JP3769681B2 - Manufacturing method of foam molding material - Google Patents

Manufacturing method of foam molding material Download PDF

Info

Publication number
JP3769681B2
JP3769681B2 JP26818599A JP26818599A JP3769681B2 JP 3769681 B2 JP3769681 B2 JP 3769681B2 JP 26818599 A JP26818599 A JP 26818599A JP 26818599 A JP26818599 A JP 26818599A JP 3769681 B2 JP3769681 B2 JP 3769681B2
Authority
JP
Japan
Prior art keywords
foaming
mold
foam
steam
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26818599A
Other languages
Japanese (ja)
Other versions
JP2000334763A (en
Inventor
孝明 伊藤
憲行 須田
勝 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26818599A priority Critical patent/JP3769681B2/en
Publication of JP2000334763A publication Critical patent/JP2000334763A/en
Application granted granted Critical
Publication of JP3769681B2 publication Critical patent/JP3769681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/04Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
    • B29C44/0446Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities by increasing the density locally by compressing part of the foam while still in the mould

Landscapes

  • Molding Of Porous Articles (AREA)
  • Buffer Packaging (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、緩衝材や断熱材に供される発泡成型材の製造に係り、詳しくは、異なる発泡倍率を有する複数の発泡材料を用いることなしに、発泡倍率を変化させた発泡成型材を製造する方法に関する。
【0002】
【従来の技術】
まず、冷蔵庫を例に挙げ、その梱包に使用される緩衝材について、包装形態を示した図13を基に説明する。図13において、1は冷蔵庫本体、2は冷蔵庫前面の冷凍室扉、3は冷蔵庫前面の冷蔵室扉、4は冷凍室扉を軸支する蝶板、5は移動用ホイール6及び調節脚7を備えた冷蔵庫の前脚、8は圧縮機(図示せず)を搭載し底部に移動用ホイール6を備えた圧縮機台板、9は段ボールの4辺を折り曲げてなる梱包パレット、10は梱包パレット9内の左右に配置され冷蔵庫の底部に位置する発泡スチロールで成型された底部緩衝材、11は冷蔵庫本体1の上部左右に取り付く発泡スチロールで成型された上部緩衝材、12は全体を覆う外装段ボールである。
【0003】
さらに、上部緩衝材11の外観を図14に示す。上部緩衝材11には、冷凍室扉2及び蝶板4の上部を収納するために凹部11aが形成され、その肉部11b(密度の濃い斑点部)は、上部緩衝材11の他の部分より低倍率発泡の材料が充填され、その肉厚が薄くてもその他の部分と同等かそれ以上の圧縮強度や破壊強度を得るように構成されている。
【0004】
図15には、梱包パレット9とその内側の左右に配置された底部緩衝材10の外観図を示す。底部緩衝材10には、冷蔵庫1の前脚5を逃がして収納する凹部10a、及び圧縮機台板8を逃がして収納する凹部10bが形成され、これらの肉部10c(密度の濃い斑点部)も、底部緩衝材10の他の部分より低倍率発泡の材料が充填され、上部緩衝材11と同様の効果を得るように構成されている。
【0005】
次に、上記のような緩衝材についての従来の製造方法を説明する。
図16は従来の発泡スチロール成型機の概略図である。図16において、40は発泡スチロール成型機、43aは成型機40の可動盤、43bは成型機40の固定盤、44は可動盤43aに取付く可動型44aと固定盤43bに取付く固定型44bとからなる成型金型、45aは高倍率発泡用に一次発泡された材料を蓄えるホッパー、45bは低倍率発泡用に一次発泡された材料を蓄えるホッパー、46はこれらのホッパー45a,45bと成型金型44の固定型44b とを連絡する材料の供給パイプである。
【0006】
この成型機40を利用した発泡スチロールの成型は以下のようにして行われる。すなわち、成型金型44内で発泡させる発泡材料は、金型内で均一に充填させるため一次発泡を行った材料が使用され、あらかじめ高倍率発泡用、低倍率発泡用に一次発泡を終えた材料が、それぞれホッパー45a,45bに蓄えられる。これらの発泡材料は供給パイプ46を経て固定型44bと可動型44aの閉じた金型44内に充填され、供給パイプ46の接続位置とその充填量により、高倍率発泡材料と低倍率発泡材料の充填位置及び範囲がそれぞれコントロールされる。
更に、成型金型44を蒸気で加熱するとともに、通風孔44iから金型44内に蒸気を供給して二次発泡を行い、個々の粒子を融着一体化し、冷却した後に成型金型44から発泡スチロールの成型品を取り出す。
【0007】
図17は、そのような緩衝材を製造するための成型金型44内での低倍率発泡材料と高倍率発泡材料との組合配置の一例を示す概略断面図である。なお、ここで、47aは固定型44bと可動型44aとが閉じた空間内に供給された高倍率発泡用の材料、47bは低倍率発泡用の材料を示している。
【0008】
先に見たように、梱包時においては、底部緩衝材10の前後部には冷蔵庫の前脚5及び圧縮機台板8を逃がすための凹部10a,10bが形成され、また、上部緩衝材11には冷凍室扉2及び蝶板4を逃がすための凹部11aが形成されるため、緩衝材はその部分で薄肉となって、かつ製品受け面積も減少している。しかしながら、それぞれの凹部周辺は低倍率発泡材料が充填発泡されているため、高密度で硬く荷扱いに耐える強度を有し、また、上部からの圧縮に対してもつぶれ量が小さく製品が傾くことなく安定して保管することが可能となっている。これに対して、そのような対応が不要な部分では、高倍率発泡材料が充填されて低密度となっており、これにより、充填発泡材料の量を削減している。
【0009】
【発明が解決しようとする課題】
このように従来の製造方法では、一次発泡した発泡倍率の異なる2種類の材料を成型金型に充填することで、異なった発泡倍率の同時成型を行っているが、一次発泡された低倍率発泡材料は高倍率発泡材料より比重が重くて成型金型の下側に落ちやすく、所定の位置への低倍率発泡材料の充填が難しい。また、その難しさ故に、所定範囲に低倍率発泡材料の充填を確保するには、所定量より多くの材料を供給しなければならないなどの問題もあった。
さらに、異なった2種類の材料を使用するため、材料の管理が大変となるだけでなく、材料を蓄えるホッパーや供給パイプなどの点で、一種類の材料を使用する一般の成型設備ではこれを成型できないという問題があり、設備的な面でも負担が掛かる。
【0010】
【課題を解決するための手段】
この発明は、これらの問題を解決するためになされたもので、異なる発泡倍率を有する複数の発泡材料を用いることなし、部分的に発泡倍率を変化させた緩衝材や断熱材に用いる発泡成型品の製造方法を提供するものである。
【0011】
この発明は、金型内に充填された発泡材料を加熱蒸気を利用して加熱し発泡させる際に、可動片を利用して前記発泡材料を部分的に圧縮してその発泡を部分的に制限し、前記発泡材料の圧縮部分の発泡倍率を該発泡材料の他の部分より低くする発泡成型材の製造方法において、前記可動片に設けた通風孔から加熱蒸気を金型内部に通して、前記発泡材料の前記圧縮部分における単位面積当たりの加熱蒸気の通過効率を前記発泡材料の他の部分におけるそれより高めるようにしたものである。
また、前記金型の外側に形成された金型内部に通じる第一蒸気室と、前記金型の内側面と前記可動片の裏側面との間に形成された金型内部に通じる第二蒸気室とを備え、これら2つの蒸気室を通る蒸気の制御をそれぞれ独立して行うようにしたものである。
また、前記第一蒸気室に冷却水を導入する冷却水ノズルと前記第二蒸気室に冷却水を導入する冷却水ノズルとをそれぞれ別に設け、それらの冷却水ノズルを独立に制御して前記金型への冷却水散布を行うようにしたものである。
また、前記圧縮は、前記金型内へ材料を供給したパイプ内に残った材料を吸い戻しする過程で行うようにしたものである。
さらに、前記可動片と金型との間の空間間隔を発泡成型材料の一次発泡完了後におけるその材料径の少なくとも1.5倍として該一次発泡済み成型材料を充填した後、前記圧縮を行うようにしたものである。
【0020】
【発明の実施の形態】
実施の形態1.
図1は、この発明の実施の形態で使用する発泡スチロール成型機の概略図である。図1において、30は発泡スチロールの成型機、13aは成型機30の可動盤、13bは成型機30の固定盤、14は発泡材料が充填される成型金型、15は高倍率発泡用に一次発泡された成型発泡材料を蓄えるホッパー、16はホッパー15と固定型14bの内側までを連絡する発泡材料の供給パイプである。
ここで、成型金型14は、可動盤13aに取付く可動型14aと、固定盤13bに取付く固定型14bとを備え、さらに、後から行う発泡材料の二次発泡を制限(又は抑制)しようとする範囲に対応する固定型14bの対応部分に開口14cを形成するとともに、その開口14cには、油圧などで駆動される可動片としてのピストン14dが挿入嵌合されている。
【0021】
次に、この発泡スチロール成型機30を利用して発泡スチロール成型品を得る手順を説明する。
【0022】
まず、あらかじめ一次発泡を終えた高倍率発泡材料17aをホッパー15に蓄えておく。また、成型金型14は、図2の(a)に示すように、ピストン14dの先端面が固定型14bの内側面より後退した位置に設定しておく。ピストン14dの位置設定は、これから行う二次発泡において、その二次発泡をどの程度制限するかによって適宜定められるものである。すなわち、所要の発泡倍率は、このピストン14dのストロークによりコントロールされる。
そして、成型が始まると、発泡材料17aは供給パイプ16を経て可動型14a、固定型14b、及びピストン14dで閉じられた成型金型14内の空間に注入される。この際、一次発泡された発泡材料は全て同じ種類なので、成型金型14内に容易に均一充填することができる。
【0023】
次に、図2の(b)に示すように、ピストン14dを進めてその先端面が成型品の最終形状を構成する位置まで移動させる。これによって、ピストン14dの先端部に対応する部分の発泡材料17aが、ピストン14dのストローク分、圧縮される。
ついで成型金型14を蒸気で加熱し二次発泡を行う。この際、発泡材料17aのピストン14dで圧縮された部分は、その発泡倍率が制限されて低倍率発泡の状態となる。そして、成型金型14を冷却後、成型金型を再び開いて、二次発泡の終わった発泡スチロールを取り出す。
【0024】
このようにして得られた発泡スチロールにおいて、二次発泡が制限され低発泡倍率の状態となった部分は、他の部分より厚さが薄いにもかかわらず、圧縮強度や破壊強度の点では、梱包に際して必要な強度を有することが可能になる。従って、先に説明した冷蔵庫などの梱包に使用する凹部を有した緩衝材を、この方法で製造することは極めて好都合である。
【0025】
実施の形態2.
図3は発泡スチロール成型機30に使用する成型金型14の変形例を示したものである。ここで、成型金型14は、可動盤13aに取付く可動型14aと、固定盤13bに取付く固定型14bとを備え、さらに、後から行う発泡材料の二次発泡を抑制しようとする範囲に対応して可動型14aの対応部分に開口14eを形成するとともに、その開口14e部には、油圧などで回転し、開口14eを開閉する扇状の可動駒14fが設けられている。すなわち、この可動駒14fの回転力を利用して、高倍率発泡材料の二次発泡を部分的に制限し、そこを低倍率発泡状態にするようにしたものである。
【0026】
実施の形態3.
ここでは、発泡成型材のうちの断熱材を例に取り上げる。
図4は冷蔵庫を構成する箱体への断熱材充填発泡時の縦断面図である。図4において、31は冷蔵庫の箱体であり、18は鋼板製の箱体31の外箱、19は合成樹脂を成型した箱体31の内箱、20は箱体31に取り付けられた冷蔵庫の貯蔵室間を熱区画するスチロホーム製の断熱仕切、21は外箱18の外面を押さえる外ジグ、22は内箱19の内面を押さえる内ジグ、23は外箱18と内箱19間に充填発泡されたポリウレタン等の断熱材である。ここで、断熱仕切20は、冷却器(図示せず)からの除霜水を受ける水受け部20aと、水受け部20aの背面にあって、内箱19に形成された開口部を利用して断熱仕切20を内箱19に取り付ける背面壁20bとを備えている。
【0027】
冷蔵庫の箱体31内に断熱材23を充填して発泡させる際には、断熱材23の発泡圧力が外箱18及び内箱19に加わるが、外ジグ21と内ジグ22がそれらの壁面に接している部分では、外ジグ21と内ジグ22の支持により、外箱18及び内箱19が変形を起こすことはない。
【0028】
一方、図4に示したように、断熱仕切20を内箱19に取り付けた背面壁20b部分は、内ジグ22が背面壁20bに接していないので、背面壁20bだけで断熱材の発泡圧力を支えることになる。しかしながら、この発明によって、その発泡圧力に充分耐えうる背面壁20bを有した断熱仕切20を作ることができる。以下に、その製造方法を説明する。
【0029】
図5は上記断熱仕切20製造時の成型金型部分の略断面図である。なお、断熱仕切20を作るための成型機本体の構成は、実施の形態1で示した、発泡スチロール成型機に準ずるものとする。図5において、成型金型14は、可動型14aと固定型14bとを有し、さらに、背面壁20bとなる部分に圧力を加えるために、成型金型14の開いた底部には、支点14gを中心に回転する可動駒14hを備えてなる。
【0030】
供給パイプ16から閉じた成型金型14内へ充填された一次発泡済みの高倍率発泡材料17aは、加熱され二次発泡を行うが、その際、可動駒14hにより圧縮された背面壁20bでは、その圧縮力に応じて二次発泡が制限され、他の部分に比較して低倍率の発泡が生じる。
このようにして、成型金型14から取り出された断熱仕切20は、その背面壁20bが低倍率発泡ゆえにその強度を増し、内ジグ22の支えがなくとも断熱材の発泡圧力によって変形破損を起こさせないようにすることが可能となる。
【0031】
上記の各実施の形態において、ホッパー15と固定型14bの内側までを連絡する発泡材料の供給パイプ16は1〜3本設けられているが、その数は成型金型14の形状等に応じて適宜定めることができる。
また、ピストン14dや可動駒14f,14hの圧縮動作は、二次発泡の工程と同時に開始してもよい。
さらに、ピストン14dや可動駒14f,14hは、上記の実施の形態に限定されることなく、本体である成型機のタイプに応じて、可動型14a側または固定型14b側の何れの側に設けてもよい。
【0032】
実施の形態4.
図6は図1に示すような発泡スチロール成型機30における、この発明の実施の形態4の金型及び圧縮可動部の構造を示す概略図である。
ここで成型金型14は、図2と同様、可動盤13aに取付く可動型14aと、固定盤13bに取付く固定型14bとを備え、更に後から行う発泡材料の二次発泡を制限(又は抑制)しようとする範囲に対応する固定型14bの対応部分に開口14cを形成するとともに、その開口14cには、油圧などで駆動されるピストン14dが挿入嵌合されている。また、可動型14aと固定型14bの発泡スチロール成型品の表面と接する内側面14a’,14b’、及びピストン14dには、例えば格子状に配置された複数の通風孔14iを設けて、加熱蒸気パイプ14mから供給される加熱蒸気を第一蒸気室14pを経て、成型金型14の内部に供給する構造としている。一方、加熱された成型金型14の冷却は、冷却水パイプ14nから供給される冷却水を金型14に噴射させることにより行う。
【0033】
なお、ピストン14d及びその周辺に設けられている通風孔14iの数は、その他の部分に設けられている通風孔14iの数より単位面積当たり多くして、圧縮部分での加熱蒸気の通過効率をより高める構造とするのがよい。具体的な例としては、図7の(a)に示すような配置構造をとるが、ピストン14dの面積が小さく、通風孔14iをピストン14dに設けることができない場合には、図7の(b)のように、ピストン14dの周辺に通風孔14iを配置する構造としてもよい。
【0034】
実施の形態5.
金型及び可動部の更に他の態様が図8に示される。ここでは、第一蒸気室14pに加えて、ピストン14dの裏側と固定型14bとの空間に第二蒸気室14qを設け、この第二蒸気室14qに加熱蒸気パイプ14jと冷却水パイプ14kを別途導入している。そして、圧縮率が高く通常より加熱及び冷却工程を効率よく行う必要が有る場合に、これらの加熱蒸気パイプ14jと冷却水パイプ14kを使用可能な構造としている。更に、これらを成型金型14用に第一蒸気室14pに本来備えられている加熱蒸気パイプ14mと冷却水パイプ14nとは独立して制御し、個々の成型条件に対し最適な作動条件に調整可能とする。
【0035】
次に、図8の構成を組込んだ成型機30を利用して発泡スチロール成型品を得る手順を概説する。
【0036】
まず、あらかじめ高倍率発泡用に一次発泡を終えた材料17aをホッパー15に蓄えておく。また成型金型14は、ピストン14dの先端面が固定型14bの内側面より後退した位置に設定しておく。
そして、成型が始まると、発泡材料17aは供給パイプ16を経て可動型14a、固定型14b、及びピストン14dで閉じられた成型金型14内の空間に注入される。この際、一次発泡された発泡材料は全て同じ種類なので、成型金型14内に容易に均一充填することができる。
【0037】
次に、ブローバック工程(原料供給パイプ内の原料吸い戻し工程)時、ピストン14dを前進させその先端面が成型品の最終形状を構成する位置に来るまで移動させる。これによって、ピストン14dに対応する部分の発泡材料17aが、ピストン14dのストローク分、圧縮される。
【0038】
さらに、成型金型14を蒸気で加熱するとともに、通風孔14iより成型金型14内に蒸気を供給して発泡材料17aを直接加熱することにより二次発泡を行う。この際、発泡材料17aがピストン14dで圧縮された部分は、その発泡倍率が制限されて低倍率発泡の状態となる。ここで、特に圧縮率を高く取る必要が有る場合や、肉厚が厚い場合などは、可動部に備えた加熱蒸気パイプ14jや冷却水パイプ14kを、本来備えられている加熱蒸気パイプ14mや冷却水パイプ14nと独立して制御することにより、成型条件に応じて加熱あるいは冷却工程を効率よく行うことが可能となる。
成型金型14の加熱、冷却の後、成型金型14を再び開いて、二次発泡の終わった発泡スチロールを取り出す。
以上の成型工程は、おおよそ図9に示すフローチャートで表わされる。
【0039】
実施の形態6.
ここでは、成型品における薄肉部の新たな成型方法を提案する。
従来は図10に示すように、成型金型44のみで発泡材料の一部を薄肉成型していたため、薄肉成型部の金型間隔W1を一次発泡が終了した発泡材料の粒径と同じ3mmに設定してしまうと、発泡材料が充分に充填されない。このため、この間隔Wは少なくとも粒径3mmの1.5倍〜2倍、すなわちおよそ4.5mm以上に設定する必要があり、従って、薄肉部の厚さを4.5mmより薄くすることには問題があった。
これに対して、この発明の実施の形態である図11に示すように、成型金型14とともに圧縮用ピストン14dを用い、成型金型14とピストン14dとの空間間隔W2を、予め発泡材料の粒径の1.5〜2倍以上に設定しておき、そこに発泡材料の充填した後、ピストン14dを間隔W2が3mmとなる位置まで圧縮移動させて二次発泡させれば、発泡材料の充填が確実に行え、しかも、発泡材料の粒径とほぼ同じおよそ3mmの肉厚までの安定成型が可能となる。
【0040】
図12は、この発明の実施の形態4又は5による方法で得られた発泡スチロールにおける発泡倍率値の実験に基づく分布図である。これによれば、圧縮範囲内の発泡倍率が圧縮範囲外の発泡倍率より全体として小さくなっており、また、20mm圧縮した場合の発泡倍率が、10mm圧縮した場合のそれよりも大体において小さくなることがわかる。
【0041】
【発明の効果】
以上説明したように、この発明によれば、一次発泡済みの一種類の発泡材料を利用するので、発泡材料を金型内に均一に充填でき、材料の混じり込みといった無駄な使用がなくなる。また、ピストンまたは可動片の回転力を利用して、発泡材料を部分的に圧縮しその二次発泡を制限し、所定の部分を低発泡倍率状態にすることにより、緩衝材や断熱材に使用する場合に必要な強度も確保できる。加えて、金型中で所定の部分を圧縮するための構造が必要になるものの、発泡倍率の異なる複数の発泡材料を使用しなくて済むため、その面からは成型機の構成が簡素化され、発泡材料の管理も容易になる。なお、ピストンによる圧縮は、狭い範囲を圧縮したりその圧縮力を大きくする際に適しており、一方、可動片の回転力の圧縮は、広い範囲を圧縮したり圧縮範囲の圧縮比率に傾斜を持たせる場合などに適している。
【0042】
また、加熱蒸気の成型金型内への導入を圧縮部分で多くするようにしたので、その部分での二次発泡を効率よく行うことが可能となる。
【0043】
また、成型金型全体に対応する蒸気室及び冷却水ノズルと、圧縮用可動片の可動部に対応する蒸気室及び冷却水ノズルとをそれぞれ備えて、それらを独立して制御するようにしたので、個々の成型条件に応じて最適な作動条件に調整することが可能である。
【0044】
また、発泡材料の圧縮を、金型内へ材料を供給したパイプ内に残った材料を吸い戻しする過程で行うことで、作業時間を節約することが可能となる。
【0045】
さらに、可動片と金型との間の空間間隔を発泡材料の一次発泡完了後におけるその材料径の少なくとも1.5倍として該一次発泡済み材料を充填した後、その圧縮を行うようにしたので、薄肉部を形成する際の発泡材料の充填が効率よく行えるとともに、充分な強度の薄肉部を得ることが可能となる。
【図面の簡単な説明】
【図1】 この発明の実施の形態で使用する発泡スチロール成型機の概略図。
【図2】 (a)はこの発明の実施の形態1による成型金型内への材料充填時の略断面図、(b)はこの発明の実施の形態1による成型金型に取付けられたピストン動作時の略断面図。
【図3】 この発明の実施の形態2による成型金型を示す概略図。
【図4】 冷蔵庫の箱体の断熱材充填発泡時の一例を示す縦断面図。
【図5】 この発明の実施の形態3による断熱仕切製造時の成型金型部分の略断面図。
【図6】 この発明の実施の形態4による成型金型を示す概略図。
【図7】 この発明の実施の形態4による成型金型及びピストンにおける通風孔の配置図。
【図8】 この発明の実施の形態5による成型金型を示す概略図。
【図9】 この発明の実施の形態4又は5による成型工程を示すフローチャート。
【図10】 従来の肉薄部成型方法を示す説明図。
【図11】 この発明の実施の形態6による肉薄部成型方法を示す説明図。
【図12】 この発明の実施の形態4又は5による成型品の発泡倍率分布図。
【図13】 冷蔵庫の梱包状態の例を示す縦断面図。
【図14】 図13の梱包に使用する上部緩衝材の外観図。
【図15】 図13の梱包に使用する梱包パレット及び底部緩衝材の外観図。
【図16】 従来の発泡スチロール成型機の概略図。
【図17】 従来の発泡スチロール成型機の成型金型の材料充填時の略断面図。
【符号の説明】
1 冷蔵庫本体、2 冷凍室扉、3 冷蔵室扉、4 蝶板、5 前脚、6 ホイール、7 調節脚、8 圧縮機台板、9 梱包パレット、10 底部緩衝材、10a,10b 底部緩衝材の凹部、10c 底部緩衝材の低倍率発泡材料を充填した部分、11 上部緩衝材、11a 上部緩衝材の凹部、11b 上部緩衝材の低倍率発泡材料を充填した部分、12 外装段ボール、13a 可動盤、
13b 固定盤、14 成型金型、14a 可動型、14b 固定型、14c 開口、14d ピストン、14e 開口、14f,14h 可動駒、14i 通風孔、14j 加熱蒸気パイプ、14k 冷却水パイプ、14m 加熱蒸気パイプ、14n 冷却水パイプ、14p 第一蒸気室、14q 第二蒸気室、15 ホッパー、16 供給パイプ、17a 高倍率発泡材料、20 断熱仕切、20a 水受け部、20b 背面壁、21 外ジグ、22 内ジグ、30 発泡スチロール成型機。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production of foamed molding materials used for cushioning materials and heat insulating materials, and more particularly, to produce foamed molding materials having different foaming ratios without using a plurality of foaming materials having different foaming ratios. On how to do.
[0002]
[Prior art]
First, taking a refrigerator as an example, the cushioning material used for the packaging will be described based on FIG. 13 showing the packaging form. In FIG. 13, 1 is a refrigerator main body, 2 is a freezer compartment door on the front of the refrigerator, 3 is a refrigerator compartment door on the front of the refrigerator, 4 is a butterfly plate that pivotally supports the freezer compartment door, and 5 is a moving wheel 6 and an adjustment leg 7. The front leg of the refrigerator provided, 8 is a compressor base plate equipped with a compressor (not shown) and provided with a moving wheel 6 at the bottom, 9 is a packaging pallet formed by bending four sides of the cardboard, 10 is a packaging pallet 9 A bottom cushioning material formed by foamed polystyrene located on the left and right sides of the refrigerator and molded at the bottom of the refrigerator, 11 is an upper cushioning material molded by foamed polystyrene attached to the upper left and right of the refrigerator body 1, and 12 is an exterior cardboard covering the whole.
[0003]
Furthermore, the external appearance of the upper buffer material 11 is shown in FIG. The upper cushioning material 11 is formed with a concave portion 11a for accommodating the upper part of the freezer compartment door 2 and the butterfly plate 4, and the meat portion 11b (dense spot portion) is more than the other parts of the upper cushioning material 11. The material is filled with a low-magnification foamed material, and is configured so as to obtain a compressive strength and fracture strength equal to or higher than those of other portions even when the wall thickness is thin.
[0004]
In FIG. 15, the external view of the bottom cushioning material 10 arrange | positioned at the packing pallet 9 and the right and left of the inside is shown. The bottom cushioning material 10 is formed with a recess 10a for escaping and storing the front leg 5 of the refrigerator 1, and a recess 10b for escaping and storing the compressor base plate 8, and these meat portions 10c (dense spot portions) are also formed. The bottom cushioning material 10 is filled with a material having a lower magnification than the other parts of the bottom cushioning material 10 and is configured to obtain the same effect as the upper cushioning material 11.
[0005]
Next, a conventional manufacturing method for the cushioning material as described above will be described.
FIG. 16 is a schematic view of a conventional polystyrene foam molding machine. 16, 40 is a polystyrene foam molding machine, 43a is a movable platen of the molding machine 40, 43b is a fixed platen of the molding machine 40, 44 is a movable die 44a attached to the movable platen 43a, and a fixed die 44b attached to the fixed platen 43b. 45a is a hopper for storing a primary foamed material for high-magnification foaming, 45b is a hopper for storing a primary foamed material for low-magnification foaming, and 46 is a molding die for these hoppers 45a and 45b. This is a material supply pipe that communicates with 44 fixed molds 44b.
[0006]
Molding of polystyrene foam using this molding machine 40 is performed as follows. That is, as the foaming material to be foamed in the molding die 44, a material which has been subjected to primary foaming to be uniformly filled in the die is used, and a material which has been subjected to primary foaming for high-magnification foaming and low-magnification foaming in advance. Are stored in the hoppers 45a and 45b, respectively. These foam materials are filled into the closed mold 44 of the fixed mold 44b and the movable mold 44a through the supply pipe 46, and the high-magnification foam material and the low-magnification foam material are changed depending on the connection position of the supply pipe 46 and the filling amount. The filling position and range are each controlled.
Further, the mold 44 is heated with steam, and steam is supplied into the mold 44 from the vent holes 44i to perform secondary foaming, and the individual particles are fused and integrated. Take out the molded product of polystyrene foam.
[0007]
FIG. 17 is a schematic cross-sectional view showing an example of a combination arrangement of a low-magnification foam material and a high-magnification foam material in a molding die 44 for manufacturing such a cushioning material. Here, 47a indicates a high-magnification foaming material supplied in a space where the fixed mold 44b and the movable mold 44a are closed, and 47b indicates a low-magnification foaming material.
[0008]
As seen earlier, at the time of packing, the front and rear portions of the bottom cushioning material 10 are formed with recesses 10a and 10b for escaping the front leg 5 and the compressor base plate 8 of the refrigerator. Since the recess 11a for allowing the freezer compartment door 2 and the butterfly plate 4 to escape is formed, the buffer material is thin at that portion, and the product receiving area is also reduced. However, since the low-magnification foam material is filled and foamed around each recess, it has a high density and strength to withstand the handling of the load, and the amount of crushing is small even when compressed from the top, and the product tilts. And stable storage. On the other hand, in the portion where such a countermeasure is unnecessary, the high-magnification foam material is filled and has a low density, thereby reducing the amount of the foam material filled.
[0009]
[Problems to be solved by the invention]
As described above, in the conventional manufacturing method, two types of materials having different primary foaming ratios are filled in a molding die to perform simultaneous molding with different foaming ratios. Since the material has a higher specific gravity than the high-magnification foam material, it tends to fall to the lower side of the molding die, and it is difficult to fill the predetermined position with the low-magnification foam material. In addition, due to the difficulty, in order to ensure the filling of the low-magnification foamed material within a predetermined range, there is a problem that more material than a predetermined amount must be supplied.
In addition, because two different types of materials are used, not only is the management of the material difficult, but this is also the case with general molding equipment that uses one type of material in terms of hoppers and supply pipes that store the materials. There is a problem that it cannot be molded, and there is a burden in terms of equipment.
[0010]
[Means for Solving the Problems]
The present invention has been made to solve these problems, and does not use a plurality of foam materials having different foaming ratios, and is a molded foam product used for a cushioning material or a heat insulating material in which the foaming ratio is partially changed. The manufacturing method of this is provided.
[0011]
In the present invention, when foaming material filled in a mold is heated and foamed by using heating steam, the foaming material is partially compressed by using a movable piece to partially restrict the foaming. In the method for producing a foamed molding material in which the foaming ratio of the compressed portion of the foamed material is lower than that of the other part of the foamed material, heating steam is passed through the mold from the ventilation hole provided in the movable piece, The passing efficiency of the heating steam per unit area in the compressed part of the foam material is made higher than that in the other part of the foam material.
Also, a first steam chamber that communicates with the inside of the mold formed outside the mold, and a second steam that communicates with the interior of the mold formed between the inner side surface of the mold and the back side surface of the movable piece. And the steam passing through these two steam chambers are controlled independently.
In addition, a cooling water nozzle for introducing cooling water into the first steam chamber and a cooling water nozzle for introducing cooling water into the second steam chamber are separately provided, and the cooling water nozzles are independently controlled to control the metal The cooling water is sprayed on the mold.
The compression is performed in the process of sucking back the material remaining in the pipe that has supplied the material into the mold.
Further, the space between the movable piece and the mold is set to at least 1.5 times the material diameter after completion of the primary foaming of the foam molding material, and after the primary foamed molding material is filled, the compression is performed. It is a thing.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a schematic view of a polystyrene foam molding machine used in the embodiment of the present invention. In FIG. 1, 30 is a foamed polystyrene molding machine, 13a is a movable board of the molding machine 30, 13b is a stationary board of the molding machine 30, 14 is a molding die filled with foaming material, and 15 is primary foaming for high-magnification foaming. A hopper 16 for storing the molded foam material is a foam material supply pipe that communicates between the hopper 15 and the inside of the fixed mold 14b.
Here, the molding die 14 includes a movable die 14a attached to the movable platen 13a and a fixed die 14b attached to the fixed platen 13b, and further restricts (or suppresses) secondary foaming of the foam material to be performed later. An opening 14c is formed in a corresponding portion of the fixed mold 14b corresponding to the range to be intended, and a piston 14d as a movable piece driven by hydraulic pressure or the like is inserted and fitted into the opening 14c.
[0021]
Next, a procedure for obtaining a foamed polystyrene molded product using this foamed polystyrene molding machine 30 will be described.
[0022]
First, the high-magnification foam material 17 a that has been subjected to primary foaming in advance is stored in the hopper 15. Further, as shown in FIG. 2A, the molding die 14 is set at a position where the tip surface of the piston 14d is retracted from the inner surface of the fixed die 14b. The position of the piston 14d is appropriately determined depending on how much the secondary foaming is limited in the secondary foaming to be performed. That is, the required expansion ratio is controlled by the stroke of the piston 14d.
When molding is started, the foam material 17a is injected through the supply pipe 16 into the space in the molding die 14 closed by the movable die 14a, the fixed die 14b, and the piston 14d. At this time, since the first foamed materials are all the same type, the molding die 14 can be easily and uniformly filled.
[0023]
Next, as shown in FIG. 2 (b), the piston 14d is advanced and moved to a position where the tip surface constitutes the final shape of the molded product. As a result, the foam material 17a corresponding to the tip of the piston 14d is compressed by the stroke of the piston 14d.
Next, the molding die 14 is heated with steam to perform secondary foaming. At this time, the portion of the foamed material 17a compressed by the piston 14d is in a state of low-magnification foaming with its foaming rate limited. And after cooling the molding die 14, the molding die is opened again, and the expanded polystyrene after secondary foaming is taken out.
[0024]
In the polystyrene foam obtained in this way, the secondary foaming is limited and the part that is in the state of low foaming ratio is packed in terms of compressive strength and breaking strength even though the thickness is thinner than other parts. It is possible to have the necessary strength. Therefore, it is very convenient to manufacture the cushioning material having the concave portion used for packing such as the refrigerator described above by this method.
[0025]
Embodiment 2. FIG.
FIG. 3 shows a modification of the molding die 14 used in the polystyrene foam molding machine 30. Here, the molding die 14 includes a movable die 14a attached to the movable platen 13a and a fixed die 14b attached to the fixed platen 13b, and further, a range in which secondary foaming of the foaming material to be performed later is to be suppressed. The opening 14e is formed in the corresponding portion of the movable die 14a, and a fan-shaped movable piece 14f that opens and closes the opening 14e is provided in the opening 14e portion by rotation by hydraulic pressure or the like. That is, the rotational force of the movable piece 14f is used to partially limit the secondary foaming of the high-magnification foamed material so that it is in a low-magnification foamed state.
[0026]
Embodiment 3 FIG.
Here, the heat insulating material in the foam molding material is taken as an example.
FIG. 4 is a longitudinal sectional view at the time of filling and foaming a heat insulating material to a box constituting the refrigerator. In FIG. 4, 31 is a refrigerator box, 18 is an outer box of a steel plate box 31, 19 is an inner box of a box 31 made of synthetic resin, and 20 is a refrigerator attached to the box 31. A heat insulating partition made of stylohome that partitions the storage chambers, 21 is an outer jig that holds the outer surface of the outer box 18, 22 is an inner jig that holds the inner surface of the inner box 19, and 23 is a foam filled between the outer box 18 and the inner box 19. Heat insulating material such as polyurethane. Here, the heat insulating partition 20 uses a water receiving part 20a that receives defrosted water from a cooler (not shown) and an opening formed in the inner box 19 on the back surface of the water receiving part 20a. And a back wall 20b for attaching the heat insulating partition 20 to the inner box 19.
[0027]
When the heat insulating material 23 is filled in the box 31 of the refrigerator and foamed, the foaming pressure of the heat insulating material 23 is applied to the outer box 18 and the inner box 19, but the outer jig 21 and the inner jig 22 are applied to their wall surfaces. In the contact portion, the outer box 18 and the inner box 19 are not deformed by the support of the outer jig 21 and the inner jig 22.
[0028]
On the other hand, as shown in FIG. 4, the back wall 20b portion where the heat insulating partition 20 is attached to the inner box 19 has the inner jig 22 not in contact with the back wall 20b, so that the foam pressure of the heat insulating material can be increased only by the back wall 20b. I will support it. However, according to the present invention, the heat insulating partition 20 having the back wall 20b that can sufficiently withstand the foaming pressure can be made. The manufacturing method will be described below.
[0029]
FIG. 5 is a schematic cross-sectional view of a molding die portion when the heat insulating partition 20 is manufactured. In addition, the structure of the molding machine main body for making the heat insulation partition 20 shall apply to the polystyrene foam molding machine shown in Embodiment 1. FIG. In FIG. 5, the molding die 14 has a movable die 14a and a fixed die 14b. Further, a fulcrum 14g is provided at the open bottom of the molding die 14 in order to apply pressure to the portion that becomes the back wall 20b. The movable piece 14h that rotates about the center is provided.
[0030]
The primary foamed high-magnification foam material 17a filled from the supply pipe 16 into the closed molding die 14 is heated to perform secondary foaming. At this time, in the back wall 20b compressed by the movable piece 14h, Secondary foaming is limited according to the compression force, and low-magnification foaming occurs as compared with other parts.
In this way, the heat insulating partition 20 taken out from the molding die 14 increases its strength because the back wall 20b is foamed at a low magnification, and causes deformation and breakage due to the foaming pressure of the heat insulating material without the support of the inner jig 22. It is possible not to let it.
[0031]
In each of the above embodiments, one to three foam material supply pipes 16 are provided to communicate between the hopper 15 and the inside of the fixed mold 14b. The number of pipes 16 depends on the shape of the molding die 14 and the like. It can be determined as appropriate.
Further, the compression operation of the piston 14d and the movable pieces 14f and 14h may be started simultaneously with the secondary foaming process.
Further, the piston 14d and the movable pieces 14f and 14h are not limited to the above-described embodiment, and are provided on either the movable mold 14a side or the fixed mold 14b side according to the type of the molding machine as the main body. May be.
[0032]
Embodiment 4 FIG.
FIG. 6 is a schematic view showing the structure of the mold and compression movable part of the fourth embodiment of the present invention in the expanded polystyrene molding machine 30 as shown in FIG.
Here, the molding die 14 includes a movable die 14a attached to the movable platen 13a and a fixed die 14b attached to the fixed platen 13b as in FIG. 2, and further restricts secondary foaming of the foam material to be performed later ( Alternatively, an opening 14c is formed in a corresponding portion of the fixed mold 14b corresponding to a range to be suppressed, and a piston 14d driven by hydraulic pressure or the like is inserted and fitted into the opening 14c. Further, the inner side surfaces 14a ′ and 14b ′ in contact with the surfaces of the polystyrene foam molded products of the movable mold 14a and the fixed mold 14b, and the piston 14d are provided with a plurality of ventilation holes 14i arranged in a lattice shape, for example, and a heating steam pipe The heating steam supplied from 14m is supplied to the inside of the molding die 14 through the first steam chamber 14p. On the other hand, the heated molding die 14 is cooled by injecting cooling water supplied from the cooling water pipes 14n onto the die 14.
[0033]
In addition, the number of ventilation holes 14i provided in the piston 14d and the periphery thereof is made larger per unit area than the number of ventilation holes 14i provided in other parts, so that the passing efficiency of the heating steam in the compression part is increased. A higher structure is preferable. As a specific example, the arrangement structure shown in FIG. 7A is adopted. However, when the area of the piston 14d is small and the ventilation hole 14i cannot be provided in the piston 14d, the arrangement shown in FIG. It is good also as a structure which arrange | positions the ventilation hole 14i around the piston 14d like FIG.
[0034]
Embodiment 5. FIG.
Still another embodiment of the mold and the movable part is shown in FIG. Here, in addition to the first steam chamber 14p, a second steam chamber 14q is provided in the space between the back side of the piston 14d and the fixed mold 14b, and a heating steam pipe 14j and a cooling water pipe 14k are separately provided in the second steam chamber 14q. It has been introduced. The heating steam pipe 14j and the cooling water pipe 14k can be used when the compression ratio is high and the heating and cooling processes need to be performed more efficiently than usual. Further, these are controlled independently of the heating steam pipe 14m and the cooling water pipe 14n originally provided in the first steam chamber 14p for the molding die 14, and adjusted to the optimum operating conditions for each molding condition. Make it possible.
[0035]
Next, a procedure for obtaining a foamed polystyrene molded product using the molding machine 30 incorporating the configuration of FIG. 8 will be outlined.
[0036]
First, the material 17a that has finished primary foaming for high-magnification foaming is stored in the hopper 15 in advance. The molding die 14 is set at a position where the tip surface of the piston 14d is retracted from the inner surface of the fixed die 14b.
When molding is started, the foam material 17a is injected through the supply pipe 16 into the space in the molding die 14 closed by the movable die 14a, the fixed die 14b, and the piston 14d. At this time, since the first foamed materials are all the same type, the molding die 14 can be easily and uniformly filled.
[0037]
Next, at the time of the blow back process (raw material sucking back process in the raw material supply pipe), the piston 14d is advanced and moved until the tip end surface thereof reaches a position constituting the final shape of the molded product. Thereby, the foam material 17a corresponding to the piston 14d is compressed by the stroke of the piston 14d.
[0038]
Further, the molding die 14 is heated with steam, and the secondary foaming is performed by supplying the steam into the molding die 14 through the ventilation holes 14i and directly heating the foaming material 17a. At this time, the portion where the foamed material 17a is compressed by the piston 14d is in a state of low-magnification foaming with its foaming rate limited. Here, especially when the compression ratio needs to be high or when the wall thickness is thick, the heating steam pipe 14j and the cooling water pipe 14k provided in the movable part are replaced with the heating steam pipe 14m and the cooling water pipe originally provided. By controlling independently from the water pipe 14n, it becomes possible to perform a heating or cooling process efficiently according to molding conditions.
After heating and cooling the molding die 14, the molding die 14 is opened again, and the expanded polystyrene after secondary foaming is taken out.
The above molding process is roughly represented by the flowchart shown in FIG.
[0039]
Embodiment 6 FIG.
Here, a new molding method for a thin portion in a molded product is proposed.
Conventionally, as shown in FIG. 10, since a part of the foam material is thin-molded only by the molding die 44, the mold interval W1 of the thin-wall molding part is set to 3 mm which is the same as the particle diameter of the foam material after the primary foaming is finished. If set, the foam material is not sufficiently filled. For this reason, this interval W must be set to at least 1.5 to 2 times the particle size of 3 mm, that is, about 4.5 mm or more. There was a problem.
On the other hand, as shown in FIG. 11 which is an embodiment of the present invention, the compression piston 14d is used together with the molding die 14, and the space interval W2 between the molding die 14 and the piston 14d is set in advance of the foam material. If the particle size is set to 1.5 to 2 times or more and filled with a foam material, the piston 14d is compressed and moved to a position where the interval W2 is 3 mm to perform secondary foaming. Filling can be performed reliably, and stable molding up to a wall thickness of about 3 mm, which is almost the same as the particle size of the foamed material, is possible.
[0040]
FIG. 12 is a distribution diagram based on experiments of foaming magnification values in the polystyrene foam obtained by the method according to Embodiment 4 or 5 of the present invention. According to this, the expansion ratio within the compression range is generally smaller than the expansion ratio outside the compression range, and the expansion ratio when compressed by 20 mm is generally smaller than that when compressed by 10 mm. I understand.
[0041]
【The invention's effect】
As described above, according to the present invention, since one kind of foamed material that has undergone primary foaming is used, the foamed material can be uniformly filled in the mold, and useless use such as mixing of materials is eliminated. In addition, by using the rotational force of the piston or movable piece, the foamed material is partially compressed to limit its secondary foaming, and the prescribed part is used for cushioning materials and heat insulating materials by making it low foaming magnification. The strength required for doing so can also be secured. In addition, although a structure for compressing a predetermined portion in the mold is required, it is not necessary to use a plurality of foam materials having different foaming ratios, and the configuration of the molding machine is simplified from this aspect. In addition, management of the foam material is also facilitated. The compression by the piston is suitable for compressing a narrow range or increasing its compressive force, while the compression of the rotational force of the movable piece compresses a wide range or inclines the compression ratio of the compression range. Suitable for holding.
[0042]
Further, since the introduction of the heating steam into the molding die is increased at the compression portion, it is possible to efficiently perform the secondary foaming at that portion.
[0043]
Moreover, since the steam chamber and the cooling water nozzle corresponding to the entire molding die and the steam chamber and the cooling water nozzle corresponding to the movable part of the compression movable piece are respectively provided, they are controlled independently. It is possible to adjust to the optimum operating conditions according to the individual molding conditions.
[0044]
Moreover, it is possible to save working time by compressing the foam material in the process of sucking back the material remaining in the pipe that has supplied the material into the mold.
[0045]
Furthermore, since the space between the movable piece and the mold is at least 1.5 times the material diameter after completion of the primary foaming of the foam material, the primary foamed material is filled and then compressed. In addition, it is possible to efficiently fill the foamed material when forming the thin portion, and to obtain a thin portion having sufficient strength.
[Brief description of the drawings]
FIG. 1 is a schematic view of a polystyrene foam molding machine used in an embodiment of the present invention.
2A is a schematic cross-sectional view when a material is filled into a molding die according to Embodiment 1 of the present invention, and FIG. 2B is a piston attached to the molding die according to Embodiment 1 of the present invention. FIG.
FIG. 3 is a schematic view showing a molding die according to a second embodiment of the present invention.
FIG. 4 is a longitudinal sectional view showing an example of a refrigerator box body filled with heat insulating material.
FIG. 5 is a schematic cross-sectional view of a molding die portion at the time of manufacturing a heat insulating partition according to Embodiment 3 of the present invention.
FIG. 6 is a schematic view showing a molding die according to Embodiment 4 of the present invention.
FIG. 7 is a layout view of ventilation holes in a molding die and a piston according to Embodiment 4 of the present invention.
FIG. 8 is a schematic view showing a molding die according to a fifth embodiment of the present invention.
FIG. 9 is a flowchart showing a molding process according to Embodiment 4 or 5 of the present invention.
FIG. 10 is an explanatory view showing a conventional thin part molding method.
FIG. 11 is an explanatory view showing a thin part molding method according to Embodiment 6 of the present invention.
FIG. 12 is an expansion ratio distribution diagram of a molded product according to Embodiment 4 or 5 of the present invention.
FIG. 13 is a longitudinal sectional view showing an example of a refrigerator packaging state.
14 is an external view of an upper cushioning material used in the packaging of FIG.
15 is an external view of a packing pallet and a bottom cushioning material used in the packing of FIG.
FIG. 16 is a schematic view of a conventional polystyrene foam molding machine.
FIG. 17 is a schematic cross-sectional view when filling a material of a molding die of a conventional polystyrene foam molding machine.
[Explanation of symbols]
1 refrigerator body, 2 freezer compartment door, 3 refrigerator compartment door, 4 butterfly plate, 5 front leg, 6 wheel, 7 adjustment leg, 8 compressor base plate, 9 packing pallet, 10 bottom cushioning material, 10a, 10b bottom cushioning material Concave part, part of 10c bottom cushioning material filled with low-magnification foam material, 11 upper cushioning material, 11a concave part of top cushioning material, 11b part of top cushioning material filled with low-magnification foaming material, 12 exterior cardboard, 13a movable board,
13b Fixed platen, 14 Mold, 14a Movable type, 14b Fixed type, 14c Opening, 14d Piston, 14e Opening, 14f, 14h Movable piece, 14i Ventilation hole, 14j Heating steam pipe, 14k Cooling water pipe, 14m Heating steam pipe , 14n cooling water pipe, 14p first steam chamber, 14q second steam chamber, 15 hopper, 16 supply pipe, 17a high-magnification foam material, 20 heat insulation partition, 20a water receiving part, 20b back wall, 21 outer jig, 22 inside Jig, 30 Styrofoam molding machine.

Claims (5)

金型内に充填された発泡材料を加熱蒸気を利用して加熱し発泡させる際に、可動片を利用して前記発泡材料を部分的に圧縮してその発泡を部分的に制限し、前記発泡材料の圧縮部分の発泡倍率を該発泡材料の他の部分より低くする発泡成型材の製造方法において、
前記可動片に設けた通風孔から加熱蒸気を金型内部に通して、前記発泡材料の前記圧縮部分における単位面積当たりの加熱蒸気の通過効率を前記発泡材料の他の部分におけるそれより高める、ことを特徴とする発泡成型材の製造方法。
When the foaming material filled in the mold is heated and foamed using heating steam, the foaming material is partially compressed using a movable piece to partially restrict the foaming, and the foaming is performed. In the method for producing a foam molding material in which the expansion ratio of the compressed portion of the material is lower than the other portions of the foam material,
Heating steam is passed through the mold from the ventilation hole provided in the movable piece, and the passage efficiency of the heating steam per unit area in the compressed portion of the foam material is higher than that in the other portion of the foam material. A method for producing a foam molding material.
前記金型の外側に形成された金型内部に通じる第一蒸気室と、前記金型の前記可動片の動作部と前記可動片の裏側面との間に形成された金型内部に通じる第二蒸気室とを備え、これら2つの蒸気室を通る蒸気の制御をそれぞれ独立して行う、ことを特徴とする請求項1記載の発泡成型材の製造方法。A first steam chamber that communicates with the interior of the mold formed outside the mold, and a first steam chamber that communicates with the interior of the mold formed between the operating portion of the movable piece of the mold and the back side surface of the movable piece. The method for producing a foam molding material according to claim 1, further comprising: two steam chambers, wherein steam passing through the two steam chambers is controlled independently. 前記第一蒸気室に冷却水を導入する冷却水ノズルと前記第二蒸気室に冷却水を導入する冷却水ノズルとをそれぞれ別に設け、それらの冷却水ノズルを独立に制御して前記金型への冷却水散布を行う、ことを特徴とする請求項2記載の発泡成型材の製造方法。  A cooling water nozzle for introducing cooling water into the first steam chamber and a cooling water nozzle for introducing cooling water into the second steam chamber are provided separately, and these cooling water nozzles are independently controlled to the mold. The method for producing a foamed molding material according to claim 2, wherein the cooling water is sprayed. 前記圧縮は、前記金型内へ材料を供給したパイプ内に残った材料を吸い戻しする過程で行う、ことを特徴とする請求項1〜3のいずれかに記載の発泡成型材の製造方法。  The said compression is performed in the process of sucking back the material remaining in the pipe which supplied the material in the said metal mold | die, The manufacturing method of the foaming molding material in any one of Claims 1-3 characterized by the above-mentioned. 前記可動片と金型との間の空間間隔を発泡成型材料の一次発泡完了後におけるその材料径の少なくとも1.5倍として該一次発泡済み成型材料を充填した後、前記圧縮を行う、ことを特徴とする請求項1〜4のいずれかに記載の発泡成型材の製造方法。  The space between the movable piece and the mold is set to at least 1.5 times the material diameter after completion of primary foaming of the foam molding material, and after the primary foamed molding material is filled, the compression is performed. The manufacturing method of the foaming molding material in any one of Claims 1-4 characterized by the above-mentioned.
JP26818599A 1999-03-24 1999-09-22 Manufacturing method of foam molding material Expired - Fee Related JP3769681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26818599A JP3769681B2 (en) 1999-03-24 1999-09-22 Manufacturing method of foam molding material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7881299 1999-03-24
JP11-78812 1999-03-24
JP26818599A JP3769681B2 (en) 1999-03-24 1999-09-22 Manufacturing method of foam molding material

Publications (2)

Publication Number Publication Date
JP2000334763A JP2000334763A (en) 2000-12-05
JP3769681B2 true JP3769681B2 (en) 2006-04-26

Family

ID=26419868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26818599A Expired - Fee Related JP3769681B2 (en) 1999-03-24 1999-09-22 Manufacturing method of foam molding material

Country Status (1)

Country Link
JP (1) JP3769681B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470217B2 (en) 2006-03-13 2013-06-25 Daisen Industry Co., Ltd. Foamed molding and its manufacturing method
JP2008036822A (en) * 2006-08-01 2008-02-21 Kaneka Corp Mold for in-mold foam molding of synthetic resin formed particles and molding method
KR20110040082A (en) * 2009-10-13 2011-04-20 삼성전자주식회사 Expanded polymer product and expanded polymer manufacturing mold for the same
CA2804637C (en) * 2010-07-13 2016-06-21 Johnson Controls Technology Company System and method of forming variable density seating materials
JP6249410B2 (en) * 2014-05-15 2017-12-20 三菱電機株式会社 Impeller and method of manufacturing the blade
DE202017107149U1 (en) 2016-12-01 2018-03-05 Kurtz Gmbh Crack gap forming tool for producing a particle foam part and apparatus for producing a particle foam part
TWI697395B (en) 2017-05-23 2020-07-01 歐特捷實業股份有限公司 Molding processing system of foamed polymer
CN108943558A (en) * 2017-05-24 2018-12-07 欧特捷实业股份有限公司 The mould process method of foaming macromolecular object
CN109278235A (en) * 2017-07-20 2019-01-29 欧特捷实业股份有限公司 The compression-moulding methods of macromolecule foaming article
US11780129B2 (en) 2020-03-20 2023-10-10 King Steel Machinery Co., Ltd. Molding method for operating molding device
CN112045917B (en) * 2020-08-25 2022-02-15 哈尔滨工程大学 Polyimide heat insulation foam processing technology and product
CN115570737B (en) * 2022-09-27 2023-06-09 青岛合润机械工程技术有限公司 Electromagnetic heating device of door body foaming mold temperature machine

Also Published As

Publication number Publication date
JP2000334763A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
JP3769681B2 (en) Manufacturing method of foam molding material
US20050285294A1 (en) Resin molded articles and method of manufacturing the same
US20110086216A1 (en) Foamed resin product and foamed resin molding machine to manufacture the same
US8920917B2 (en) Polypropylene resin composition, expansion-molded article using the resin composition, and process for production of the expansion-molded article
US6800227B1 (en) Material bead charging method, synthetic resin mold foam forming method using this method, and mold foam formed product obtained by this method
US3378885A (en) Apparatus for forming thin wall cellular plastic containers
US4435523A (en) Process for manufacturing articles of foamed thermoplastic material and article produced thereby
JPS62151326A (en) In-mold molding method for polypropylene series resin foamed particle
KR900001905B1 (en) Method and apparatus for forming cups of expanded resin
EP0203654B1 (en) Method for manufacturing elements of expanded synthetic material having layers of particularly high strength and apparatus for implementing said method, and products obtained thereby
US3178491A (en) Method for forming thin wall cellular plastic containers
JPS6127175B2 (en)
JP2000280332A (en) Method for foaming blow molding
JPH05124126A (en) Molded synthetic-resin form, molding method thereof and in-mold foam molding die
JPS60190335A (en) Manufacture of expanded resin molding
JP2008179064A (en) Molding machine for porous molding and method for manufacturing porous molding
JPH0632344Y2 (en) Foam molding machine equipped with raw material filler
CN111531771B (en) Rotational molding integrated forming process for plastic shell and metal liner
JP4120068B2 (en) In-mold foam molding apparatus and method for synthetic resin and in-mold foam molded article
JP2001212840A (en) In-mold foamed molded article and method for molding the same
JP2000176956A (en) Filling method of raw material bead
JP2003276027A (en) Mold for molding foamable resin and foamed resin molded article
JP2008036822A (en) Mold for in-mold foam molding of synthetic resin formed particles and molding method
JPH11309734A (en) Method for foam molding
JPS6164435A (en) Method and device for molding expansible resin molded product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees