JP3770283B2 - Synchronous control device - Google Patents

Synchronous control device Download PDF

Info

Publication number
JP3770283B2
JP3770283B2 JP34053696A JP34053696A JP3770283B2 JP 3770283 B2 JP3770283 B2 JP 3770283B2 JP 34053696 A JP34053696 A JP 34053696A JP 34053696 A JP34053696 A JP 34053696A JP 3770283 B2 JP3770283 B2 JP 3770283B2
Authority
JP
Japan
Prior art keywords
spindle
control device
value
multiplier
main shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34053696A
Other languages
Japanese (ja)
Other versions
JPH10174478A (en
Inventor
裕司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP34053696A priority Critical patent/JP3770283B2/en
Priority to KR10-1999-7004900A priority patent/KR100444806B1/en
Priority to PCT/JP1997/003746 priority patent/WO1998025191A1/en
Priority to US09/319,309 priority patent/US6215270B1/en
Priority to CNB971816417A priority patent/CN1146764C/en
Priority to EP97944150A priority patent/EP0943973A4/en
Publication of JPH10174478A publication Critical patent/JPH10174478A/en
Application granted granted Critical
Publication of JP3770283B2 publication Critical patent/JP3770283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Multiple Motors (AREA)
  • Numerical Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主軸モータに同期して従属軸モータを駆動する同期制御装置に関する。
【0002】
【従来の技術】
従来の同期制御技術としては、特願平8−122419において本出願人が提案した同期制御装置がある。
この装置は、主軸の未来位置を予測して求めた従属軸の未来位置指令を用いて、従属軸を予測制御し、さらに、主軸位置増分値、あるいは、その予測値を乗数倍した信号と、主軸位置指令増分値を乗数倍した信号とを加算した信号を、同期ずれの微調整信号として従属軸モータの制御装置へ入力する微調整装置を備えたものである。
【0003】
【発明が解決しようとする課題】
しかし、従来の同期制御技術では、主軸の動特性が正回転時と逆回転時とで異なる場合、同期精度が劣化するという問題があった。
そこで本発明は、従来技術よりも精度の高い同期制御装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記問題点を解決するため本発明では、主軸モータに同期して従属軸モータを駆動する同期制御装置であり、主軸位置のサンプリング周期間の増分値、あるいは、その予測値を乗数K1 倍した信号と、主軸位置指令増分値を乗数K2 倍した信号とを加算した信号を、同期ずれの微調整信号として従属軸モータの制御装置へ入力する微調整装置を備えた同期制御装置において、
前記乗数K1 を2種類記憶し、前記主軸位置増分値の正負によって切り換える手段を備えたことを特徴とする。
【0005】
【発明の実施の形態】
以下、本発明を特願平8−122419において提案した同期制御装置に適用した場合の具体的実施例を図1に示して説明する。図中1は、指令生成装置であり、入力される主軸回転位置の目標指令増分値Δrs (i+M-1) を基に、主軸装置2へ位置指令増分値Δrs (i) を出力し、従属軸装置3へ複数個の未来位置指令増分値Δrz (i+m),m=D+1,D+2,…,D+Mを出力する。Δは、サンプリング周期間の増分値を表す。19は、同期ずれの微調整用の信号を出力する微調整装置であり、本発明はこの装置内で実現される。
指令生成装置1において、7は、入力した前記主軸位置指令増分値を記憶するメモリであり、M−1サンプリング前に入力した前記主軸位置指令増分値Δrs(i) が、現在時刻の主軸位置指令増分値として出力される。8は、入力した主軸位置増分値を記憶するメモリである。9は、主軸装置2の動特性モデルを用いて、数サンプリング先までの主軸位置増分値の予測値Δys * (i+m), m=D+1,D+2, …,D+Mを求める演算器である。10は、得られた前記主軸位置増分値の予測値から、前記従属軸未来位置指令増分値Δrz (i+m), m=D+1,D+2, …,D+Mを求める変換器である。
4、5、および、6は、各装置間で位置指令増分値と主軸位置増分値を伝達する際に、伝送、演算、検出処理のために生じる遅延要素である。
主軸装置2において、13は、主軸位置指令増分値より主軸位置指令を求める積算器、11は、主軸位置指令に従って主軸モータ12の位置ys (i) を制御する主軸制御器である。14は、主軸位置ys (i) から増分値Δys (i) を求める差分器である。
従属軸装置3において、16は入力した速度指令に従って、従属軸モータ17の速度を制御する従属軸制御器である。18は、従属軸モータ17の位置yz (i) から増分値Δyz (i) を求める差分器である。15は、従属軸制御器16を含めた従属軸モータ17の動特性モデルと、前記従属軸位置増分値Δyz (i) とを用いて予測した、数サンプリング先までの従属軸の位置が、前記複数個の従属軸未来位置指令増分値Δrz (i+m),m=1,2,…,Mから決まる従属軸未来位置指令rz(i+m),m=1,2,…,Mと一致するように、予測制御によって速度指令v(i) を決定する予測制御器である。この予測制御器としては、例えば特願平5−197956で提案したもの等を用いれば良い。
予測制御で求められた速度指令v(i) は、加算器20によって、微調整装置19の出力のD( D≧0)サンプリング遅れた信号と加算され、その加算値が速度指令として前記従属軸制御器16に入力される。
微調整装置19は、前記メモリ7に記憶された主軸位置指令増分値Δrs を乗数倍した信号K2 ・ Δrs と、前記メモリ8に記憶された主軸位置増分値Δys ( あるいは、前記主軸位置増分値の予測値Δys * ) を乗数倍した信号K1 ・ Δys ( あるいは、K1 ・ Δys * ) とを加算した信号を出力する。
ここで乗数K1 およびK2 は、同期ずれの微調整用のパラメータであり、その値はあらかじめ調整時に設定され微調整装置19に記憶される。特にK1 については、主軸正転時用と逆転時用の2種類の乗数K1P, K1Nが記憶されており、前記主軸位置増分値ΔyS (i-K) が零以上の時はK1Pが用いられ、ΔyS (i-K) が負の時はK1Nが用いられる。
1PおよびK1Nの設定は、まず主軸が正回転の状態で調整を行い正転時用乗数K1Pを設定記憶する。次に主軸が逆回転の状態で再調整を行って、逆転時用乗数K1N=K1P+KPNを設定記憶する。ここでKPNは、正転時と逆転時における主軸の動特性の違いを補正するものである。K1Nの代わりにKPNを記憶して上式よりK1Nを算出してもよい。なお、K2 は主軸が加減速状態にあるときの同期ずれが小さくなるように設定される。
【0005】
【発明の効果】
以上述べたように、本発明によれば、主軸の正転時と逆転時での動特性の違いが補正され、従来よりも高精度の同期動作が可能な同期制御装置が実現されるという効果がある。
【図面の簡単な説明】
【図1】 本発明の具体的実施例を示す図
【符号の説明】
1 指令生成装置
2 主軸装置
3 従属軸装置
4、5、6 遅延要素
7 主軸位置指令増分値を記憶するメモリ
8 主軸位置増分値を記憶するメモリ
9 主軸未来位置増分値の予測値を求める演算器
10 主軸未来位置増分値の予測値から従属軸未来位置指令増分値を求める変換器
11 主軸制御器
12 主軸モータ
13 積算器
14、18 差分器
15 予測制御器
16 従属軸制御器
17 従属軸モータ
19 微調整装置
20 加算器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a synchronous control device that drives a slave shaft motor in synchronization with a main shaft motor.
[0002]
[Prior art]
As a conventional synchronization control technique, there is a synchronization control apparatus proposed by the present applicant in Japanese Patent Application No. Hei 8-122419.
This device predicts and controls the dependent axis using the future position command of the dependent axis obtained by predicting the future position of the spindle, and further, a spindle position increment value, or a signal obtained by multiplying the predicted value by a multiplier, A fine adjustment device is provided for inputting a signal obtained by adding a signal obtained by multiplying the spindle position command increment value by a multiplier to the control device of the dependent shaft motor as a fine adjustment signal for synchronization deviation.
[0003]
[Problems to be solved by the invention]
However, the conventional synchronization control technique has a problem that the synchronization accuracy deteriorates when the dynamic characteristics of the main shaft are different between forward rotation and reverse rotation.
Therefore, an object of the present invention is to provide a synchronous control device with higher accuracy than the prior art.
[0004]
[Means for Solving the Problems]
In order to solve the above problem, a synchronous control device for driving a slave axis motor in synchronism with the spindle motor, increment the sampling period of the main shaft position, or to 1 times the multiplier K the prediction value In a synchronous control device having a fine adjustment device that inputs a signal obtained by adding a signal and a signal obtained by multiplying the spindle position command increment value by a multiplier K 2 to the control device of the dependent shaft motor as a fine adjustment signal for synchronization deviation.
Two types of the multiplier K 1 are stored, and means for switching according to the positive / negative of the spindle position increment value is provided.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
A specific embodiment when the present invention is applied to the synchronous control apparatus proposed in Japanese Patent Application No. 8-122419 will be described with reference to FIG. In the figure, reference numeral 1 denotes a command generation device that outputs a position command increment value Δr s (i) to the spindle device 2 based on a target command increment value Δr s (i + M−1) of the input spindle rotation position. Then, a plurality of future position command increment values Δr z (i + m), m = D + 1, D + 2,..., D + M are output to the dependent axis device 3. Δ represents an increment between sampling periods. Reference numeral 19 denotes a fine adjustment device that outputs a signal for fine adjustment of synchronization deviation, and the present invention is realized in this device.
In the command generation device 1, 7 is a memory for storing the inputted spindle position command increment value, and the spindle position command increment value Δrs (i) inputted before M-1 sampling is used as the spindle position command at the current time. Output as an incremental value. Reference numeral 8 denotes a memory for storing the input spindle position increment value. 9 shows a predicted value Δy s * (i + m), m = D + 1, D + 2,..., D + M of the spindle position increment value up to several sampling destinations using the dynamic characteristic model of the spindle device 2. Is an arithmetic unit for obtaining 10 is a conversion for obtaining the dependent axis future position command increment value Δr z (i + m), m = D + 1, D + 2,..., D + M from the obtained predicted value of the spindle position increment value. It is a vessel.
Reference numerals 4, 5, and 6 are delay elements generated for transmission, calculation, and detection processing when the position command increment value and the spindle position increment value are transmitted between the devices.
In the spindle device 2, reference numeral 13 denotes an integrator for obtaining a spindle position command from the spindle position command increment value, and reference numeral 11 denotes a spindle controller for controlling the position y s (i) of the spindle motor 12 in accordance with the spindle position command. Reference numeral 14 denotes a differentiator for obtaining an increment value Δy s (i) from the spindle position y s (i).
In the slave shaft device 3, reference numeral 16 denotes a slave shaft controller that controls the speed of the slave shaft motor 17 in accordance with the input speed command. 18 is a differentiator for obtaining the increment Δy z (i) from the position y z of the dependent-axis motor 17 (i). 15 shows the position of the dependent axis up to several sampling destinations predicted using the dynamic characteristic model of the dependent axis motor 17 including the dependent axis controller 16 and the dependent axis position increment value Δy z (i). Dependent axis future position command increment value Δr z (i + m), m = 1, 2,..., M, dependent axis future position command rz (i + m), m = 1, 2,. This is a predictive controller that determines the speed command v (i) by predictive control so as to coincide with M. As this prediction controller, for example, the one proposed in Japanese Patent Application No. 5-197956 may be used.
The speed command v (i) obtained by the predictive control is added by the adder 20 to a signal delayed by D (D ≧ 0) sampling of the output of the fine adjustment device 19, and the added value is used as the speed command as the dependent axis. Input to the controller 16.
Fine adjustment device 19, and the signal K 2 · Δr s that multiplier multiplying the stored main shaft position command increment value [Delta] r s to the memory 7, the main shaft position stored in the memory 8 increment [Delta] y s (or the main shaft A signal obtained by adding a signal K 1 · Δy s (or K 1 · Δy s * ) obtained by multiplying the predicted value Δy s * ) of the position increment value by a multiplier is output.
Here, the multipliers K 1 and K 2 are parameters for fine adjustment of synchronization deviation, and their values are set in advance during adjustment and stored in the fine adjustment device 19. In particular, for K 1 , two types of multipliers K 1P and K 1N for main shaft forward rotation and reverse rotation are stored, and when the main shaft position increment value Δy S (iK) is zero or more, K 1P is K 1N is used when Δy S (iK) is negative.
For the setting of K 1P and K 1N , first, adjustment is performed with the main shaft rotating in the forward direction, and a multiplier for forward rotation K 1P is set and stored. Next, readjustment is performed while the main shaft is rotating in the reverse direction, and a multiplier for reverse rotation K 1N = K 1P + K PN is set and stored. Here, KPN corrects the difference in the dynamic characteristics of the spindle during forward rotation and reverse rotation. K 1N may be calculated from the above equation by storing K PN instead of K 1N . Note that K 2 is set so that the synchronization deviation is small when the spindle is in the acceleration / deceleration state.
[0005]
【The invention's effect】
As described above, according to the present invention, the difference in dynamic characteristics between the forward rotation and the reverse rotation of the main shaft is corrected, and a synchronous control device capable of performing a synchronous operation with higher accuracy than before is realized. There is.
[Brief description of the drawings]
FIG. 1 is a diagram showing a specific embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Command production | generation apparatus 2 Main axis | shaft apparatus 3 Subordinate axis | shaft apparatus 4, 5, 6 Delay element 7 Memory which memorize | stores spindle position command increment value 8 Memory which memorize | stores spindle position increment value 9 Calculator which calculates | requires the predicted value of spindle future position increment value 10 Converter 11 for obtaining dependent axis future position command increment value from predicted value of spindle future position increment value 11 Spindle controller 12 Spindle motor 13 Accumulator 14, 18 Subtractor 15 Prediction controller 16 Dependent axis controller 17 Dependent axis motor 19 Fine adjustment device 20 Adder

Claims (2)

主軸モータに同期して従属軸モータを駆動する同期制御装置であり、主軸位置のサンプリング周期間の増分値、あるいは、その予測値を乗数K1 倍した信号と、主軸位置指令増分値を乗数K2 倍した信号とを加算した信号を、同期ずれの微調整信号として従属軸モータの制御装置へ入力する微調整装置を備えた同期制御装置において、
前記主軸位置増分値の正負によって前記乗数K1 の値を切り換える手段を備えたことを特徴とする同期制御装置。
This is a synchronous control device that drives a subordinate motor in synchronism with the main shaft motor. A signal obtained by multiplying an increment value during a sampling period of the main shaft position or a predicted value thereof by a multiplier K 1 and a main shaft position command increment value are multiplied by a multiplier K. In the synchronous control device including a fine adjustment device that inputs a signal obtained by adding the doubled signal to the control device of the slave shaft motor as a fine adjustment signal of synchronization deviation,
Synchronous control apparatus characterized by comprising means for switching the value of the multiplier K 1 by the sign of the main shaft position increment.
前記乗数K1 の値を主軸正転時と逆転時に設定記憶することを特徴とする請求項1記載の同期制御装置。2. The synchronous control device according to claim 1 , wherein the value of the multiplier K1 is set and stored during forward rotation and reverse rotation of the spindle.
JP34053696A 1996-12-04 1996-12-04 Synchronous control device Expired - Fee Related JP3770283B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP34053696A JP3770283B2 (en) 1996-12-04 1996-12-04 Synchronous control device
KR10-1999-7004900A KR100444806B1 (en) 1996-12-04 1997-10-16 Synchronous controller
PCT/JP1997/003746 WO1998025191A1 (en) 1996-12-04 1997-10-16 Synchronous controller
US09/319,309 US6215270B1 (en) 1996-12-04 1997-10-16 Synchronous control device
CNB971816417A CN1146764C (en) 1996-12-04 1997-10-16 Synchronous controller
EP97944150A EP0943973A4 (en) 1996-12-04 1997-10-16 Synchronous controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34053696A JP3770283B2 (en) 1996-12-04 1996-12-04 Synchronous control device

Publications (2)

Publication Number Publication Date
JPH10174478A JPH10174478A (en) 1998-06-26
JP3770283B2 true JP3770283B2 (en) 2006-04-26

Family

ID=18337934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34053696A Expired - Fee Related JP3770283B2 (en) 1996-12-04 1996-12-04 Synchronous control device

Country Status (1)

Country Link
JP (1) JP3770283B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4807475B1 (en) 2011-03-15 2011-11-02 オムロン株式会社 Arithmetic unit, output control method, and program
JP4973792B1 (en) 2011-03-15 2012-07-11 オムロン株式会社 Arithmetic unit, output control method, and program

Also Published As

Publication number Publication date
JPH10174478A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
KR100267364B1 (en) Adaptive feed forward device for reducing current control error
KR20040071695A (en) Vector control invertor
KR100444806B1 (en) Synchronous controller
JP3770283B2 (en) Synchronous control device
US4638225A (en) Method and apparatus therefor in motor speed control
JP3000850B2 (en) Electronic cam
JP3551345B2 (en) Synchronous control device
JP3654049B2 (en) Motor control device
JPS6151212A (en) Periodical operation control system of motor
JP2000020104A (en) Method and device for speed control gain adjustment
JP3864291B2 (en) Multi-axis controller
JPH10174479A (en) Synchronization control device
JPH0759377A (en) Motor driver
JP3438195B2 (en) Motor control device
JPS624951B2 (en)
JP3213796B2 (en) Servo motor controller
JP3589251B2 (en) Speed feedback delay correction method
JP3676435B2 (en) AC servo motor control method
JP2000003204A (en) Control method and device
JPH06292385A (en) Digital current control method for induction motor
JPH05241662A (en) Servo motor controller
JPH10146080A (en) Speed controller of servo motor
JPH11353021A (en) Vehicle
JPH1084686A (en) Switching method for servo controller
JP3355101B2 (en) Control device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees