JP3769610B2 - Electric resistance in magnetic field, Hall effect measuring device using MPMS magnetization measuring device - Google Patents

Electric resistance in magnetic field, Hall effect measuring device using MPMS magnetization measuring device Download PDF

Info

Publication number
JP3769610B2
JP3769610B2 JP2001353149A JP2001353149A JP3769610B2 JP 3769610 B2 JP3769610 B2 JP 3769610B2 JP 2001353149 A JP2001353149 A JP 2001353149A JP 2001353149 A JP2001353149 A JP 2001353149A JP 3769610 B2 JP3769610 B2 JP 3769610B2
Authority
JP
Japan
Prior art keywords
measuring
magnetic field
electric resistance
magnetization
hall effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001353149A
Other languages
Japanese (ja)
Other versions
JP2003156550A (en
Inventor
直樹 白川
伸一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001353149A priority Critical patent/JP3769610B2/en
Priority to US10/298,651 priority patent/US6768300B2/en
Publication of JP2003156550A publication Critical patent/JP2003156550A/en
Application granted granted Critical
Publication of JP3769610B2 publication Critical patent/JP3769610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種材料の磁場中における電気抵抗、ホール効果を測定し、或いはその両方を測定するための磁場中電気抵抗、ホール効果測定装置に関し、特に従来から広く用いられているMPMSの磁化測定装置を用いることにより、特別の液体ヘリウム実験装置を用いる必要がなく、簡易な手段により各種材料の磁場中における電気抵抗及びホール効果を測定することができるようにしたMPMS磁化測定装置を用いた磁場中電気抵抗、ホール効果測定装置に関する。
【0002】
【従来の技術】
従来、室温以下2K程度までの低温における磁場中電気抵抗及びホール効果の測定は、大型電磁石のギャップ内に細い液体ヘリウムデュワーを挿入するか、超伝導磁石が組み込まれた大型デュワーを用いて行われてきた。
【0003】
【発明が解決しようとする課題】
上記のような従来の装置において、電磁石を利用したシステムは非常に重く大型とならざるをえず、発熱が大きいため、エネルギー利用効率の面で好ましくない。また細いデュワーは液体ヘリウムのもちが悪く、長時間にわたる実験は不可能であり、また、操作に熟練を要する。
【0004】
超伝導磁石を用いたシステムにおいては、上記電磁石に関係する問題はほとんどないが、熱容量の大きな超伝導磁石を4.2Kまで冷却するためには、大量の液体ヘリウムを必要とする。そのため、実験を行うたびに、室温の超伝導磁石を4.2Kに冷やすのは、液体ヘリウムおよび時間の無駄である。
【0005】
一方、非常に多くの固体物性の研究室では、米国Quantum Design社のMPMS(Magnetic Property Measurement System)という磁化測定装置(以下、「MPMS磁化測定装置」と略称する。)を所有しており、この装置には基本的に常時液体ヘリウムが満たされている。したがってこのMPMS磁化測定装置を磁場中電気抵抗およびホール効果測定に用いることができれば、いつでも手軽に測定が行え研究効率が高まるだけでなく、液体ヘリウムの無駄も発生しない。
【0006】
したがって本発明は上記着想に基づいて、市販され広く使用されており、常時液体ヘリウムが満たされている磁化測定装置を利用して、手軽に磁場中電気抵抗及びホール効果を測定することができる電気抵抗及びホール効果測定装置を提供することを主たる目的とする。
【0007】
【課題を解決するための手段】
本願の請求項1に係る発明は、前記課題を解決するため、液体ヘリウムによる冷却手段、超伝導磁石、磁場形成手段、温度調整手段、及び磁場調整手段を備えたSQUID素子を検出器とする磁化測定装置を用い、試料を固定し前記SQUID素子を検出器とする磁化測定装置に挿入可能なロッドと、前記試料の電気抵抗又はホール電圧を測定する測定手段とを備え、前記測定手段には、ロッドの複数の試料、温度センサ、測定用ホール素子を任意に切り替えて測定可能なスイッチ手段を備えたことを特徴とするSQUID素子を検出器とする磁化測定装置を用いた磁場中電気抵抗、ホール効果測定装置。
【0009】
また、請求項に係る発明は、前記測定手段には、電気抵抗測定用プログラム、又はホール効果測定用プログラムを備え、前記温度調整手段及び磁場調整手段の作動と関連させて前記プログラムを作動し、電気抵抗又はホール効果を自動的に測定することを特徴とする請求項1記載のSQUID素子を検出器とする磁化測定装置を用いた磁場中電気抵抗、ホール効果測定装置としたものである。
【0010】
また、請求項に係る発明は、前記測定手段には、前記温度調整手段の調整により温度変化に対応した電気抵抗、及び前記磁場調整手段の調整により磁場変化に対応した電気抵抗を測定する手段を備えることを特徴とする請求項1記載のSQUID素子を検出器とする磁化測定装置を用いた磁場中電気抵抗、ホール効果測定装置としたものである。
【0011】
また、請求項に係る発明は、前記測定手段には、デジタル電圧計及び定電流電源を備えたことを特徴とする請求項1記載のSQUID素子を検出器とする磁化測定装置を用いた磁場中電気抵抗、ホール効果測定装置としたものである。
【0012】
また、請求項に係る発明は、前記測定手段には、交流抵抗ブリッジを備えたことを特徴とする請求項1記載のSQUID素子を検出器とする磁化測定装置を用いた磁場中電気抵抗、ホール効果測定装置としたものである。
【0013】
また、請求項に係る発明は、前記SQUID素子を検出器とする磁化測定装置には、超伝導磁石励磁用電源の出力端子と超伝導磁石との間に直列にシャント抵抗を接続し、該シャント抵抗接続部の電位差から磁場を読みとる手段を備えたことを特徴とする請求項1記載のSQUID素子を検出器とする磁化測定装置を用いた磁場中電気抵抗、ホール効果測定装置としたものである。
【0014】
【発明の実施の形態】
本発明は上記従来技術の問題点に鑑み、また市販され広く使用されており、常時液体ヘリウムが満たされている磁化測定装置としてMPMS磁化測定装置を用い、磁場中電気抵抗又はホール効果或いはその両方を測定する装置を開発した。この装置においては、MPMS磁化測定装置側には一切改造を必要とせず、MPMS磁化測定装置において用いる磁化測定用のロツドの代わりに、電気抵抗およびホール電圧測定用のロツドを挿入し、一部の部材を付加し、制御用プログラムを用いるのみで実施することができる。
【0015】
本発明の実施例をより具体的に説明すると、図1に示す磁場中電気抵抗及びホール効果測定装置においては、従来から上記のようにMPMS磁化測定装置と称して広く用いられている磁化測定装置1が用いられ、この装置においては、内部の液体ヘリューム容器2に開口3から試料を装着したロッドを出し入れすることができるようになっている。
【0016】
この磁化測定装置1は、通常は前記開口3から挿入するロッドに固定した磁性試料によって発生する微小磁場を、超伝導体のジョセフソン効果を応用したSQUID素子で検出することができるようになっており、磁性物質の磁化率、磁化曲線、及び超伝導体試料のマイスナー効果の測定等を行うことができるようになっている。
【0017】
磁化測定装置1は、主として容器2内に挿入した試料の微小磁場の測定値を入力して処理する為の、パソコンを用いた磁化測定装置用制御装置4を備えている。この磁化測定装置用制御装置4においては更に、上記測定における所定条件の設定のために、少なくとも磁化測定装置1に設けた磁気計測部8、温度計測部10等から計測データを取り込み、磁気調整部9で所定の磁場の状態を維持し、温度調整部11で所定の温度状態を維持することができるようになっている。なお、前記磁気計測部8においては、超伝導磁石に流す電流に所定の係数を掛けることにより磁場を計算することができる。
【0018】
このような従来から用いられている磁化測定装置1を用い、本発明においてはこの磁化測定装置1の開口から挿入するロッドとして磁場中電気抵抗・ホール電圧測定用のロッド5を用い、このロッド5に試料を装着して容器2内に挿入する。ロッド5は扁平な試料に対して磁場を垂直に印可できるような試料台を備えている。ロッド5のコネクター6と後述する作用を行うスイッチシステム12とを専用のケーブル13で接続する。なお、図中には4線測定の1チャンネル分のみが示されているが、実際にはより多くのチャンネルを搭載したものが用いられる。
【0019】
このスイッチシステム12にはデジタル電圧計14と低電流電源15が接続され、電気抵抗・ホール電圧測定制御装置16によって制御可能となっている。電気抵抗・ホール電圧測定制御装置16はスイッチシステム12によってロッド5に装着した複数の試料を選択することができ、またロッド5の各所に設けた複数の温度センサを切り替えて計測データを取り込むことが可能となっており、更にロッド5に固定した磁場測定用ホール素子の選択を行うことができるようになっている。このような切り替えや選択は、電気抵抗・ホール電圧測定制御装置16に記録されたプログラムソフトによって自動的に測定することが可能である。
【0020】
上記のような装置を用い、本発明においては磁場を固定して電気抵抗の温度変化を測定すること、温度を一定に保ちながら電気抵抗の磁場による変化を測定すること、ホール効果を測定すること、そのほか各種の測定を行うことができる。以下これらについて図2〜図4の作動フローに基づいて説明する。
【0021】
上記装置を用いて磁場を固定して、電気抵抗の温度変化を測定するには、例えば図2に示す作動フローに沿って測定を行うことができる。即ち、磁場を所定値に固定した状態で電気抵抗の温度による変化を測定する処理に際して、最初、通常は磁化測定の制御に用いているMPMS磁化測定装置側のコンピュータで磁場を必要な値にセットし、更に望みの温度変化をプログラムする(ステップS1)。
【0022】
次いで本装置側のコンピュータとしての、図1に示す電気抵抗・ホール電圧測定制御装置16で電気抵抗測定用プログラムを起動し、測定条件等を入力して測定を開始する(ステップS2)。その後MPMS磁化測定装置側のコンピュータとしての図1に示す磁化測定装置用制御装置4の温度プログラムをスタートさせる(ステップS3)。次いで本装置側のコンピュータで温度を測定しながら各温度での電気抵抗を測定する(ステップS4)。このような電気抵抗の測定を継続することにより、温度変化に対応した電気抵抗特性を測定することができる(ステップS5)。このようにして本装置では温度を独自にモニターしており、試料空間の温度変化を検知して自動的にデータを取得していくことができる。
【0023】
次に、温度を所定値に保ちながら電気抵抗の磁場による変化の測定を行う処理に際しては、例えば図3に示すように、最初MPMS磁化測定装置側のコンピュータで温度をセットし、望みの磁場変化をプログラムする(ステップS11)。次いで本装置側のコンピュータで電気抵抗測定用プログラムを起動し、温度を入力して測定を開始する(ステップS12)。その後MPMS磁化測定装置側のコンピュータの磁場プログラムをスタートする(ステップS13)。次いで本装置側のコンピュータで各磁場での電気抵抗を測定し(ステップS14)、磁場変化に対応した電気抵抗特性を測定する(ステップS15)。このようにして本装置では、磁場を独自にモニターしており、試料空間の磁場変化を検知して自動的にデータを出力することができる。
【0024】
次に、ホール効果の判定処理に際しては、例えば図4に示すように、最初MPMS磁化測定装置側のコンピュータ上で温度を特定値に一定にした上で、磁場を変化させるプログラムを組む(ステップS21)。このときの磁場の変化のさせ方は、例えば測定に用いる最高磁場をHとするとき、−H、−0.9H、−0.8Hのように−Hから始めて0.1H刻みで増やしていき0Tを通過して+Hまで増加させるようにする。
【0025】
次いで、所望の温度範囲での各温度の磁場変化プログラムの作成を終了したか否かの判別を行い(ステップS22)、そのプログラムの作成が終了していないと判別されたときには、更に他の温度での磁場変化プログラムを組み(ステップS30)、再び元のステップS22に戻り、上記作動を繰り返す。
【0026】
上記ステップS22において、所望の温度範囲での各温度の磁場変化プログラムの作成を終了したと判別したときには、本装置側のコンピュータ上でホール効果測定用プログラムを起動し、測定条件を入力して測定を開始する(ステップS23)。その後MPMS磁化測定装置側のコンピュータ上でプログラムをスタートする(ステップS24)。次いで、本装置のコンピュータ側で試料のホール電圧端子からの信号を測定し、その値を磁場の関数として直線でフィットする(ステップS25)。
【0027】
次いで、測定値は直線でフィットできたか否かを判別し(ステップS26)、直線でフィットできたと判別されたときにはステップS31に進み、その直線の傾きからホール係数を求める。前記ステップS26で測定値が直線でフィットできないと判別されたときには、磁場が+Hと−Hの時のホール電圧の差をとって2で割る操作を行う(ステップS27)。
【0028】
次いでこのような操作を行った値が直線でフィットできたか否かを判別し(ステップS28)、これが直線でフィットできたときにはステップS31に進み、前記と同様にその直線の傾きからホール係数を求める。また、その判別で直線でフィットできないと判別されたときには、試料が異常ホール効果を示していると判定する(ステップS29)。このようにしてホール係数の温度変化を測定することができる。
【0029】
以上、直流法を用いた標準的な測定システムについて述べたが、この変形として、デジタル電圧計14と定電流電源15の組み合わせの代わりに交流抵抗ブリッジを用いたシステムでもよい。その際には後者の方が一般的によりよいS/N比を得ることができる。ただし高コストとなるが、従来の測定装置の前記欠点の多くを解消することができる。
【0030】
また、標準的なシステムよりもさらにコストダウンを測るために、試料ホルダー上のホール素子を省略することもできる。この場合には、MPMS磁化測定装置側の超伝導磁石励磁用電源の出力端子と超伝導磁石の間に、直列にシャント抵抗を入れ、そこに生ずる電圧から磁場を読みとる。この場合は、本装置側の測定プログラムに対し、ユーザーが磁場の初期値を入力する必要がある。さらにMPMS磁化測定装置側にシャント抵抗を接続すると作業を行わなければならず、MPMS磁化測定装置側に一切の改造を必要としない前記のものよりは手数を要することとなる。
【発明の効果】
本発明は上記のように構成したので、市販され広く使用されており、常時液体ヘリウムが満たされているMPMS磁化測定装置を利用して、手軽に、且つ安価に磁場中電気抵抗及びホール効果を測定することができる。
【図面の簡単な説明】
【図1】本発明の一実施例の全体のシステム構成を示すシステム概要図である。
【図2】本発明の装置を用いて磁場固定下における、電気抵抗の温度による変化の測定処理を行う際の作動フロー図である。
【図3】本発明の装置を用いて温度一定下における、電気抵抗の温度による変化の測定処理を行う際の作動フロー図である。
【図4】本発明の装置を用いてホール効果の判定処理を行う際の作動フロー図である。
【符号の説明】
1 MPMS磁化測定装置
2 容器
3 開口
4 磁化測定装置用制御装置
5 ロッド
6 コネクター
8 磁気計測部
9 磁気調整部
10 温度計測部
11 温度調整部
12 スイッチシステム
13 測定用ケーブル
14 デジタル電圧計
15 定電流電源
16 電気抵抗・ホール電圧測定制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for measuring electric resistance and Hall effect in a magnetic field for measuring the electric resistance and Hall effect of various materials in a magnetic field, or both, and in particular, measurement of magnetization of MPMS that has been widely used conventionally. By using the apparatus, it is not necessary to use a special liquid helium experimental apparatus, and the magnetic field using the MPMS magnetization measuring apparatus that can measure the electric resistance and the Hall effect in the magnetic field of various materials by simple means. The present invention relates to a medium electrical resistance and Hall effect measuring device.
[0002]
[Prior art]
Conventionally, measurement of electric resistance and Hall effect in a magnetic field at a low temperature of about 2K or less at room temperature is performed by inserting a thin liquid helium dewar into the gap of a large electromagnet or using a large dewar incorporating a superconducting magnet. I came.
[0003]
[Problems to be solved by the invention]
In the conventional apparatus as described above, a system using an electromagnet must be very heavy and large, and since heat generation is large, it is not preferable in terms of energy utilization efficiency. In addition, thin dewars are poor in liquid helium, cannot be used for long periods of time, and require skill in operation.
[0004]
In a system using a superconducting magnet, there are almost no problems related to the electromagnet. However, in order to cool a superconducting magnet having a large heat capacity to 4.2 K, a large amount of liquid helium is required. Therefore, it is a waste of liquid helium and time to cool the room temperature superconducting magnet to 4.2 K each time an experiment is performed.
[0005]
On the other hand, a large number of laboratories of solid physical properties have a magnetization measuring device called MPMS (Magnetic Property Measurement System) (hereinafter abbreviated as “MPMS magnetization measuring device”) manufactured by Quantum Design, USA. The device is basically always filled with liquid helium. Therefore, if this MPMS magnetization measuring apparatus can be used for measurement of electric resistance and Hall effect in a magnetic field, measurement can be easily performed at any time and research efficiency is increased, and liquid helium is not wasted.
[0006]
Therefore, the present invention is commercially available and widely used on the basis of the above idea, and can easily measure the electric resistance and Hall effect in a magnetic field by using a magnetization measuring device always filled with liquid helium. The main object is to provide a resistance and Hall effect measuring device.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 of the present application uses a liquid-helium cooling means, a superconducting magnet, a magnetic field forming means, a temperature adjusting means, and a SQUID element having a magnetic field adjusting means as a detector. A measuring device is used, and includes a rod that can be inserted into a magnetization measuring device that fixes the sample and uses the SQUID element as a detector, and a measuring unit that measures the electrical resistance or Hall voltage of the sample . Electrical resistance in a magnetic field using a magnetization measuring device using a SQUID element as a detector, comprising a switching means capable of arbitrarily switching a plurality of rod samples, temperature sensors, and measuring Hall elements , and Hall Effect measuring device.
[0009]
According to a second aspect of the present invention, the measuring means includes an electrical resistance measurement program or a Hall effect measurement program, and operates the program in association with the operation of the temperature adjusting means and the magnetic field adjusting means. The electrical resistance or the Hall effect is automatically measured , and the electrical resistance in the magnetic field and Hall effect measuring apparatus using the magnetization measuring apparatus using the SQUID element as a detector according to claim 1 is provided.
[0010]
According to a third aspect of the present invention, the measuring means includes means for measuring an electric resistance corresponding to a temperature change by adjusting the temperature adjusting means and an electric resistance corresponding to a magnetic field change by adjusting the magnetic field adjusting means. A magnetic field electric resistance and Hall effect measuring device using a magnetization measuring device using the SQUID element according to claim 1 as a detector .
[0011]
The invention according to claim 4 is characterized in that the measuring means includes a digital voltmeter and a constant current power source , and a magnetic field using a magnetization measuring device using a SQUID element as a detector according to claim 1. This is a medium electrical resistance and Hall effect measuring device.
[0012]
According to a fifth aspect of the present invention, the measuring means includes an AC resistance bridge. The electric resistance in a magnetic field using the magnetization measuring apparatus using the SQUID element as a detector according to the first aspect, This is a Hall effect measuring device.
[0013]
In the invention according to claim 6 , in the magnetization measuring apparatus using the SQUID element as a detector , a shunt resistor is connected in series between the output terminal of the superconducting magnet excitation power source and the superconducting magnet, 2. A device for measuring electric resistance and Hall effect in a magnetic field using a magnetization measuring device using a SQUID element as a detector according to claim 1, further comprising means for reading a magnetic field from a potential difference of a shunt resistor connecting portion. is there.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In view of the above-mentioned problems of the prior art, the present invention is commercially available and widely used, and an MPMS magnetization measuring apparatus is used as a magnetization measuring apparatus that is always filled with liquid helium, and the electric resistance in the magnetic field and / or the Hall effect are both. Developed a device to measure. In this device, no modification is required on the side of the MPMS magnetization measuring device, and a rod for measuring electric resistance and Hall voltage is inserted in place of the rod for measuring magnetization used in the MPMS magnetization measuring device, It can be implemented simply by adding members and using a control program.
[0015]
The embodiment of the present invention will be described more specifically. In the magnetic field resistance and Hall effect measuring apparatus shown in FIG. 1, a magnetization measuring apparatus that has been widely used as an MPMS magnetization measuring apparatus as described above. In this apparatus, a rod mounted with a sample can be taken in and out of the liquid helium container 2 inside through the opening 3.
[0016]
The magnetization measuring apparatus 1 can detect a micro magnetic field generated by a magnetic sample fixed to a rod inserted from the opening 3 with a SQUID element that applies the Josephson effect of a superconductor. Thus, it is possible to measure the magnetic susceptibility, the magnetization curve, and the Meissner effect of a superconductor sample.
[0017]
The magnetization measuring device 1 includes a magnetization measuring device control device 4 using a personal computer for mainly inputting and processing a measurement value of a micro magnetic field of a sample inserted in the container 2. Further, in the magnetization measuring device control device 4, in order to set a predetermined condition in the measurement, measurement data is taken in at least from the magnetic measuring unit 8, the temperature measuring unit 10, etc. provided in the magnetization measuring device 1, and the magnetic adjusting unit. 9, a predetermined magnetic field state is maintained, and the temperature adjusting unit 11 can maintain a predetermined temperature state. In the magnetic measurement unit 8, the magnetic field can be calculated by multiplying the current flowing through the superconducting magnet by a predetermined coefficient.
[0018]
Such a conventionally used magnetization measuring device 1 is used, and in the present invention, a rod 5 for measuring electric resistance and Hall voltage in a magnetic field is used as a rod inserted from the opening of the magnetization measuring device 1, and this rod 5 A sample is attached to and inserted into the container 2. The rod 5 has a sample stage that can apply a magnetic field vertically to a flat sample. A connector 6 of the rod 5 is connected to a switch system 12 that performs an operation described later by a dedicated cable 13. In the figure, only one channel of 4-wire measurement is shown, but in actuality, one having more channels is used.
[0019]
A digital voltmeter 14 and a low current power source 15 are connected to the switch system 12 and can be controlled by an electric resistance / hall voltage measurement control device 16. The electrical resistance / hall voltage measurement control device 16 can select a plurality of samples mounted on the rod 5 by the switch system 12, and can switch between a plurality of temperature sensors provided at various locations on the rod 5 to capture measurement data. Further, the magnetic field measuring Hall element fixed to the rod 5 can be selected. Such switching and selection can be automatically measured by program software recorded in the electrical resistance / hall voltage measurement control device 16.
[0020]
Using the apparatus as described above, in the present invention, the temperature change of the electric resistance is measured while fixing the magnetic field, the change of the electric resistance due to the magnetic field is measured while keeping the temperature constant, and the Hall effect is measured. Various other measurements can be performed. Hereinafter, these will be described based on the operation flow of FIGS.
[0021]
In order to measure the temperature change of the electric resistance while fixing the magnetic field using the above apparatus, for example, the measurement can be performed along the operation flow shown in FIG. In other words, when measuring the change in electrical resistance with temperature while the magnetic field is fixed at a predetermined value, the magnetic field is first set to the required value by the computer on the MPMS magnetization measuring device side that is usually used for controlling the magnetization measurement. Further, a desired temperature change is programmed (step S1).
[0022]
Next, the electrical resistance / Hall voltage measurement control device 16 shown in FIG. 1 as a computer on the apparatus side starts an electrical resistance measurement program, inputs measurement conditions and the like, and starts measurement (step S2). Thereafter, the temperature program of the magnetization measuring device control device 4 shown in FIG. 1 as a computer on the MPMS magnetization measuring device side is started (step S3). Next, the electrical resistance at each temperature is measured while measuring the temperature with the computer on the apparatus side (step S4). By continuing such measurement of electrical resistance, it is possible to measure electrical resistance characteristics corresponding to temperature changes (step S5). In this way, this apparatus monitors the temperature independently, and can automatically acquire data by detecting a temperature change in the sample space.
[0023]
Next, in the process of measuring the change due to the magnetic field of the electrical resistance while keeping the temperature at a predetermined value, for example, as shown in FIG. 3, the temperature is first set by a computer on the MPMS magnetization measuring apparatus side, and the desired magnetic field change is performed. Is programmed (step S11). Next, the electrical resistance measurement program is started by the computer on the apparatus side, and the temperature is input to start measurement (step S12). Thereafter, the magnetic field program of the computer on the MPMS magnetization measuring apparatus side is started (step S13). Next, the electrical resistance in each magnetic field is measured by the computer on the apparatus side (step S14), and the electrical resistance characteristic corresponding to the magnetic field change is measured (step S15). In this way, the present apparatus independently monitors the magnetic field, and can automatically output data by detecting a magnetic field change in the sample space.
[0024]
Next, in the Hall effect determination process, for example, as shown in FIG. 4, a program for changing the magnetic field is first set after the temperature is kept constant at a specific value on the computer on the MPMS magnetization measuring apparatus side (step S21). ). Is manner of change of the magnetic field at this time is, for example, when the maximum magnetic field and H 0 is used in the measurement, -H 0, -0.9H 0, starting from -H 0 as -0.8H 0 0.1H through the 0T continue to increase at 0 increments until + H 0 so as to increase.
[0025]
Next, it is determined whether or not the creation of the magnetic field change program for each temperature in the desired temperature range has been completed (step S22). If it is determined that the creation of the program has not been completed, another temperature is further determined. The magnetic field change program is assembled (step S30), the process returns to the original step S22 again, and the above operation is repeated.
[0026]
When it is determined in step S22 that the creation of the magnetic field change program for each temperature in the desired temperature range has been completed, the Hall effect measurement program is started on the computer on the apparatus side, and the measurement conditions are input to perform measurement. Is started (step S23). Thereafter, the program is started on the computer on the MPMS magnetization measuring apparatus side (step S24). Next, the signal from the Hall voltage terminal of the sample is measured on the computer side of the apparatus, and the value is fitted with a straight line as a function of the magnetic field (step S25).
[0027]
Next, it is determined whether or not the measured value can be fitted with a straight line (step S26). When it is determined that the measured value can be fitted with a straight line, the process proceeds to step S31, and the Hall coefficient is obtained from the slope of the straight line. When it is determined in step S26 that the measured value cannot be fitted with a straight line, an operation of taking the difference of the Hall voltage when the magnetic field is + H and -H and dividing by 2 is performed (step S27).
[0028]
Next, it is determined whether or not the value obtained by performing such an operation can be fitted with a straight line (step S28). When this can be fitted with a straight line, the process proceeds to step S31, and the Hall coefficient is obtained from the inclination of the straight line as described above. . If it is determined that the straight line cannot be fitted, it is determined that the sample exhibits an abnormal Hall effect (step S29). In this way, the temperature change of the Hall coefficient can be measured.
[0029]
The standard measurement system using the direct current method has been described above. However, as a modification, a system using an AC resistance bridge instead of the combination of the digital voltmeter 14 and the constant current power supply 15 may be used. In that case, the latter can generally obtain a better S / N ratio. However, although the cost is high, many of the above-mentioned drawbacks of the conventional measuring apparatus can be solved.
[0030]
Also, the Hall element on the sample holder can be omitted in order to further reduce the cost compared to the standard system. In this case, a shunt resistor is inserted in series between the output terminal of the superconducting magnet excitation power source on the MPMS magnetization measuring device side and the superconducting magnet, and the magnetic field is read from the voltage generated there. In this case, the user needs to input the initial value of the magnetic field to the measurement program on the apparatus side. Further, if a shunt resistor is connected to the MPMS magnetization measuring device side, the work must be performed, which requires more work than the above-described one that does not require any modification on the MPMS magnetization measuring device side.
【The invention's effect】
Since the present invention is configured as described above, it is commercially available and widely used, and by using an MPMS magnetization measuring apparatus that is always filled with liquid helium, the electric resistance and Hall effect in a magnetic field can be easily and inexpensively obtained. Can be measured.
[Brief description of the drawings]
FIG. 1 is a system outline diagram showing the overall system configuration of an embodiment of the present invention.
FIG. 2 is an operation flow chart when performing a measurement process of a change in electric resistance with temperature under a fixed magnetic field using the apparatus of the present invention.
FIG. 3 is an operation flow diagram when performing a measurement process of a change in electrical resistance with temperature under a constant temperature using the apparatus of the present invention.
FIG. 4 is an operation flow diagram when performing Hall effect determination processing using the apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 MPMS magnetization measuring device 2 Container 3 Opening 4 Magnetization measuring device control device 5 Rod 6 Connector 8 Magnetic measurement unit 9 Magnetic adjustment unit 10 Temperature measurement unit 11 Temperature adjustment unit 12 Switch system 13 Measurement cable 14 Digital voltmeter 15 Constant current Power supply 16 Electric resistance / Hall voltage measurement control device

Claims (6)

液体ヘリウムによる冷却手段、超伝導磁石、磁場形成手段、温度調整手段、及び磁場調整手段を備えたSQUID素子を検出器とする磁化測定装置を用い、
試料を固定し前記SQUID素子を検出器とする磁化測定装置に挿入可能なロッドと、
前記試料の電気抵抗又はホール電圧を測定する測定手段とを備え、
前記測定手段には、ロッドの複数の試料、温度センサ、測定用ホール素子を任意に切り替えて測定可能なスイッチ手段を備えたことを特徴とするSQUID素子を検出器とする磁化測定装置を用いた磁場中電気抵抗、ホール効果測定装置。
Using a magnetization measuring device using a SQUID element as a detector, equipped with a cooling means using liquid helium, a superconducting magnet, a magnetic field forming means, a temperature adjusting means, and a magnetic field adjusting means
A rod that can be inserted into a magnetization measuring apparatus that fixes a sample and uses the SQUID element as a detector ;
Measuring means for measuring the electrical resistance or Hall voltage of the sample,
As the measuring means, a magnetization measuring apparatus using a SQUID element as a detector, comprising switch means capable of measuring by arbitrarily switching a plurality of rod samples, temperature sensors, and measuring Hall elements, was used. Electric resistance in a magnetic field, Hall effect measuring device.
前記測定手段には、電気抵抗測定用プログラム、又はホール効果測定用プログラムを備え、前記温度調整手段及び磁場調整手段の作動と関連させて前記プログラムを作動し、電気抵抗又はホール効果を自動的に測定することを特徴とする請求項1記載のSQUID素子を検出器とする磁化測定装置を用いた磁場中電気抵抗、ホール効果測定装置。The measuring means includes a program for measuring electric resistance or a program for measuring Hall effect, and operates the program in association with the operation of the temperature adjusting means and the magnetic field adjusting means to automatically set the electric resistance or Hall effect. An apparatus for measuring electric resistance and Hall effect in a magnetic field using a magnetization measuring apparatus using the SQUID element according to claim 1 as a detector . 前記測定手段には、前記温度調整手段の調整により温度変化に対応した電気抵抗、及び前記磁場調整手段の調整により磁場変化に対応した電気抵抗を測定する手段を備えることを特徴とする請求項1記載のSQUID素子を検出器とする磁化測定装置を用いた磁場中電気抵抗、ホール効果測定装置。2. The measuring means includes means for measuring an electric resistance corresponding to a temperature change by adjusting the temperature adjusting means and an electric resistance corresponding to a magnetic field change by adjusting the magnetic field adjusting means. A magnetic field electric resistance and Hall effect measuring apparatus using a magnetization measuring apparatus using the described SQUID element as a detector . 前記測定手段には、デジタル電圧計及び定電流電源を備えたことを特徴とする請求項1記載のSQUID素子を検出器とする磁化測定装置を用いた磁場中電気抵抗、ホール効果測定装置。2. The apparatus for measuring electric resistance and Hall effect in a magnetic field using a magnetization measuring apparatus using a SQUID element as a detector according to claim 1, wherein said measuring means comprises a digital voltmeter and a constant current power source. 前記測定手段には、交流抵抗ブリッジを備えたことを特徴とする請求項1記載のSQUID素子を検出器とする磁化測定装置を用いた磁場中電気抵抗、ホール効果測定装置。2. An apparatus for measuring electric resistance in a magnetic field and Hall effect using a magnetization measuring apparatus using a SQUID element as a detector according to claim 1, wherein said measuring means comprises an AC resistance bridge. 前記SQUID素子を検出器とする磁化測定装置には、超伝導磁石励磁用電源の出力端子と超伝導磁石との間に直列にシャント抵抗を接続し、該シャント抵抗接続部の電位差から磁場を読みとる手段を備えたことを特徴とする請求項1記載のSQUID素子を検出器とする磁化測定装置を用いた磁場中電気抵抗、ホール効果測定装置。In the magnetization measuring apparatus using the SQUID element as a detector , a shunt resistor is connected in series between the output terminal of the superconducting magnet excitation power source and the superconducting magnet, and the magnetic field is read from the potential difference of the shunt resistor connecting portion. An apparatus for measuring electric resistance and Hall effect in a magnetic field using a magnetization measuring apparatus using the SQUID element according to claim 1 as a detector .
JP2001353149A 2001-11-19 2001-11-19 Electric resistance in magnetic field, Hall effect measuring device using MPMS magnetization measuring device Expired - Lifetime JP3769610B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001353149A JP3769610B2 (en) 2001-11-19 2001-11-19 Electric resistance in magnetic field, Hall effect measuring device using MPMS magnetization measuring device
US10/298,651 US6768300B2 (en) 2001-11-19 2002-11-19 Apparatus for measuring electromagnetic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001353149A JP3769610B2 (en) 2001-11-19 2001-11-19 Electric resistance in magnetic field, Hall effect measuring device using MPMS magnetization measuring device

Publications (2)

Publication Number Publication Date
JP2003156550A JP2003156550A (en) 2003-05-30
JP3769610B2 true JP3769610B2 (en) 2006-04-26

Family

ID=19165217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001353149A Expired - Lifetime JP3769610B2 (en) 2001-11-19 2001-11-19 Electric resistance in magnetic field, Hall effect measuring device using MPMS magnetization measuring device

Country Status (1)

Country Link
JP (1) JP3769610B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5436166B2 (en) * 2009-11-26 2014-03-05 独立行政法人科学技術振興機構 Magnetization measuring apparatus and measuring rod

Also Published As

Publication number Publication date
JP2003156550A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
Jeppesen et al. Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field
Fietz Electronic integration technique for measuring magnetization of hysteretic superconducting materials
Plackowski et al. Specific heat and magnetocaloric effect measurements using commercial heat-flow sensors
Oomen et al. HTS flux pump for cryogen-free HTS magnets
Wilhelm et al. A compensated heat-pulse calorimeter for low temperatures
US5806979A (en) Calorimetric system and method
Rauer et al. Temperature-dependent spectral generalized magneto-optical ellipsometry for ferromagnetic compounds
Imajo et al. High-resolution calorimetry in pulsed magnetic fields
Nielsen et al. Direct measurements of the magnetic entropy change
Palma et al. Magnetic cooling for microkelvin nanoelectronics on a cryofree platform
Bagatskii et al. A simple low-temperature adiabatic calorimeter for small samples
JP3769610B2 (en) Electric resistance in magnetic field, Hall effect measuring device using MPMS magnetization measuring device
Slobinsky et al. Fast sweep-rate plastic Faraday force magnetometer with simultaneous sample temperature measurement
Seeber et al. Critical current versus strain measurement up to 21T and 1000A of long length superconducting wires and tapes
Kubota et al. Construction of a low-temperature thermodynamic measurement system for single crystal of molecular compounds under pressures
WO1996018871A1 (en) Temperature sensor system using thin film of microcrystalline semiconductor
Parzer et al. Measurement setup for Nernst and Seebeck effect at high temperatures and magnetic fields tested on elemental bismuth and full-Heusler compounds
Brando Development of a relaxation calorimeter for temperatures between 0.05 and 4 K
Kose Recent advances in Josephson voltage standards
Inyushkin et al. Magnetic field dependence of the sensitivity of a type E (chromel–constantan) thermocouple
Richens et al. A detailed study of the design, construction and cryo-operation of an HTS magnet
Goodrich et al. Kiloampere, variable-temperature, critical-current measurements of high-field superconductors
JPS6133367B2 (en)
Pradhan et al. Cryocooler based test setup for high current applications
Wnuk et al. Automated system for resistance and critical current measurements

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

R150 Certificate of patent or registration of utility model

Ref document number: 3769610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term