JP3770136B2 - Method for connecting segment coils used in motors - Google Patents

Method for connecting segment coils used in motors Download PDF

Info

Publication number
JP3770136B2
JP3770136B2 JP2001315101A JP2001315101A JP3770136B2 JP 3770136 B2 JP3770136 B2 JP 3770136B2 JP 2001315101 A JP2001315101 A JP 2001315101A JP 2001315101 A JP2001315101 A JP 2001315101A JP 3770136 B2 JP3770136 B2 JP 3770136B2
Authority
JP
Japan
Prior art keywords
welding
thermosetting resin
stator
welded
melt adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001315101A
Other languages
Japanese (ja)
Other versions
JP2003125563A (en
Inventor
学 北村
良則 山田
泰彦 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001315101A priority Critical patent/JP3770136B2/en
Publication of JP2003125563A publication Critical patent/JP2003125563A/en
Application granted granted Critical
Publication of JP3770136B2 publication Critical patent/JP3770136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、モータに用いられるセグメントコイルの接続方法にかかり、特に、セグメントコイルの被溶接点の溶接と、溶接部分に絶縁膜を形成する方法に関する。
【0002】
【従来の技術】
モータのステータまたはロータのコイル巻き工程を容易にするため、セグメントコイルが用いられる。図8は、かかるモータのステータ1の断面を円周方向に展開して示した図で、ステータ1には、コイルを収納するスロット3が一定ピッチで複数設けられる。図8においては、一例として、いわゆる分布巻きにおいて、スロット3の三個おきに一本のステータ巻き線5が順次配置される場合を示した。絶縁被覆された略U字状の絶縁導体からなるセグメントコイル7Aは、三スロット隔てたスロット3にその両脚部が挿入され、両脚部が曲げられ、破線で示すごとく、両端部9A,9Bを有する構造となる。同様にセグメントコイル7B,7Cが隣接配置され、セグメントコイル7Aの一方の端部9Aとセグメントコイル7Bの一方の端部9Cとを接続し、セグメントコイル7Aの他方の端部9Bとセグメントコイル7Cの一方の端部9Dを接続し、セグメントコイル7B,7A,7Cが連続した構造となる。
【0003】
これをステータ1の円周方向に一周繰り返すことで、三スロットおきのスロット3に、ステータ巻き線5が一本配置された構造となる。これを繰り返し、各スロットに所定数のステータ巻き線5を配置し、セグメントコイルを用いたステータ1の構造となる。
【0004】
かかるセグメントコイルの端部の接続方法につき従来技術の例を図9(a)〜(c)に示す。端部を接続するには、前処理として、セグメントコイル、例えばエナメル銅線のエナメル被覆を端部について剥離し、端部を揃えて被溶接点とする。
【0005】
図9(a)は、溶接工程を示す図で、円環状のステータ11の一方の面に、例えば円周方向に48列、この各列の径方向に4個の合計192個配置された被溶接点13に対し、溶接トーチ15が順次溶接を行う。溶接トーチ15の位置を最初の被溶接点に設定して溶接をし、そのまま溶接トーチ15の位置は固定したままで、ステータ11を回転し、円周方向の次の被溶接点に溶接トーチ15を相対的に移動し、次の溶接をする。円周方向に一周48点の溶接が終われば、溶接トーチ15を、径方向に移動し、径方向の次の被溶接点に移る。以下これを繰り返し、計192点の溶接を行う。
【0006】
図9(b)は、加熱工程を示す図で、溶接が終わったステータ11を、加熱炉17で、例えば170度Cで4時間加熱する。
【0007】
図9(c)は、溶融付着工程を示す図で、加熱されたステータ11を、粉体浸漬槽19に浸漬し、溶接部分13に、熱硬化性樹脂を溶融付着させる。粉体浸漬槽19は、槽内部に、例えば数μmの穴を有する多孔質の仕切り板21を有し、仕切り板21の上部の浸漬部23に、溶融点が100度C前後の特性をもち、径が10−30μmの、例えばエポキシ樹脂等の、熱硬化性樹脂粉体が供給されている。仕切り板21の下部の空気送入口25より空気を送り込むと、粉体は、仕切り板21の上部で適度に巻き上がり流動する。粉体浸漬槽19の上部に加熱されたステータ11を移動させ、下降させて、この流動する粉体に、セグメントコイルの端部が浸漬する高さに配置することで、粉体は溶融点以上に加熱されている端部に触れて溶融し、付着する。
【0008】
その後、図示されていないが、セグメントコイルの端部に熱硬化性樹脂が溶融付着したステータを、硬化温度以上に加熱処理し、熱硬化させて、セグメントコイルの端部に絶縁膜を形成する。このようにして、セグメントコイルの接続がなされる。
【0009】
【発明が解決しようとする課題】
このように、従来技術のセグメントコイルの接続方法により、モータに用いられるセグメントコイルの接続を行うことができる。しかしながら、従来技術では、溶接済みのステータ全体の加熱が必要なため、一回の加熱時間に例えば約4時間を要し、作業効率が悪く、量産のために多数の加熱設備と電力を必要とした。
【0010】
本発明の目的は、かかる従来技術の課題を解決し、加熱設備を不要とし、作業効率の良いセグメントコイルの接続方法を提供することである。
【0011】
【課題を解決するための手段】
本発明に係るセグメントコイルの接続方法は、セグメントコイルの端部に熱硬化性樹脂を溶融付着させるには、その端部のみが熱硬化性樹脂の溶融点以上にあれば足りることに着眼し、溶接部分の溶接による余熱温度の変化を調べたところ、一定条件でその余熱を利用できる、との知見を得たことに基く。
【0012】
図1に、例えば外径が約30cm、内径が約20cm、厚みが約10cmの大きさに電磁鋼板を積層し、エナメル被覆の銅線のセグメントコイルを用いたステータの192点の被溶接点を順次溶接した時の、溶接部分の、室温雰囲気下における、溶接による余熱温度の変化を模式的に示した図である。溶接直後の溶接部分の温度は、銅線の融点等で定まり、約1000度Cに達している。溶接部分の温度は室温雰囲気で急速に低下するが、例えばエポキシ樹脂粉体の溶融付着下限温度である約100度Cまで低下するには約5分、溶融付着下限温度より十分余裕のある温度、例えば180度Cまで低下するには約3分を要する。この冷却曲線は、セグメントコイル周辺の熱容量、熱流路等で定まり、ステータが決まれば一定の冷却曲線となる。これに対し、192点の溶接に要する時間は約45秒、またエポキシ樹脂粉体が溶融して付着するのに要する時間は約5秒である。
【0013】
このように、溶接直後の約1000度Cから、溶融付着下限温度である100度Cに余熱温度が下がる時間より、溶接所要時間と溶融付着に要する時間が十分短いことが明らかになった。したがって溶接部分の溶接による余熱温度が、熱硬化性樹脂の溶融点に応じた所定温度以下となるまでの溶融付着可能期間内に、熱硬化性樹脂を溶融付着させることが可能であることがわかった。
【0014】
溶接が、192点の被溶接点に対し順次行われるときは、最初に溶接した部分は冷却曲線イに沿い、点A−B−Cと、最後に溶接した部分は、冷却曲線ロに沿い、点D−E−Fと温度が下がる。このように各被溶接点の温度に差があるので、その温度に応じ溶融付着する量が異なると、絶縁膜の膜厚に差が出てくる可能性がある。したがって膜厚均一性を向上させるためには、各溶接部分間の温度差が少ない状態で溶融付着を行う必要がある。
【0015】
本発明の上記目的を達成するため、本発明に係るセグメントコイルの接続方法は、ステータ又はロータの円周方向に複数列、径方向に所定数設けられたセグメントコイルの被溶接点を溶接し、その溶接部分に熱硬化性樹脂を溶融付着させて絶縁膜を形成する、セグメントコイルの接続方法であって、溶接トーチが、前記ステータまたはロータに対し相対的に移動し、前記被溶接点を順次溶接する溶接工程と、前記溶接部分の溶接による余熱温度が、前記熱硬化性樹脂の溶融点に応じた所定温度以上の溶融付着可能期間内に、前記熱硬化性樹脂を付着させる溶融付着工程と、前記付着した熱硬化性樹脂を加熱処理し、絶縁膜を形成する熱硬化工程と、を有することを特徴とする。
【0016】
また、本発明に係るセグメントコイルの接続方法において、前記所定温度が、100度C以上180度C以下であることが好ましい。
【0017】
また、本発明に係るセグメントコイルの接続方法において、前記溶融付着期間が、前記溶接の開始から三分間以内であることが好ましい。
【0018】
また、本発明に係るセグメントコイルの接続方法は、ステータ又はロータの円周方向に複数列、径方向に所定数設けられたセグメントコイルの被溶接点を溶接し、その溶接部分に熱硬化性樹脂を溶融付着させて絶縁膜を形成する、セグメントコイルの接続方法であって、溶接トーチが、前記ステータまたはロータの径方向に移動し、前記径方向に所定数設けられた前記被溶接点を順次一列分溶接する径方向列溶接工程と、前記溶接部分の溶接による余熱温度が、前記熱硬化性樹脂の溶融点に応じた所定温度以上の溶融付着可能期間内に、前記径方向の溶接列部分に、前記熱硬化性樹脂を溶融付着させる径方向列溶融付着工程と、前記付着した熱硬化性樹脂を加熱処理し、絶縁膜を形成する熱硬化工程と、を有することを特徴とする。
【0019】
また、本発明に係るセグメントコイルの接続方法は、ステータ又はロータの円周方向に複数列、径方向に所定数設けられたセグメントコイルの被溶接点を溶接し、その溶接部分に熱硬化性樹脂を溶融付着させて絶縁膜を形成する、セグメントコイルの接続方法であって、溶接トーチが、前記ステータまたはロータに対し相対的に移動し、前記被溶接点を順次溶接する溶接工程と、前記溶接部分の溶接による余熱温度が、前記熱硬化性樹脂の溶融点に応じた所定温度以上の溶融付着可能期間内に、前記溶接部分に、前記熱硬化性樹脂を順次噴射する噴射溶融付着工程と、前記付着した熱硬化性樹脂を加熱処理し、絶縁膜を形成する熱硬化工程と、を有することを特徴とする。
【0020】
このように、本発明に係るセグメントコイルの接続方法は、溶接部分の溶接による余熱温度が、熱硬化性樹脂の溶融点に応じた所定温度以下となるまでの溶融付着可能期間内に、熱硬化性樹脂を付着させることとしたので、加熱のための設備を不要とし、作業効率の良いセグメントコイルの接続ができる。
【0021】
さらに、被溶接点を順次溶接した後、前記熱硬化樹脂を順次噴射することとしたので、一個の被溶接点の溶接後、その一個に前記熱硬化樹脂を噴射し、十分高い余熱温度の下で、溶融付着が行うことができ、溶接部分間の絶縁膜の膜厚をさらにいっそう均一にできる。
【0022】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態について詳細に説明する。図9と共通の要素については同一の符号を用いて説明を省略する。図2は、第一の実施の形態についてのフローチャートを示したものである。第一の実施の形態は、図1に示したように、溶接の余熱による温度が、熱硬化性樹脂の溶融付着下限温度より十分高い期間に、溶接部分を熱硬化性樹脂の流動浸漬する方法である。
【0023】
STEP51は、溶接トーチの位置を、最初の被溶接点に設定する初期位置設定工程である。例えば最内周側の溶接点の位置に設定する。
【0024】
STEP53は、STEP531からSTEP539に示される順次溶接工程である。
【0025】
STEP531は一点溶接工程である。図3に、被溶接点13近傍の構成を示した。溶接トーチ15は、被溶接点13の下部にやや距離を置いて配置される。被溶接点13は、セグメントコイル7A,7Bの絶縁被覆が剥がされた、端部を、溶接用アース爪27に接触し揃えて配置した部分であり、溶接用アース爪27と、溶接トーチ15の間に、高電圧源29から、高電圧が印加される。そこで溶接トーチ15と被溶接点13との間に放電が起こり、被溶接点13が溶けて結合される。
【0026】
STEP531,STEP533,STEP537の後再びSTEP531に戻る工程は、円周方向順次溶接の工程である。STEP531の一点溶接工程の後、STEP533の一周溶接完了判断工程で、ステータ11の円周方向に一周分の溶接、例えば48個の溶接が完了したか否かを判断する。一周分48個を完了するまでは、STEP537の円周方向移動工程に進み、ワーク、この場合ステータ11を円周方向に一溶接点間距離分回転させ、次の被溶接点13に溶接トーチ15を相対的に移動させる。ワークの回転の代わりに、溶接トーチ15を移動することでも良い。溶接トーチ15の位置が、次の被溶接点13に設定されると、再びSTEP531の一点溶接工程にもどる。このように、STEP531,STEP533,STEP537の後再びSTEP531に戻る工程を繰り返し、円周方向に順次溶接を行う。
【0027】
STEP533の一周溶接完了判断工程で、一周分溶接が完了したと判断すると、STEP535の全部溶接完了判断工程で、さらに全部の溶接、例えば一周48個の溶接を4列分、計192個の溶接が完了したか否かを判断する。全部の溶接が完了するまでは、STEP535の径方向移動工程に進み、溶接トーチ15を、ステータ11の径方向に沿って、外周側に一溶接点間距離分移動させ、次の被溶接点13の位置に相対的に移す。溶接トーチ15の位置が、次の被溶接点13に設定されると、STEP531にもどり、再び円周方向に順次溶接が行われる。これを繰り返し、全部の溶接が完了すると、順次溶接の工程がおわり、STEP55に進む。
【0028】
STEP55は、溶融付着工程で、STEP535において全部の溶接が完了したと判断したとき、溶接完了後のステータ11の溶接部分を、粉体浸漬槽19に浸漬し、熱硬化性樹脂を溶融付着させる溶融付着工程である。すでに図1で述べたように、溶接開始から三分間以内に、溶融付着の工程を行うことが必要である。粉体浸漬槽19には、溶融点が約100度Cの、例えばエポキシ樹脂の粉体が供給されている。
【0029】
STEP57は、溶融付着の工程が終わったステータを、熱硬化条件を満たすように加熱し、溶融付着した熱硬化性樹脂を熱硬化させて絶縁膜を形成する熱硬化工程である。例えば170度Cで30分加熱する。
【0030】
このようにして、溶接の余熱による温度が、熱硬化性樹脂の溶融付着下限温度より十分高い期間に、溶接部分に熱硬化性樹脂の流動浸漬を行い、絶縁膜を形成して、セグメントコイルの接続を行うことができ、生産のリードタイムを大幅に短縮でき、設備コスト低減を図ることができる。
【0031】
図4は、第二の実施形態についての説明図である。この場合は、ステータ11の径方向に一列に配置された所定数、例えば4個の被溶接点13を順次溶接し溶接列を形成する。その後、溶接列の位置に小型の粉体浸漬槽31が移動し、その位置で上昇し、その4個の溶接列を一つの単位として浸漬し、熱硬化性樹脂を溶接列に溶融付着させる。移動可能な小型の粉体浸漬槽31は、溶接列を浸漬するのに必要かつ十分な浸漬部をもち、その構造は、大型の粉体浸漬槽19と同様である。
【0032】
図5は、第二の実施の形態のフローチャートを示す図である。
【0033】
STEP61は、溶接トーチ15の位置を、最初の被溶接点13に設定する初期位置設定工程である。例えばステータ11の最内周側の被溶接点13の位置に設定する。
【0034】
STEP63は、径方向に一列に所定数、例えば4個配置されている被溶接点13を順次溶接し、溶接列を形成する径方向列溶接工程である。一つの被溶接点の溶接が終わると、溶接トーチ15をステータ11の径方向に沿い、一溶接点間距離分外周側に移動させ、次の被溶接点13の位置に設定し、溶接を行う。
【0035】
STEP65は、径方向に一列に所定数配置されている被溶接点13に付きすべて溶接が終わり、溶接列が形成されると、ワークすなわちステータ11を円周方向に一溶接点間距離分回転させ、溶接トーチ13を次の列の被溶接点13の位置に移動させる円周方向移動工程である。
【0036】
STEP67は、溶接トーチ15が円周方向に移動した後に、小型の粉体浸漬槽31が溶接列の位置に移動し、その位置で上昇し、その溶接列を一単位として浸漬し、熱硬化性樹脂を溶融付着させる、径方向溶融付着工程である。
【0037】
STEP69は、全部溶融付着が完了したか否か判断する溶融付着完了判断工程である。溶融付着が全部完了していないと判断したときは、STEP63にもどり、径方向列溶接を行う。
【0038】
STEP71は、STEP69において、全部の溶融付着が完了したと判断したときは、溶融付着の工程が終わったステータを、熱硬化条件を満たすように加熱し、溶融付着した熱硬化性樹脂を熱硬化し、絶縁膜を形成する熱硬化工程である。
【0039】
このようにして、径方向に一列に並んだ所定数の被溶接点を溶接して溶接列を形成し、その溶接列を一つの単位として、前記熱硬化性樹脂を溶融付着させるので、溶接部分間の温度差をより少なくでき、絶縁膜の膜厚をより均一にできる。また、移動可能な小型の粉体浸漬槽を用いることで、粉体浸漬槽に浸漬するための重いステータの上下機構の必要がなくなり、設備コストも低減できる。
【0040】
図6は、第三の実施の形態を説明する図である。この場合は、溶接トーチ15が一個の被溶接点13を順次溶接した後、噴射ノズル33が、その溶接部分に、熱硬化性樹脂を順次噴射する。噴射ノズル33は、熱硬化性樹脂の粉体を所定の範囲に所定量噴射できる構造となっている。
【0041】
図7は、第三の実施の形態のフローチャートを示す図である。STEP81は、溶接トーチ15の位置を初期設定する初期位置設定工程である。
【0042】
STEP83は、一つの被溶接点13を溶接する溶接工程である。STEP85は、溶接トーチ15を次の被溶接点13に移動する移動工程である。これらの工程は、第一の実施の形態の場合の、図2のSTEP51,STEP531,STEP533,STEP537と同様に行うことができる。
【0043】
STEP87は、溶接トーチ15が、一個の溶接を終えて次の被溶接点に移動した後、その溶接部分に、噴射ノズル33が、熱硬化性樹脂を噴射し、溶融付着させる噴射工程である。
【0044】
STEP89は、全部の被溶接点について、溶接及び熱硬化性樹脂の噴射による溶融付着が完了したか否か判断する全部溶融付着完了判断工程である。全部が完了していないと判断したときは、STEP83に戻り、溶接を行う。
【0045】
STEP91は、STEP89において、全部の溶融付着が完了したと判断したときは、溶融付着の工程が終わったステータを、熱硬化条件を満たすように加熱し、溶融付着した熱硬化性樹脂を熱硬化させ、絶縁膜を形成する熱硬化工程である。
【0046】
このようにして、一個の被溶接点を溶接した後、その都度熱硬化樹脂を噴射し、十分余熱があるうちに溶融付着が行うことができ、溶接部分間の絶縁膜の膜厚をさらにいっそう均一にできる。
【0047】
以上、便宜上セグメントコイルが用いられるステータを取上げて説明したが、セグメントコイルが用いられるロータについても、本発明が実施できる。
【0048】
【発明の効果】
本発明に係るセグメントコイルの接続方法は、加熱のための設備を不要とし、作業効率の良いセグメントコイルの接続ができた。
【図面の簡単な説明】
【図1】 本発明の知見の基礎となる、溶接部分の、室温雰囲気下における、溶接による余熱温度の変化を模式的に示した図である。
【図2】 本発明の第一の実施の形態についてのフローチャートを示したものである。
【図3】 溶接工程における、被溶接点近傍の構成を示す図である。
【図4】 本発明の第二の実施形態についての説明図である。
【図5】 本発明の第二の実施の形態のフローチャートを示す図である。
【図6】 本発明の第三の実施の形態を説明する図である。
【図7】 本発明の第三の実施の形態のフローチャートを示す図である。
【図8】 セグメントコイルが用いられるモータのステータの断面を円周方向に展開して示した図である。
【図9】 セグメントコイル端部間の接続方法につき従来技術の例を示す図で、(a)は、溶接工程、(b)は、加熱工程、(c)は、溶融付着工程を説明する図である。
【符号の説明】
1 ステータ、3 スロット、5 ステータ巻き線、7A,7B,7C セグメントコイル、9A,9B,9C,9D 端部、11 ステータ、17 加熱炉、19 粉体浸漬槽、21 多孔質の仕切り板、23 浸漬部、25 空気送入口、27 溶接用アース爪、29 高電圧源、31 小型の粉体浸漬槽、33 噴射ノズル。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for connecting segment coils used in a motor, and more particularly, to a method of welding a welding point of a segment coil and forming an insulating film on a welded portion.
[0002]
[Prior art]
A segment coil is used to facilitate the coiling process of the stator or rotor of the motor. FIG. 8 is a diagram showing a cross section of the stator 1 of the motor developed in the circumferential direction. The stator 1 is provided with a plurality of slots 3 for storing coils at a constant pitch. FIG. 8 shows, as an example, a case where one stator winding 5 is sequentially arranged every three slots 3 in so-called distributed winding. The segment coil 7A made of a substantially U-shaped insulated conductor with insulation coating has its both leg portions inserted into a slot 3 separated by three slots, both leg portions being bent, and has both end portions 9A and 9B as indicated by broken lines. It becomes a structure. Similarly, the segment coils 7B and 7C are arranged adjacent to each other, connect one end 9A of the segment coil 7A and one end 9C of the segment coil 7B, and connect the other end 9B of the segment coil 7A and the segment coil 7C. One end 9D is connected, and the segment coils 7B, 7A, and 7C are continuous.
[0003]
By repeating this once in the circumferential direction of the stator 1, one stator winding 5 is arranged in every three slots 3. By repeating this, a predetermined number of stator windings 5 are arranged in each slot, and the structure of the stator 1 using segment coils is obtained.
[0004]
9A to 9C show examples of the prior art regarding the method of connecting the end portions of such segment coils. In order to connect the end portions, as a pretreatment, a segment coil, for example, an enamel coating of enameled copper wire is peeled off at the end portions, and the end portions are aligned to be welded points.
[0005]
FIG. 9A is a diagram showing a welding process. For example, 48 rows in the circumferential direction and four 192 in total in the radial direction of each row are arranged on one surface of the annular stator 11. A welding torch 15 sequentially welds the welding points 13. The welding torch 15 is set at the first welding point, welding is performed, the position of the welding torch 15 is fixed as it is, the stator 11 is rotated, and the welding torch 15 is moved to the next welding point in the circumferential direction. Move relative to each other and perform the next welding. When 48 rounds of welding are completed in the circumferential direction, the welding torch 15 is moved in the radial direction and moved to the next welding point in the radial direction. Thereafter, this is repeated, and a total of 192 points are welded.
[0006]
FIG. 9B is a diagram illustrating a heating process, in which the stator 11 that has been welded is heated in a heating furnace 17 at, for example, 170 degrees C. for 4 hours.
[0007]
FIG. 9C is a diagram showing a melt adhesion step, in which the heated stator 11 is immersed in the powder immersion tank 19 and the thermosetting resin is melted and adhered to the welded portion 13. The powder immersion bath 19 has a porous partition plate 21 having, for example, a hole of several μm inside the bath, and the immersion portion 23 on the upper portion of the partition plate 21 has a characteristic that the melting point is around 100 degrees C. A thermosetting resin powder having a diameter of 10-30 μm, such as an epoxy resin, is supplied. When air is fed from the air inlet 25 at the lower part of the partition plate 21, the powder is appropriately rolled up and flows at the upper part of the partition plate 21. The heated stator 11 is moved to the upper part of the powder immersion bath 19 and moved down, and placed at a height at which the end of the segment coil is immersed in this flowing powder, so that the powder is above the melting point. Touch the heated end to melt and adhere.
[0008]
Thereafter, although not shown, the stator in which the thermosetting resin is melted and adhered to the end portions of the segment coils is heat-treated at a curing temperature or higher and thermally cured to form an insulating film at the end portions of the segment coils. In this way, the segment coils are connected.
[0009]
[Problems to be solved by the invention]
Thus, the segment coil used in the motor can be connected by the conventional segment coil connection method. However, in the prior art, since it is necessary to heat the entire welded stator, for example, about 4 hours are required for one heating time, work efficiency is poor, and a large number of heating facilities and electric power are required for mass production. did.
[0010]
An object of the present invention is to provide a segment coil connection method that solves the problems of the prior art, eliminates the need for heating equipment, and has high work efficiency.
[0011]
[Means for Solving the Problems]
The segment coil connection method according to the present invention focuses on the fact that only the end of the segment coil is required to be above the melting point of the thermosetting resin in order to melt and attach the thermosetting resin to the end of the segment coil. The change in the residual heat temperature due to the welding of the welded part was investigated, and this is based on the knowledge that the residual heat can be used under a certain condition.
[0012]
In FIG. 1, for example, 192 welding points of a stator using a segment coil of enamelled copper wire laminated with magnetic steel sheets having a diameter of about 30 cm, an inner diameter of about 20 cm, and a thickness of about 10 cm are shown. It is the figure which showed typically the change of the preheating temperature by welding in the room temperature atmosphere of the welding part when welding sequentially. The temperature of the welded part immediately after welding is determined by the melting point of the copper wire and reaches about 1000 ° C. Although the temperature of the welded portion rapidly decreases in a room temperature atmosphere, for example, about 5 minutes to decrease to the melt adhesion lower limit temperature of the epoxy resin powder, about 5 minutes, a temperature having a sufficient margin from the melt adhesion lower limit temperature, For example, it takes about 3 minutes to decrease to 180 ° C. This cooling curve is determined by the heat capacity around the segment coil, the heat flow path, and the like. If the stator is determined, it becomes a constant cooling curve. On the other hand, the time required for welding at 192 points is about 45 seconds, and the time required for the epoxy resin powder to melt and adhere is about 5 seconds.
[0013]
As described above, it has been clarified that the time required for welding and the time required for melt adhesion are sufficiently shorter than the time required for the preheating temperature to decrease from about 1000 ° C. immediately after welding to 100 ° C. which is the lower limit temperature for melt adhesion. Therefore, it is understood that the thermosetting resin can be melted and adhered within the meltable period until the preheating temperature due to the welding of the welded portion becomes a predetermined temperature or less according to the melting point of the thermosetting resin. It was.
[0014]
When welding is performed sequentially on the 192 points to be welded, the first welded portion is along the cooling curve i, the point A-B-C and the last welded portion are along the cooling curve b, Point D-E-F and temperature drop. As described above, there is a difference in temperature at each welding point, and if the amount of melt adhesion varies depending on the temperature, there is a possibility that a difference in the film thickness of the insulating film occurs. Therefore, in order to improve the film thickness uniformity, it is necessary to perform melt adhesion with a small temperature difference between the welded portions.
[0015]
In order to achieve the above object of the present invention, a segment coil connection method according to the present invention welds welding points of segment coils provided in a plurality of rows in the circumferential direction of the stator or rotor and a predetermined number in the radial direction, A method of connecting segment coils, in which an insulating film is formed by melting and adhering a thermosetting resin to the welded portion, wherein a welding torch moves relative to the stator or the rotor, and the welding points are sequentially arranged A welding process for welding, and a melt adhesion process for adhering the thermosetting resin within a possible melt adhesion period of a predetermined temperature or higher according to the melting point of the thermosetting resin, with a preheat temperature due to welding of the welded portion And a thermosetting step of heat-treating the attached thermosetting resin to form an insulating film.
[0016]
In the segment coil connection method according to the present invention, it is preferable that the predetermined temperature is 100 ° C. or more and 180 ° C. or less.
[0017]
In the segment coil connection method according to the present invention, it is preferable that the melt adhesion period is within three minutes from the start of the welding.
[0018]
Further, the segment coil connection method according to the present invention comprises welding a weld point of a segment coil provided in a plurality of rows in the circumferential direction of the stator or rotor and a predetermined number in the radial direction, and a thermosetting resin on the welded portion. A segment coil connecting method in which a welding torch moves in a radial direction of the stator or rotor, and a predetermined number of the welded points provided in the radial direction are sequentially formed. A radial row welding step for welding in a row and a preheating temperature due to welding of the welded portion within a weldable period of a predetermined temperature or more according to the melting point of the thermosetting resin, the welded portion in the radial direction Furthermore, it has a radial direction melt adhesion process for melting and adhering the thermosetting resin, and a thermosetting process for heat-treating the adhering thermosetting resin to form an insulating film.
[0019]
Further, the segment coil connection method according to the present invention comprises welding a weld point of a segment coil provided in a plurality of rows in the circumferential direction of the stator or rotor and a predetermined number in the radial direction, and a thermosetting resin on the welded portion. A segment coil connecting method in which a welding torch moves relative to the stator or the rotor and sequentially welds the welding points; and the welding An injection melt adhesion step of sequentially injecting the thermosetting resin to the welded portion within a possible melt adhesion period of a predetermined temperature or higher according to the melting point of the thermosetting resin, the residual heat temperature due to the welding of the portion; And heat-treating the attached thermosetting resin to form an insulating film.
[0020]
As described above, the segment coil connection method according to the present invention is a method in which the heat-curing is performed within the melt-adherable period until the preheating temperature due to welding of the welded portion is equal to or lower than a predetermined temperature corresponding to the melting point of the thermosetting resin. Since the adhesive resin is adhered, no heating equipment is required, and the segment coils can be connected with good work efficiency.
[0021]
Furthermore, since the welded points are sequentially welded and then the thermosetting resin is sequentially sprayed, after welding one welded point, the thermoset resin is sprayed onto one of the welded points and a sufficiently high residual heat temperature is maintained. Thus, melt adhesion can be performed, and the thickness of the insulating film between the welded portions can be made even more uniform.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same elements as those in FIG. 9 are denoted by the same reference numerals and the description thereof is omitted. FIG. 2 is a flowchart for the first embodiment. As shown in FIG. 1, the first embodiment is a method in which the welded portion is fluidly immersed in the thermosetting resin during a period in which the temperature due to the residual heat of the welding is sufficiently higher than the lower limit temperature of the melt adhesion of the thermosetting resin. It is.
[0023]
STEP 51 is an initial position setting step for setting the position of the welding torch at the first welding point. For example, it is set to the position of the innermost welding point.
[0024]
STEP 53 is a sequential welding process shown in STEP 531 to STEP 539.
[0025]
STEP 531 is a one-point welding process. FIG. 3 shows a configuration in the vicinity of the welded point 13. The welding torch 15 is arranged at a slight distance below the welded point 13. The welded point 13 is a part in which the insulation coating of the segment coils 7A and 7B is peeled off, and the end is in contact with the welding ground claw 27 and is arranged. The welding ground claw 27 and the welding torch 15 In the meantime, a high voltage is applied from the high voltage source 29. Therefore, a discharge occurs between the welding torch 15 and the welded point 13, and the welded point 13 is melted and joined.
[0026]
The process of returning to STEP 531 again after STEP 531, STEP 533, and STEP 537 is a circumferential welding process. After the one-point welding process of STEP531, it is determined whether or not one round of welding in the circumferential direction of the stator 11, for example, 48 welds, has been completed in the STEP533 one-round welding completion determination process. Until 48 rounds are completed, the process proceeds to the circumferential movement step of STEP 537, the workpiece, in this case, the stator 11 is rotated in the circumferential direction by the distance between the welding points, and the welding torch 15 is connected to the next welded point 13. Is moved relatively. Instead of rotating the workpiece, the welding torch 15 may be moved. When the position of the welding torch 15 is set to the next welded point 13, the single point welding process of STEP 531 is resumed. Thus, the process of returning to STEP 531 again after STEP 531, STEP 533, and STEP 537 is repeated, and welding is sequentially performed in the circumferential direction.
[0027]
If it is determined in the step 533 one-round welding completion determination step that the welding for one round has been completed, in step 535 all-welding completion determination step, all the weldings, for example, 48 rounds of welding for four rows, a total of 192 weldings are performed. Determine if completed. Until the entire welding is completed, the process proceeds to the radial movement step of STEP 535, and the welding torch 15 is moved to the outer peripheral side by the distance between one welding point along the radial direction of the stator 11, and the next welding point 13 is reached. Move relative to the position of. When the position of the welding torch 15 is set to the next welding point 13, the process returns to STEP 531, and welding is sequentially performed again in the circumferential direction. This process is repeated, and when all the welding is completed, the welding process is finished, and the process proceeds to STEP55.
[0028]
STEP 55 is a melt adhesion step. When it is determined in STEP 535 that all welding has been completed, the welded portion of the stator 11 after the completion of welding is immersed in the powder immersion tank 19 to melt and adhere the thermosetting resin. It is an adhesion process. As already described with reference to FIG. 1, it is necessary to carry out the melt adhesion process within 3 minutes from the start of welding. For example, an epoxy resin powder having a melting point of about 100 ° C. is supplied to the powder immersion tank 19.
[0029]
STEP 57 is a thermosetting process in which the stator after the melt adhesion process is heated so as to satisfy the thermosetting condition, and the thermosetting resin that has been fused and adhered is thermally cured to form an insulating film. For example, heating is performed at 170 ° C. for 30 minutes.
[0030]
In this way, during the period in which the temperature due to the residual heat of the welding is sufficiently higher than the lower limit temperature of the melt adhesion of the thermosetting resin, the thermosetting resin is flow-immersed in the welded portion, the insulating film is formed, Connections can be made, production lead times can be greatly reduced, and equipment costs can be reduced.
[0031]
FIG. 4 is an explanatory diagram of the second embodiment. In this case, a predetermined number, for example, four welding points 13 arranged in a line in the radial direction of the stator 11 are sequentially welded to form a weld line. Thereafter, the small powder immersion tank 31 moves to the position of the weld row, and rises at that position, so that the four weld rows are immersed as one unit, and the thermosetting resin is melted and adhered to the weld row. The movable small powder immersion tank 31 has an immersion part necessary and sufficient for immersing the weld row, and its structure is the same as that of the large powder immersion tank 19.
[0032]
FIG. 5 is a diagram illustrating a flowchart of the second embodiment.
[0033]
STEP 61 is an initial position setting step for setting the position of the welding torch 15 at the first welded point 13. For example, it is set at the position of the welded point 13 on the innermost peripheral side of the stator 11.
[0034]
STEP 63 is a radial row welding process in which a predetermined number, for example four, of the welded points 13 arranged in a row in the radial direction are sequentially welded to form a weld row. When the welding of one welding point is completed, the welding torch 15 is moved along the radial direction of the stator 11 to the outer peripheral side by the distance between the welding points, set to the position of the next welding point 13, and welding is performed. .
[0035]
In STEP 65, when welding is completed for all the welded points 13 arranged in a predetermined number in a row in the radial direction and the weld row is formed, the work, that is, the stator 11 is rotated in the circumferential direction by a distance between the weld points. This is a circumferential movement step of moving the welding torch 13 to the position of the welding point 13 in the next row.
[0036]
In STEP67, after the welding torch 15 moves in the circumferential direction, the small powder immersion tank 31 moves to the position of the welding row, rises at that position, and immerses the welding row as a unit, and is thermosetting. This is a radial melt adhesion process in which a resin is melted and adhered.
[0037]
STEP 69 is a melt adhesion completion determination step for determining whether or not all melt adhesion has been completed. When it is determined that all the melt adhesion has not been completed, the process returns to STEP 63 to perform radial row welding.
[0038]
When STEP 71 determines in STEP 69 that all of the melt adhesion has been completed, the stator after the melt adhesion process is heated to satisfy the thermosetting condition, and the thermosetting resin that has been fused and adhered is thermoset. This is a thermosetting process for forming an insulating film.
[0039]
In this way, a predetermined number of welded points arranged in a row in the radial direction are welded to form a weld row, and the thermosetting resin is melted and adhered using the weld row as a unit. The temperature difference between them can be reduced, and the thickness of the insulating film can be made more uniform. Moreover, by using a small powder immersing tank that can be moved, there is no need for a heavy stator up-and-down mechanism for immersing in the powder immersing tank, and the equipment cost can be reduced.
[0040]
FIG. 6 is a diagram for explaining the third embodiment. In this case, after the welding torch 15 sequentially welds one welded point 13, the injection nozzle 33 sequentially injects thermosetting resin onto the welded portion. The injection nozzle 33 has a structure capable of injecting a predetermined amount of a thermosetting resin powder into a predetermined range.
[0041]
FIG. 7 is a diagram illustrating a flowchart of the third embodiment. STEP 81 is an initial position setting step for initially setting the position of the welding torch 15.
[0042]
STEP 83 is a welding process for welding one welded point 13. STEP 85 is a moving process for moving the welding torch 15 to the next welding point 13. These steps can be performed in the same manner as STEP 51, STEP 531, STEP 533, and STEP 537 of FIG. 2 in the case of the first embodiment.
[0043]
STEP 87 is an injection process in which after the welding torch 15 finishes one welding and moves to the next welding point, the injection nozzle 33 injects a thermosetting resin into the welded portion and melts and adheres the welded portion.
[0044]
STEP 89 is a complete melt adhesion completion determination step for determining whether or not the melt adhesion by welding and injection of the thermosetting resin is completed for all the weld points. When it is determined that all of them are not completed, the process returns to STEP 83 and welding is performed.
[0045]
When STEP 91 determines in STEP 89 that all the melt adhesion has been completed, the stator after the melt adhesion process is heated to satisfy the thermosetting condition, and the thermosetting resin that has been melt adhered is thermally cured. This is a thermosetting process for forming an insulating film.
[0046]
In this way, after welding one welded point, each time a thermosetting resin is sprayed, melt adhesion can be performed while there is sufficient residual heat, and the film thickness of the insulating film between the welded parts can be further increased. Can be uniform.
[0047]
As mentioned above, although the stator which uses a segment coil was picked up and demonstrated for convenience, this invention can be implemented also about the rotor where a segment coil is used.
[0048]
【The invention's effect】
The segment coil connection method according to the present invention eliminates the need for equipment for heating, and enables connection of segment coils with good work efficiency.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a change in a preheating temperature due to welding in a room temperature atmosphere at a welding portion, which is the basis of the knowledge of the present invention.
FIG. 2 shows a flowchart of the first embodiment of the present invention.
FIG. 3 is a diagram showing a configuration in the vicinity of a welded point in a welding process.
FIG. 4 is an explanatory diagram of a second embodiment of the present invention.
FIG. 5 is a diagram showing a flowchart of a second embodiment of the present invention.
FIG. 6 is a diagram for explaining a third embodiment of the present invention.
FIG. 7 is a flowchart of a third embodiment of the present invention.
FIG. 8 is a diagram in which a cross section of a stator of a motor using a segment coil is developed in the circumferential direction.
FIGS. 9A and 9B are diagrams illustrating an example of a conventional technique regarding a connection method between segment coil ends, where FIG. 9A illustrates a welding process, FIG. 9B illustrates a heating process, and FIG. 9C illustrates a melt adhesion process. It is.
[Explanation of symbols]
1 Stator, 3 Slot, 5 Stator Winding, 7A, 7B, 7C Segment Coil, 9A, 9B, 9C, 9D End, 11 Stator, 17 Heating Furnace, 19 Powder Dipping Tank, 21 Porous Partition Plate, 23 Immersion section, 25 air inlet, 27 grounding claw for welding, 29 high voltage source, 31 small powder immersion tank, 33 spray nozzle.

Claims (5)

ステータ又はロータの円周方向に複数列、径方向に所定数設けられたセグメントコイルの被溶接点を溶接し、その溶接部分に熱硬化性樹脂を溶融付着させて絶縁膜を形成する、セグメントコイルの接続方法であって、
溶接トーチが、前記ステータまたはロータに対し相対的に移動し、前記被溶接点を順次溶接する溶接工程と、
前記溶接部分の溶接による余熱温度が、前記熱硬化性樹脂の溶融点に応じた所定温度以上の溶融付着可能期間内に、前記熱硬化性樹脂を付着させる溶融付着工程と、
前記付着した熱硬化性樹脂を加熱処理し、絶縁膜を形成する熱硬化工程と、
を有することを特徴とするセグメントコイルの接続方法。
A segment coil in which a plurality of rows in the circumferential direction of a stator or rotor and a predetermined number of segment coils in a radial direction are welded, and an insulating film is formed by melting and adhering a thermosetting resin to the welded portion. Connection method,
A welding process in which a welding torch moves relative to the stator or the rotor and sequentially welds the welding points;
A melt adhesion step in which the thermosetting resin is adhered within a melt adhesion possible period of a predetermined temperature or higher according to the melting point of the thermosetting resin, the preheating temperature due to welding of the welded portion;
Heat-treating the attached thermosetting resin to form an insulating film; and
A method of connecting segment coils, comprising:
請求項1に記載のセグメントコイルの接続方法において、
前記所定温度が、100度C以上180度C以下であることを特徴とするセグメントコイルの接続方法。
In the connection method of the segment coil of Claim 1,
The method for connecting segment coils, wherein the predetermined temperature is 100 degrees C or more and 180 degrees C or less.
請求項1または請求項2に記載のセグメントコイルの接続方法において、
前記溶融付着期間が、前記溶接の開始から三分間以内であることを特徴とするセグメントコイルの接続方法。
In the connection method of the segment coil of Claim 1 or Claim 2,
The method for connecting segment coils, wherein the melt adhesion period is within 3 minutes from the start of welding.
ステータ又はロータの円周方向に複数列、径方向に所定数設けられたセグメントコイルの被溶接点を溶接し、その溶接部分に熱硬化性樹脂を溶融付着させて絶縁膜を形成する、セグメントコイルの接続方法であって、
溶接トーチが、前記ステータまたはロータの径方向に移動し、前記径方向に所定数設けられた前記被溶接点を順次一列分溶接する径方向列溶接工程と、
前記溶接部分の溶接による余熱温度が、前記熱硬化性樹脂の溶融点に応じた所定温度以上の溶融付着可能期間内に、前記径方向の溶接列部分に、前記熱硬化性樹脂を溶融付着させる径方向列溶融付着工程と、
前記付着した熱硬化性樹脂を加熱処理し、絶縁膜を形成する熱硬化工程と、
を有することを特徴とするセグメントコイルの接続方法。
A segment coil in which a plurality of rows in the circumferential direction of a stator or rotor and a predetermined number of segment coils in a radial direction are welded, and an insulating film is formed by melting and adhering a thermosetting resin to the welded portion. Connection method,
A radial row welding process in which a welding torch moves in the radial direction of the stator or the rotor and welds the welded points provided in a predetermined number in the radial direction sequentially for one row;
The thermosetting resin is melt-adhered to the radial weld row portion within a possible melt adhesion period in which a preheat temperature due to welding of the weld portion is equal to or higher than a predetermined temperature corresponding to the melting point of the thermosetting resin. A radial row melt adhesion process;
Heat-treating the attached thermosetting resin to form an insulating film; and
A method of connecting segment coils, comprising:
ステータ又はロータの円周方向に複数列、径方向に所定数設けられたセグメントコイルの被溶接点を溶接し、その溶接部分に熱硬化性樹脂を溶融付着させて絶縁膜を形成する、セグメントコイルの接続方法であって、
溶接トーチが、前記ステータまたはロータに対し相対的に移動し、前記被溶接点を順次溶接する溶接工程と、
前記溶接部分の溶接による余熱温度が、前記熱硬化性樹脂の溶融点に応じた所定温度以上の溶融付着可能期間内に、前記溶接部分に、前記熱硬化性樹脂を順次噴射する噴射溶融付着工程と、
前記付着した熱硬化性樹脂を加熱処理し、絶縁膜を形成する熱硬化工程と、
を有することを特徴とするセグメントコイルの接続方法。
A segment coil in which a plurality of rows in the circumferential direction of a stator or rotor and a predetermined number of segment coils in a radial direction are welded, and an insulating film is formed by melting and adhering a thermosetting resin to the welded portion. Connection method,
A welding process in which a welding torch moves relative to the stator or the rotor and sequentially welds the welding points;
Injecting and melt-adhering step of sequentially injecting the thermosetting resin to the welded portion within a possible melt adhesion period in which the preheat temperature due to welding of the welded portion is equal to or higher than a predetermined temperature corresponding to the melting point of the thermosetting resin When,
Heat-treating the attached thermosetting resin to form an insulating film; and
A method of connecting segment coils, comprising:
JP2001315101A 2001-10-12 2001-10-12 Method for connecting segment coils used in motors Expired - Fee Related JP3770136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001315101A JP3770136B2 (en) 2001-10-12 2001-10-12 Method for connecting segment coils used in motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315101A JP3770136B2 (en) 2001-10-12 2001-10-12 Method for connecting segment coils used in motors

Publications (2)

Publication Number Publication Date
JP2003125563A JP2003125563A (en) 2003-04-25
JP3770136B2 true JP3770136B2 (en) 2006-04-26

Family

ID=19133320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315101A Expired - Fee Related JP3770136B2 (en) 2001-10-12 2001-10-12 Method for connecting segment coils used in motors

Country Status (1)

Country Link
JP (1) JP3770136B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4946421B2 (en) * 2006-12-20 2012-06-06 株式会社デンソー Winding joining method for rotating electrical machines
JP2010239708A (en) * 2009-03-30 2010-10-21 Honda Motor Co Ltd Method of fixing coil
JP5505077B2 (en) * 2010-05-19 2014-05-28 トヨタ自動車株式会社 Stator manufacturing method
JP6118594B2 (en) * 2013-03-15 2017-04-19 日立オートモティブシステムズ株式会社 Coil, rotating electric machine including the same, and manufacturing method thereof
JP2017041916A (en) * 2014-01-07 2017-02-23 日立オートモティブシステムズ株式会社 Stator for rotary electric machine, rotary electric machine with the same, and manufacturing method thereof
JP6763812B2 (en) * 2017-03-27 2020-09-30 本田技研工業株式会社 Rotating machine stator

Also Published As

Publication number Publication date
JP2003125563A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
JP2004064989A (en) Stator for segment coil rotary electric machine and its manufacturing method
JP4593291B2 (en) Manufacturing method of stator of rotating electric machine
WO2020151459A1 (en) High-efficiency flat wire motor winding end welding apparatus and welding process
JP3770136B2 (en) Method for connecting segment coils used in motors
US5470615A (en) Bonding and coating methods and apparatus for th coils of dynamo-electric machine parts
CN104203448B (en) The manufacture method of composite component
US7398589B2 (en) Method for manufacturing a transformer winding
US11336161B2 (en) Rotating electric machine and method of manufacturing same
JP6493077B2 (en) Conductor end joining method and end joining structure
JP2019097234A (en) Manufacturing method of stator and stator
JP2009224599A (en) Method of manufacturing coil component, apparatus of manufacturing coil component, and coil component
JP2012161153A (en) Stator of rotary electric machine and method of manufacturing the same
KR102451355B1 (en) Method and electrical component for applying an insulating layer
US11784545B2 (en) Method of manufacturing stator for rotating electric machine
JPH05300687A (en) Motor and manufacture thereof
JPH06203942A (en) Manufacture of electric part
KR102265813B1 (en) Powder coating apparatus of coil and powder coating method of coil using the same
US20050184616A1 (en) Armature with unitary coil and commutator
US8978238B2 (en) Apparatus and method for efficient stator windings termination
JPH03226249A (en) Manufacture of induction instrument
JPH09285078A (en) Method of coating motor core with powder, and motor having motor core coated with powder by that method
JP2542304B2 (en) Air core coil manufacturing method
JP2003260407A (en) Protective coating method of coil end of motor coil
JP2021191099A (en) Stator manufacturing apparatus
JP2023143849A (en) Method for manufacturing coil for motor and material reservoir for the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees