係にあることになり、比例定数は、円筒の内径、元のロールの外径、フィルム厚さは特定条件下で既知であるので、円筒内面での巻きピッチTu(換言すると、緩め巻き率α)次第で与えられることになる。
【0017】
(c)前記ロールの中心の前記円筒からの偏芯量(ε)が公転角度(Θ)と次式(6):
ε=(Di−do)/2−(Tu−T)・Θ/2π−T・θs/2π (6)
で表される関係を満たす。
【0018】
この条件(c)は、要するに、元のロールの中心の円筒に対する運動の軌跡を規定したものであり、この制御条件(c)は、円筒に対するロール中心の偏芯量も公転角度に対して一定の比例関係にあることになり、初期値及び比例定数は、円筒の内径、元のロールの外径、フィルム厚さは特定条件下で既知であるので、円筒内面での巻きピッチTu(換言すれば、緩め巻き率α)の所望値がきまれば与えられる。即ち、元のロールの中心の軌跡は初期偏芯量から出発して式(6)に従って移動する。実際には公転の進行と共に円筒の内側に向かう渦巻き状の軌跡をたどる。
【0019】
上記の式(5)および式(6)は次のようにして求められる。以下の説明で上述した以外の記号は次のとおりである。
【0020】
公転角度:Θ
緩め巻き長さ:Lu
ロール解き長さ:Lr
なお、自転角度θsは、空間座標系において、原点は0時方向であり、時計回りを正とする。
【0021】
巻き付けられたフィルムは螺旋と見なせるので、螺旋に関する幾何学的な式より、次の関係式を得る。
(関係式)
Lu=(Di/2)×Θ−(Tu/(4π))×Θ2 (1)
Lr=(do/2)×(Θ−θs)−(T/(4π))×(Θ−θs)2 (2)
又、皺を発生させずに緩め巻きを行う行為には、次の拘束条件を満たす必要がある。これは前記の条件(a)を代数式で表したものである。
(拘束条件式)
Lu=Lr (3)
(1)、(2)式を(3)式に代入して、次式を得る。
【0022】
(Di/2)×Θ−(Tu/(4π))×Θ2=(do/2)×(Θ−θs)−(T/(4π))×(Θ−θs) (4)
(4)式をθsに関して解くと、次式を得る。
θs=(Θ−do・π/T)+(π/T)・(T・Tu・Θ22−2T・Di・Θ/π+do2)0.5 (5)
(5)式に、一例として
do=170mm、T=0.044mm、Tu=0.099mm、Di=240mm
を代入して計算した結果を図2に示す。図から分かるように、(5)式を満足するθsとΘの関係は、比例関係にある。その場合の比例定数は、do、T、Tu、Diの値によって、決定される。
【0023】
又、フィルムに弛みを与えない為に、巻き解くロールの表面と円筒内面の距離を常に適正値に保つように、ロールの公転半径を決めなければならない。この条件を、幾何学的な関係に基づいて代数式で表すと、εを計算する次式(6)を得る。(6)式により、εは公転角度Θの関数として与えられる。
【0024】
ε=(Di−do)/2−(Tu−T)・Θ/2π−T・θs/2π (6)
(6)式に、一例として
do=170mm、T=0.044mm、Tu=0.099mm、Di=240mm
を代入して計算した結果を図3に示す。図から分かるように、(6)式を満足するεとΘの関係は直線的な関係にある。その場合の初期値と勾配は、do、T、Tu、Diの値によって、決定される。図3に示すように、公転半径εは公転角度に比較して減少していくので、ロール中心の軌跡は螺旋となる。しかし、減少する勾配は非常に僅かなので、実際問題としては、公転半径εは、初期値から余り変化しない。
【0025】
【実施例】
〔実施例1〕
図2は、円筒の内径が240mm、円筒の内面に沿って巻き付けたフィルムの巻きピッチが90μm、元のロールの外径が170mm、そしてフィルム厚さが44μmの場合の、公転角度と自転角度の関係を示すグラフである。図に示す様に公転角度と自転角度は比例関係にあり、公転角度に対する自転角度の比例定数は、約−0.41である。負号は自転の方向が公転方向の逆であることを表している。
【0026】
図3は、図2と同一条件の時の、公転角度と偏芯量の関係を示すグラフである。図に示す様に公転角度と偏芯量は直線関係にあり、初期値は約35mmで勾配は約−0.006(mm/radian)である。
【0027】
次に図4は、本発明を応用してロールの緩め巻きを行うために、必要な自由度を備えた多軸の自動機械を駆動する場合の、駆動方法の一例である。図においてブロックC1はDi、do、T、Tuを入力してΘ、θs、εを計算するユニットを示す。Θは公転角度を表し、K1は公転角度と自転角度θsの比例係数、EoとK2は公転半径を決める初期値と比例係数である。ブロックC2は、ロールに所定の運動を与える多軸自動機の制御ユニットを示す。C2の機能は、入力されたΘ、θs、εの値に基づいて、装置を構成する自由度軸を駆動する為に必要な変換を施し、ロール公転駆動機構M1及びロール自転駆動機構M2を駆動する為の制御信号を発生することである。
【0028】
なお、通常は図3に示す様に公転角度に対して偏芯量が減少する勾配は非常に少ないので、ロール中心の公転軌跡を螺旋ではなくて初期値より適宜に少ない値の半径の円として制御しても実用上の問題は無い。また、フィルムが厚くて腰がある場合には、公転軌跡円の半径を更に小さくしても緩め巻きが可能な場合もあり、極端な場合には、公転半径を零に近くしても緩め巻きが出来る場合もある。これらの場合も本発明の特殊な例と考える事が出来るので、基本的に本発明の範疇に含まれるものである。
【0029】
【発明の効果】
本発明の方法によれば、従来作業者の勘と熟練に頼った手作業により行っていたロール状フィルム材料の緩め巻き作業を確実に行うことができ、緩め巻きが可能なロール外径を手作業の場合に比して著しく増加することができる。機械による自動化も容易で、省人化が図られ、製造コストが低減することができる。
その結果、次の効果が期待できる。
【図面の簡単な説明】
【図1】 本発明の方法を説明する概略図である。
【図2】 実施例で得られた公転角度と自転角度との関係を示すグラフである。
【図3】 実施例で得られた公転角度と偏芯量との関係を示すグラフである。
【図4】 本発明の方法により多軸自動機械を制御運転する方法を説明するブロック図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a film or sheet material wound in a roll shape used in the field of electronic / electric industry, for example, two or more kinds of material layers having different thermal expansion coefficients such as a laminated film of a metal foil and a plastic film. The present invention relates to a method of loosening and winding a roll wound with a laminated film under high tension for the purpose of relaxing residual stress.
[0002]
[Prior art]
For example, when two types of material layers with different thermal expansion coefficients such as a film in which a metal foil is bonded to a plastic film using an adhesive are bonded with an adhesive and the adhesive of a roll wound is cured, When cured, wrinkles are generated during the heat treatment for curing. Therefore, it is necessary to unwind the roll that has been wound once and wind it loosely around the inner surface of the cylinder (hereinafter, this operation is referred to as “relaxed winding”), and after relieving the residual stress, it is necessary to perform a thermosetting treatment.
[0003]
Conventionally, this loose winding operation has been performed manually, but skill is required to perform loose winding without generating wrinkles on the surface of the film, and a long time is required. In particular, when the film is thin and has no waist, there is a limit to the length of film that can be loosely wound without causing wrinkles in manual work, which is also a constraint in terms of productivity. It was. Therefore, it has been strongly desired to eliminate these problems by automating the loosening and winding work.
[0004]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a method suitable for automation, which can surely perform a loose winding operation of a film or sheet-like material wound in a roll shape.
[0005]
[Means for Solving the Problems]
According to the present invention, as means for solving the above problems,
In a method of automatically loosening and winding a roll in which a film material is wound in a roll shape, the center of the roll is eccentric by a suitably determined amount with respect to the center of a cylinder having an inner diameter larger than the outer diameter of the roll. The film material is loosely wound along the inner surface of the cylinder while the roll is rotated in a direction opposite to the direction of the revolution by a rotation angle obtained by revolving in the state and by multiplying the revolution angle by a constant proportional constant. There is provided a method for loosely winding a film material wound in a roll.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in more detail.
[0007]
The method of the present invention preferably comprises a roll of film material wound in the form of a roll:
α = Tu / T
[Where T is the thickness of the film and Tu is the loose winding pitch. ]
A method of loosely winding with a loose winding rate α that is greater than 1 (usually 1.1 to 3) represented by:
Each axis is arranged in parallel in a cylinder having an inner diameter larger than the outer diameter of the roll,
While revolving the roll with respect to the center of the cylinder so that the roll is unwound in the state where the center of the roll is eccentric from the center of the cylinder and simultaneously loosely wound along the inner surface of the cylinder, When the roll rotates in the direction opposite to the direction of the revolution, control is performed so as to satisfy the following conditions (a) to (b).
[0008]
(A) The length of the film to be unwound from the roll matches the length of the film to be wound along the inner surface of the cylinder,
(B) The rotation angle (θs) of the roll is expressed by the following equation (5) with respect to the revolution angle (Θ):
θs = (Θ−do · π / T) + (π / T) · (T · Tu · Θ 2 / π 2 −2T · Di · Θ / π + do 2 ) 0.5 (5)
[Wherein, do represents the outer diameter of the roll, Di represents the inner diameter of the cylinder, T represents the thickness of the film material, and Tu represents the pitch of loose winding around the inner surface of the cylinder. ]
It is in the relationship represented by.
[0009]
Moreover, it is preferable to perform the method of this invention by controlling so that the following conditions (c) may be satisfy | filled.
[0010]
(C) The eccentric amount (ε) from the cylinder at the center of the roll is the revolution angle (Θ) and the following equation (6):
ε = (Di−do) / 2− (Tu−T) · Θ / 2π−T · θs / 2π (6)
The relationship represented by is satisfied.
[0011]
These embodiments will be further described with reference to FIG.
[0012]
FIG. 1 is a cross-sectional view for explaining a state in which a roll 3 around which a laminated film 2 is wound is disposed in a cylinder 1. The center 4 of the roll 3 is eccentric from the center 5 of the cylinder 1 by a length ε (eccentricity). The roll 3 revolves in the direction of the arrow 6 along the inner surface of the cylinder 1 in the direction in which the wound film 2 is unwound, and simultaneously rotates in the direction of the arrow 7. The direction 6 of revolution and the direction 7 of rotation are opposite directions. At this time, when it is desired to set the loose winding pitch T to a desired value, in other words, when the desired loose winding rate α (Tu / T) is desired to be set to a desired value, the roll 2 satisfies the following conditions (a) and (b): Exercise to be satisfied. Furthermore, exercise is performed so that the condition (c) is satisfied.
[0013]
(A) The length of the film unrolled from the roll matches the length of the film wound along the inner surface of the cylinder.
[0014]
That is, in order not to give harmful tension or slack to the film wound along the inner surface of the cylinder 1, the length of the film wound on the inner surface of the cylinder 1 and the length of the film unrolled from the original roll. Must be equal.
[0015]
(B) The rotation angle (θs) of the roll is expressed by the following equation (5) with respect to the revolution angle (Θ):
θs = (Θ−do · π / T) + (π / T) · (T · Tu · Θ 2 / π 2 −2T · Di · Θ / π + do 2 ) 0.5 (5)
[Wherein, do represents the outer diameter of the roll, Di represents the inner diameter of the cylinder, T represents the thickness of the film material, and Tu represents the pitch of loose winding around the inner surface of the cylinder. ]
It is in the relationship represented by.
[0016]
This condition (b) defines the relative relationship between the rotation angle and the revolution angle. After all, this constraint condition (b) means that the rotation angle of the original roll is in a certain proportional relationship with the revolution angle, and the proportionality constants are the inner diameter of the cylinder, the outer diameter of the original roll, and the film thickness. Is known under specific conditions, and is given depending on the winding pitch Tu (in other words, the loose winding rate α) on the inner surface of the cylinder.
[0017]
(C) The eccentric amount (ε) from the cylinder at the center of the roll is the revolution angle (Θ) and the following equation (6):
ε = (Di−do) / 2− (Tu−T) · Θ / 2π−T · θs / 2π (6)
The relationship represented by is satisfied.
[0018]
In short, the condition (c) defines the trajectory of movement of the original roll center with respect to the cylinder, and the control condition (c) is such that the eccentric amount of the roll center with respect to the cylinder is also constant with respect to the revolution angle. Since the initial value and proportional constant are known under specific conditions, the inner diameter of the cylinder, the outer diameter of the original roll, and the film thickness, the winding pitch Tu on the inner surface of the cylinder (in other words, If the desired value of the loose winding rate α) is obtained, it is given. That is, the locus of the center of the original roll starts from the initial eccentricity and moves according to the equation (6). Actually, it follows a spiral trajectory that goes to the inside of the cylinder as the revolution proceeds.
[0019]
The above formulas (5) and (6) are obtained as follows. Symbols other than those described above in the following description are as follows.
[0020]
Revolution angle: Θ
Loose winding length: Lu
Roll unrolling length: Lr
In the rotation angle θs, the origin is the 0 o'clock direction in the spatial coordinate system, and the clockwise direction is positive.
[0021]
Since the wound film can be regarded as a spiral, the following relational expression is obtained from the geometrical expression regarding the spiral.
(Relational expression)
Lu = (Di / 2) × Θ− (Tu / (4π)) × Θ 2 (1)
Lr = (do / 2) × (Θ−θs) − (T / (4π)) × (Θ−θs) 2 (2)
In addition, the following constraint condition must be satisfied for the act of loosely winding without generating wrinkles. This is an algebraic expression of the condition (a).
(Constrained conditional expression)
Lu = Lr (3)
Substituting Equations (1) and (2) into Equation (3) gives the following equation.
[0022]
(Di / 2) × Θ− (Tu / (4π)) × Θ 2 = (do / 2) × (Θ−θs) − (T / (4π)) × (Θ−θs) 2 (4)
When equation (4) is solved with respect to θs, the following equation is obtained.
θs = (Θ−do · π / T) + (π / T) · (T · Tu · Θ 2 / π 2 −2T · Di · Θ / π + do 2 ) 0.5 (5)
In equation (5), for example, do = 170 mm, T = 0.044 mm, Tu = 0.099 mm, Di = 240 mm
FIG. 2 shows the result calculated by substituting. As can be seen from the figure, the relationship between θs and Θ that satisfies equation (5) is proportional. The proportionality constant in that case is determined by the values of do, T, Tu, and Di.
[0023]
Further, in order to prevent the film from being slack, the revolution radius of the roll must be determined so that the distance between the surface of the roll to be unrolled and the inner surface of the cylinder is always kept at an appropriate value. When this condition is expressed by an algebraic expression based on a geometric relationship, the following expression (6) for calculating ε is obtained. (6) gives ε as a function of the revolution angle Θ.
[0024]
ε = (Di-do) / 2- (Tu-T) · Θ / 2π-T · θs / 2π (6)
For example, in the equation (6), do = 170 mm, T = 0.044 mm, Tu = 0.099 mm, Di = 240 mm
FIG. 3 shows the result calculated by substituting. As can be seen from the figure, the relationship between ε and Θ that satisfies Equation (6) is a linear relationship. The initial value and the gradient in that case are determined by the values of do, T, Tu, and Di. As shown in FIG. 3, since the revolution radius ε decreases as compared with the revolution angle, the locus of the roll center is a spiral. However, since the decreasing gradient is very slight, as a practical matter, the revolution radius ε does not change much from the initial value.
[0025]
【Example】
[Example 1]
Figure 2 shows the revolution angle and rotation angle when the inner diameter of the cylinder is 240 mm, the winding pitch of the film wound along the inner surface of the cylinder is 90 μm, the outer diameter of the original roll is 170 mm, and the film thickness is 44 μm. It is a graph which shows a relationship. As shown in the figure, the revolution angle and the rotation angle are in a proportional relationship, and the proportional constant of the rotation angle with respect to the revolution angle is about −0.41. The negative sign indicates that the direction of rotation is the reverse of the direction of revolution.
[0026]
FIG. 3 is a graph showing the relationship between the revolution angle and the amount of eccentricity under the same conditions as in FIG. As shown in the figure, the revolution angle and the eccentricity have a linear relationship, the initial value is about 35 mm, and the gradient is about -0.006 (mm / radian).
[0027]
Next, FIG. 4 shows an example of a driving method when a multi-axis automatic machine having a necessary degree of freedom is driven in order to apply the present invention to loosely roll a roll. In the figure, block C1 represents a unit for calculating Θ, θs, and ε by inputting Di, do, T, and Tu. Θ represents a revolution angle, K1 is a proportional coefficient between the revolution angle and the rotation angle θs, and Eo and K2 are an initial value and a proportional coefficient that determine the revolution radius. Block C2 shows the control unit of the multi-axis automatic machine that gives a predetermined motion to the roll. The function of C2 performs conversion necessary for driving the degrees of freedom axis constituting the apparatus based on the inputted values of Θ, θs, and ε, and drives the roll revolution drive mechanism M1 and the roll rotation drive mechanism M2. Is to generate a control signal.
[0028]
Normally, as shown in FIG. 3, the gradient at which the amount of eccentricity decreases with respect to the revolution angle is very small. Therefore, the revolution center of the roll center is not a spiral but a circle with a radius that is appropriately smaller than the initial value. There is no practical problem even if it is controlled. In addition, if the film is thick and has a waist, loose winding may be possible even if the radius of the revolution locus circle is further reduced. In extreme cases, loose winding may be possible even if the revolution radius is close to zero. May be possible. Since these cases can also be considered as special examples of the present invention, they are basically included in the scope of the present invention.
[0029]
【The invention's effect】
According to the method of the present invention, it is possible to reliably perform the loose winding operation of the roll-shaped film material, which has been performed manually by relying on the operator's intuition and skill, and the roll outer diameter capable of loose winding can be increased. It can be significantly increased compared to the case of work. Automation by a machine is easy, labor saving is achieved, and manufacturing costs can be reduced.
As a result, the following effects can be expected.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating the method of the present invention.
FIG. 2 is a graph showing the relationship between the revolution angle and the rotation angle obtained in the example.
FIG. 3 is a graph showing the relationship between the revolution angle and the amount of eccentricity obtained in an example.
FIG. 4 is a block diagram illustrating a method for controlling and operating a multi-axis automatic machine according to the method of the present invention.

Claims (3)

フィルム材料がロール状に巻かれたロールを自動的に緩め巻きする方法において、該ロールの中心を該ロールの外径より大きな内径を有する円筒の中心に対して適宜に決められた量だけ偏芯した状態で公転させ、且つ、この公転角度に対して一定の比例定数を乗じた回転角度によって該ロールを前記公転の方向と逆方向に自転させながら、フィルム材料を円筒の内面に沿って緩め巻いて行くことを特徴とするロール状に巻かれたフィルム材料の緩め巻き方法。In a method of automatically loosening and winding a roll in which a film material is wound in a roll shape, the center of the roll is eccentric by a suitably determined amount with respect to the center of a cylinder having an inner diameter larger than the outer diameter of the roll. The film material is loosely wound along the inner surface of the cylinder while the roll is rotated in a direction opposite to the direction of the revolution by a rotation angle obtained by revolving in the state and by multiplying the revolution angle by a constant proportional constant. A method of loosely winding a film material wound in a roll. フィルム材料がロール状に巻かれたロールを、次式:
α=Tu/T
〔ここで、Tはフィルムの厚さであり、Tuは緩め巻きのピッチである。〕
で表わされる、1より大である緩め巻き率αで緩め巻く方法であって、
該ロールの外径より大きな内径を有する円筒内にそれぞれの軸を平行に配置し、
該ロールの中心が前記円筒の中心から偏芯した状態で該ロールを巻き解くと同時に前記円筒の内面に沿って緩め巻きするように、前記ロールを前記円筒の中心に対して公転させつつ、前記ロールを前記公転の方向とは逆方向に自転させる際に、下記の条件(a)および(b)を満たすように制御することを特徴とする、請求項1に記載の緩め巻き方法。
(a)前記ロールから巻き解かれるフィルムの長さと前記円筒の内面に沿って巻かれるフィルムの長さが一致しており、
(b)前記ロールの自転角度(θs)は、公転角度(Θ)に対して次式(5):
θs=(Θ−do・π/T)+(π/T)・(T・Tu・Θ/π−2T・Di・Θ/π+do0.5 (5)
〔式中、doはロールの外径、Diは円筒の内径、Tはフィルム材料の厚さ、Tuは円筒内面への緩め巻きのピッチを表す。〕
で表される関係にある。
A roll of film material rolled into a roll
α = Tu / T
[Where T is the thickness of the film and Tu is the loose winding pitch. ]
A method of loosely winding with a loose winding rate α greater than 1 represented by:
Each axis is arranged in parallel in a cylinder having an inner diameter larger than the outer diameter of the roll,
While revolving the roll with respect to the center of the cylinder so that the roll is unwound in the state where the center of the roll is eccentric from the center of the cylinder and simultaneously loosely wound along the inner surface of the cylinder, 2. The loose winding method according to claim 1, wherein when the roll rotates in a direction opposite to the direction of the revolution, the roll is controlled so as to satisfy the following conditions (a) and (b): 3.
(A) The length of the film to be unwound from the roll matches the length of the film to be wound along the inner surface of the cylinder,
(B) The rotation angle (θs) of the roll is expressed by the following equation (5) with respect to the revolution angle (Θ):
θs = (Θ−do · π / T) + (π / T) · (T · Tu · Θ 2 / π 2 −2T · Di · Θ / π + do 2 ) 0.5 (5)
[Wherein, do represents the outer diameter of the roll, Di represents the inner diameter of the cylinder, T represents the thickness of the film material, and Tu represents the pitch of loose winding around the inner surface of the cylinder. ]
It is in the relationship represented by.
さらに、次の条件(c)を満たすように緩め巻きすることを特徴とする請求項1または2に記載の緩め巻き方法。
(c)前記ロールの中心の前記円筒からの偏芯量(ε)が公転角度(Θ)と次式(6):
ε=(Di−do)/2−(Tu−T)・Θ/2π−T・θs/2π (6)
で表される関係を満たす。
Furthermore, the loose winding method of Claim 1 or 2 characterized by performing loose winding so that the following conditions (c) may be satisfy | filled.
(C) The eccentric amount (ε) from the cylinder at the center of the roll is the revolution angle (Θ) and the following equation (6):
ε = (Di−do) / 2− (Tu−T) · Θ / 2π−T · θs / 2π (6)
The relationship represented by is satisfied.
JP2002235572A 2002-08-13 2002-08-13 Method for loosely winding film material wound in a roll Expired - Fee Related JP3770485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235572A JP3770485B2 (en) 2002-08-13 2002-08-13 Method for loosely winding film material wound in a roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235572A JP3770485B2 (en) 2002-08-13 2002-08-13 Method for loosely winding film material wound in a roll

Publications (2)

Publication Number Publication Date
JP2004075243A JP2004075243A (en) 2004-03-11
JP3770485B2 true JP3770485B2 (en) 2006-04-26

Family

ID=32020026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235572A Expired - Fee Related JP3770485B2 (en) 2002-08-13 2002-08-13 Method for loosely winding film material wound in a roll

Country Status (1)

Country Link
JP (1) JP3770485B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5075535B2 (en) * 2007-09-03 2012-11-21 株式会社不二鉄工所 Coreless winding product roll winding method and apparatus

Also Published As

Publication number Publication date
JP2004075243A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP6879769B2 (en) Winding device and method
CN105084083B (en) A kind of parallel expansion film covering device and technique of easy wide cut ultrathin membrane
JP3770485B2 (en) Method for loosely winding film material wound in a roll
JP2001213557A (en) Method and device for transporting long film
CA2756248A1 (en) Method and apparatus for reducing web feed rate variations induced by parent roll geometry variations
US20220396451A1 (en) Tape applicator head
JPH09142707A (en) Uniform speed unwinding drive control method for eccentric web roll
JP2020025023A (en) Winding device
JP5219895B2 (en) RFID label roll automatic winding device
JP5123799B2 (en) Speed tension control device
CN110382384B (en) Winding device and method
CN107584753A (en) Film sticking apparatus
JP3662651B2 (en) Method and apparatus for manufacturing amorphous magnetic alloy strip laminate coil
EP2905246B1 (en) Method and system for adjusting tension during winding for a machine with a winding station
JP2006231216A (en) Coater and apparatus for manufacturing magnetic tape
JP2006231217A (en) Coater and apparatus for manufacturing magnetic tape
JP2015113209A (en) Take-up device
JPH07323959A (en) Calculation of diameter
JP5501838B2 (en) Rolling control method and rolling control apparatus
CN107915082B (en) Control device, winding system, and control method
JP2004307153A (en) Winding device and winding method
CN208757977U (en) A kind of UV solidification reciprocal control device of lamp plate for combination machine based on dry operation
JP2001158556A (en) Tension controller for unwinding machine
JPS59181605A (en) Manufacturing device of wound core
JP2020026783A (en) Roller rotating speed controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees