JP3769606B2 - Method for producing non-magnetic high-strength material - Google Patents

Method for producing non-magnetic high-strength material Download PDF

Info

Publication number
JP3769606B2
JP3769606B2 JP2001176114A JP2001176114A JP3769606B2 JP 3769606 B2 JP3769606 B2 JP 3769606B2 JP 2001176114 A JP2001176114 A JP 2001176114A JP 2001176114 A JP2001176114 A JP 2001176114A JP 3769606 B2 JP3769606 B2 JP 3769606B2
Authority
JP
Japan
Prior art keywords
alloy
strength material
aging treatment
magnetic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001176114A
Other languages
Japanese (ja)
Other versions
JP2002363673A (en
Inventor
英明 北澤
武彦 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2001176114A priority Critical patent/JP3769606B2/en
Publication of JP2002363673A publication Critical patent/JP2002363673A/en
Application granted granted Critical
Publication of JP3769606B2 publication Critical patent/JP3769606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、非磁性高強度材料の製造方法に関するものである。さらに詳しくは、この出願の発明は、加工性が良好で安定供給可能であり、しかも十分な機械的特性を示す、非磁性条件の必要な圧力下での物性実験や加圧下で物質合成を行う際の高圧材料をはじめ、非磁性ネジなどの機械部品や非磁性ペンチなどの工具としても使用可能な非磁性高強度材料を製造する非磁性高強度材料の製造方法に関するものである。
【0002】
【従来の技術とその課題】
1972年に旧ソ連のAlmovらにより高強度材料として開発されたNiCrAl合金、別名Russian Alloy(M. Eremets, High Pressure Experimental Methods, Oxford University Press, 1996に記載)は、磁化率が小さい高圧セル材料として知られている。
【0003】
しかしながら、このNiCrAl合金は、前記文献に記載された組成と同様の組成で、同様の性能を再現するのは、現在のロシアにおいてでさえも容易でなく、入手が困難となっている。
【0004】
その原因の一つに、NiCrAl合金の加工性の悪さが挙げられる。
【0005】
そこで、この出願の発明は、以上の通りの事情に鑑みてなされたものであり、加工性が良好で安定供給可能であり、しかも十分な機械的特性を示す、非磁性条件の必要な圧力下での物性実験や加圧下で物質合成を行う際の高圧材料をはじめ、非磁性ネジなどの機械部品や非磁性ペンチなどの工具としても使用可能な非磁性高強度材料を製造する非磁性高強度材料の製造方法を提供することを解決すべき課題としている。
【0006】
【課題を解決するための手段】
この出願の発明者らは、重量比で20〜150ppmのボロン(B)を前述のNiCrAl合金に添加し、NiCrAl合金の融点降下及び粒界強度の改善を図った。その結果、上記特定範囲内のBの添加によりNiCrAl合金の加工性が著しく改善され、安定に加工することができるという技術的知見を得た。また、上記特定範囲でBが添加されたNiCrAl合金は、前述の文献に記載されている機械的特性に劣らない機械的特性をも実現するとの技術的知見も得た。
【0007】
この出願の発明は、以上の技術的知見を踏まえ、非磁性高強度材料を製造する方法として、重量比で、ニッケル(Ni)を55〜58%、クロム(Cr)を38〜42%、及びアルミニウム(Al)を2〜4%含有するNiCrAl合金に、ボロン(B)が、重量比で20〜150ppm添加された非磁性高強度材料を、鋳造−鍛造−時効処理という一連の工程を経て製造するに当たり、鋳造して作製したインゴットを鍛造時に1200 ℃に再加熱することを特徴としている。
【0008】
この出願の発明の製造方法により製造される非磁性高強度材料は、後述するように、Russian Alloyに匹敵する材料としてごく最近開発されたNiCo系多相合金(MP35N(I.R.Walker, Rev.Sci. Instrum. 70(1999) 3402に記載)と比較し、磁化率が一桁ほど小さく、降伏応力も大きいという優れた特性を示す。また、コバルト(Co)を含んでいないため、資源の安定確保やコスト面などにおいても有利であるという利点を有する。
【0009】
【発明の実施の形態】
この出願の発明の製造方法により製造される非磁性高強度材料は、重量比で、ニッケル(Ni)を55〜58%、クロム(Cr)を38〜42%、及びアルミニウム(Al)を2〜4%含有するNiCrAl合金に、ボロン(B)が、重量比で20〜150ppm添加されているものである。
【0010】
NiCrAl合金は、融点が高く、これが、加工性の悪さをもたらしている。Bの添加は、NiCrAl合金の融点を下げ、加工性を良好とする。Bの添加量は、重量比で20〜150ppmの範囲に限定される。これは、20ppm未満では加工性の改善にさほど有効でなく、150ppmを超えると、他の金属元素との化合物が形成されるなど、非磁性高強度材料の物性が不安定になりやすいとの理由に基づいている。
【0011】
以上の非磁性高強度材料は、鋳造−鍛造−時効処理という一連の工程を経て製造される。前記重量比内にNi、Cr、及びAl原料を配合し、これに前記重量比内にBを添加し、鋳造する。鋳型内で徐冷されたインゴットの内部には、一般に、冷却過程において様々な相が析出し、分散するため、インゴット全体の硬度が高くなる傾向にある。この場合、鍛造前に均質化処理することが不可欠となる。均質化処理の温度は、1200℃程度が例示される。
【0012】
鍛造は、鋳造時に形成された組織を一旦壊し、材料本来の特性を引き出すために行われる。鍛造には、通常行われている圧延などの各種の方式が採用可能である。鍛造時には、インゴットを1200℃程度に再加熱する。NiCrAl合金を面心立方の単相とすることができ、加工性が良好となる。また、Bの添加により、鍛造時の作業温度を十分下げることができ、NiCrAl合金の加工性が大きく改善される。
【0013】
鍛造後に時効処理を行うが、これに先立ち、予歪み処理を、室温での溝圧延などにより10%程度まで変形させるなどして行うことも可能である。予歪み処理により、合金中に転位や原子空孔などの格子欠陥を導入することができ、導入された格子欠陥は、時効処理時に生成する析出物の核となり、その結果、析出物が細かく分散して強度が増す傾向にある。
【0014】
時効処理における処理温度は、500℃以上800℃未満が有効である。時効温度が500℃未満であると、析出物が十分析出せず、硬度にばらつきが見られ、800℃以上となると、硬度が急激に低下する。好ましくは、700℃以上800℃未満であり、この温度範囲内での時効処理により、引っ張り強度が十分高まる。時効処理後、室温に戻す際には、炉冷、大気中に暴露しての急冷などのいずれであってもよい。冷却過程が特性に大きく影響する傾向は見られない。
【0015】
以下、実施例を示し、この出願の発明の非磁性高強度材料の製造方法についてさらに詳しく説明する。
【0016】
【実施例】
以下に示す手順に沿って、非磁性高強度材料の一例として圧力セルを作製した。
[1] B添加NiCrAl合金の鋳造
重量比で、Niが56.5%、Crが40%、Alが3.5%のNiCrAl合金とし、これにBを重量比で50ppm添加することとした。Bの添加には、あらかじめ作製してあったNi-15.5wt%B合金を用いることにした。原料は、高周波溶解炉を用いて溶解し、容器にはアルミナ坩堝を使用した。
【0017】
ただし、Alは、他の金属及び合金に比べ、融点が低いため、溶解は、次のようにして行った。
【0018】
まず、Ni、Cr、及びBを真空中で溶解し、次いでAlを加えた後、Alの蒸発を抑えるために雰囲気をアルゴン(Ar)ガス(100〜300Torr)に替え、再度溶解した。このようにして混合した液体状の合金を鋳型(約80mm×80mm×200mm)に鋳込んだ。
[2] 鋳造インゴットの鍛造
前述の通り、鋳型内で徐冷されたインゴットの内部には、冷却過程で様々な相が析出し、分散するため、インゴット全体の硬度は高い。特にインゴットの上部、すなわち液体状の合金の注入口における湯引き(冷却時の熱収縮)により生成する巣の切断が不可能となる。
【0019】
このため、鋳造したインゴットを1200℃に5時間保持して均質化処理し、水焼入れを行
い、この後、巣の部分を切り落とした。
【0020】
そして、角柱状のインゴットを1200℃に加熱した後、300tonプレス装置を用いて初期鍛造を行った。鍛造は、インゴットを90°ずつ回転させながら行い、最終的に40mm×40mmの角柱状にした。この鍛造過程において、インゴットの温度がプレス装置のプレスヘッドを介して激しく低下するため、プレスする毎に1200℃に再加熱した。なお、一回のプレスでの圧下率は、5%程度を目安にした。
【0021】
鍛造品は、さらに、実際のサイズに近づけ、棒材とするために、溝圧延機にかけ、40mm角、38mm角、36mm角と次第に細くし、最終的に10〜20mm角までに圧延した。この圧延に際し、圧延品には、前記プレス加工時と同様に、一回圧延する毎に1200℃に再加熱した。
【0022】
こうして得られた棒材を1200℃に加熱した後、水焼入れした。NiCrAl合金の金属組織は、粒径10μm程度となった。20mm角の棒材では、粒径は10μmであり、圧下率は93.7%となった。
【0023】
得られた棒材の室温での伸びは40%以上であり、140%以上に伸ばすことができた。
[3] 予歪み処理及び/又は機械加工
前述の通り、合金中に導入される転位や原子空孔などの格子欠陥は、時効処理時に生成する析出物の核となり、その結果、析出物が細かく分散し、強度が増す。
【0024】
そこで、一部の棒材については室温で溝圧延し、予歪み処理を行い、10%まで変形させた。この後に機械加工を行い、実際に用いられる圧力セルの所定サイズのロッドに成形した。
【0025】
他の棒材についは予歪み処理を行うことなく、機械加工し、所定サイズのロッドに成形した。
[4] 時効処理
成形後のロッドは石英管中に真空封入し、時効処理を行った。
【0026】
図1は、ロッドから切り出した試験片について、時効処理時の硬さ(ロックウェル硬度Cスケール(HRC))の温度依存性及び時間依存性を示したグラフである。
【0027】
試験片は、時効処理に際し、石英管中に真空封入され、図1に示した各時効温度に90分又は120分保持した後、室温まで炉冷又は急冷した。硬さは、ロックウェル硬度計で測定し、公正を期すために、測定は、三箇所の機関で行った。
【0028】
図1から確認されるように、時効温度が500℃付近で急激に硬化が起こり、550℃で硬度は最大となる。一方、時効温度が800℃以上となると、硬度は再び急激に低下する。また、500℃未満では、硬度にばらつきが生ずる。このことから、非磁性高強度材料として安定した性能を得るためには、時効温度は500℃以上800℃未満が適当であると考えられる。
【0029】
図2は、時効処理後の試験片の引っ張り試験の結果を示したグラフである。
【0030】
この図2から確認されるように、時効温度を700℃以上とすると、予歪み材、歪みなし材に関わらず、0.2%降伏応力で2GPa、破断応力で2.3GPaを示し、その時の伸びは2%程度若しくはそれ以上というほぼ安定した特性を示す。
【0031】
物性実験に用いられるピストン=シリンダー型圧力セルについては、一般に、理想的な最大発生圧は、降伏応力の2倍程度であることが経験的に知られている。もちろん、その値は、シリンダーの設計や加工技術に大きく影響されるが、材料特性という観点からすれば、以上のデータから、圧力セルは、最大発生圧をほぼ4GPaまで達成可能であると見込まれる。
【0032】
図3は、この出願の発明の製造方法により製造された非磁性高強度材料と前述のNiCo系多相合金(MP35N)との引っ張り試験の結果を比較したグラフである。
【0033】
この図3から確認されるように、最適とされている時効処理を行ったMP35Nの機械的特性は、この出願の発明の製造方法により製造された非磁性高強度材料と比較しておよそ5%程低い。しかも、MP35Nでは、降伏点を過ぎると、急速に塑性変形を起こしている。その原因は、材料自身の不均一性によるものかどうか現段階では定かでないが、図3に示した結果から理解されるように、この出願の発明の製造方法により製造された非磁性高強度材料は、前述のRussian Alloy、すなわち、NiCrAl合金に匹敵すると考えられていたNiCo系多相合金(MP35N)を上回る機械的特性を有し、しかも安定であるという特徴を有している

【0034】
図4は、この出願の発明の製造方法により製造された非磁性高強度材料とNiCo系多相合金(MP35N)との磁化率の温度依存性を比較したグラフである。
【0035】
なお、磁化率は、SQUID磁束計で測定した。MP35Nの磁化率の温度依存性については、前述の文献値を引用している。
【0036】
この図4から確認されるように、この出願の発明の製造方法により製造された非磁性高強度材料は、MP35Nと比較し、低温において一桁小さな磁化率を示しており、非磁性条件に優れている。
【0037】
図4には、時効処理を行わなかった試験片の磁化率の温度依存性を合わせて示しているが、時効処理を行った試験片に比べ、低温において磁化率が勝っているが、その機械的特性は、時効処理を行った試験片に遠く及ばない。
【0038】
なお、実際に非磁性圧力セルを作製する際には、以上の特性を有する時効処理後のロッドをたとえば内層シリンダーとして、CuBe合金製の外層シリンダーに冷間押し嵌めし、二層シリンダーに作製することができる。そして、さらに、リーマー(reamer)仕上げ、ネジ調整などの最終加工を行い、製品とすることができる。
【0039】
もちろん、この出願の発明は、以上の実施形態及び実施例によって限定されるものではない。操作条件などの細部については様々な態様が可能であることはいうまでもない。
【0040】
【発明の効果】
以上詳しく説明した通り、この出願の発明によって、加工性が良好で安定供給可能であり、しかも十分な機械的特性を示す、非磁性条件の必要な圧力下での物性実験や加圧下で物質合成を行う際の高圧材料をはじめ、非磁性ネジなどの機械部品や非磁性ペンチなどの工具としても使用可能な非磁性高強度材料が提供される。
【図面の簡単な説明】
【図1】 実施例において作製したロッドから切り出した試験片について、時効処理時の硬さ(ロックウェル硬度Cスケール(HRC))の温度依存性及び時間依存性を示したグラフである。
【図2】 時効処理後の試験片の引っ張り試験の結果を示したグラフである。
【図3】 この出願の発明の製造方法により製造された非磁性高強度材料とNiCo系多相合金(MP35N)との引っ張り試験の結果を比較したグラフである。
【図4】 この出願の発明の製造方法により製造された非磁性高強度材料とNiCo系多相合金(MP35N)との磁化率の温度依存性を比較したグラフである。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method for producing a nonmagnetic high-strength material. More specifically, the invention of this application performs physical property experiments under pressure required under non-magnetic conditions and material synthesis under pressure, which has good processability, can be stably supplied, and exhibits sufficient mechanical properties. The present invention relates to a nonmagnetic high-strength material manufacturing method for manufacturing nonmagnetic high-strength materials that can be used not only as high-pressure materials, but also as machine parts such as nonmagnetic screws and tools such as nonmagnetic pliers.
[0002]
[Prior art and its problems]
NiCrAl alloy developed by Almov et al. Of the former Soviet Union in 1972 as a high-strength material, also known as Russian Alloy (described in M. Eremets, High Pressure Experimental Methods, Oxford University Press, 1996) is a high-pressure cell material with low magnetic susceptibility. Are known.
[0003]
However, this NiCrAl alloy has a composition similar to the composition described in the above document, and it is not easy to reproduce the same performance even in the current Russia, and it is difficult to obtain.
[0004]
One of the causes is poor workability of NiCrAl alloy.
[0005]
Therefore, the invention of this application has been made in view of the circumstances as described above, has good workability, can be stably supplied, and exhibits sufficient mechanical properties, under the pressure required for nonmagnetic conditions. Non-magnetic high-strength materials that produce non-magnetic high-strength materials that can also be used as mechanical parts such as non-magnetic screws and tools such as non-magnetic pliers, as well as high-pressure materials used in physical property experiments and under pressure synthesis Providing a method for manufacturing a material is a problem to be solved.
[0006]
[Means for Solving the Problems]
The inventors of this application added 20 to 150 ppm by weight of boron (B) to the aforementioned NiCrAl alloy to improve the melting point drop and the grain boundary strength of the NiCrAl alloy. As a result, the technical knowledge that the workability of the NiCrAl alloy was remarkably improved by the addition of B within the above specific range, and stable processing was obtained. In addition, the technical knowledge that the NiCrAl alloy to which B is added in the above specific range also realizes mechanical properties not inferior to the mechanical properties described in the above-mentioned document was obtained.
[0007]
The invention of this application is based on the above technical knowledge, as a method for producing a nonmagnetic high-strength material, by weight ratio, nickel (Ni) 55-58%, chromium (Cr) 38-42%, and Manufactures non-magnetic high-strength material in which boron (B) is added by 20 to 150 ppm by weight to NiCrAl alloy containing 2 to 4% aluminum (Al) through a series of steps of casting-forging-aging treatment In doing so, it is characterized in that an ingot produced by casting is reheated to 1200 ° C. during forging.
[0008]
The nonmagnetic high-strength material manufactured by the manufacturing method of the invention of this application is, as will be described later, a NiCo-based multiphase alloy (MP35N (IRWalker, Rev. Sci. Instrum), which has been recently developed as a material comparable to the Russian Alloy. 70 (1999) 3402), the magnetic susceptibility is about an order of magnitude smaller and the yield stress is larger, and because it does not contain cobalt (Co), it ensures stable resources and costs. It has the advantage that it is advantageous also in terms of surface.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The non-magnetic high-strength material produced by the production method of the invention of this application is 55 to 58% nickel (Ni), 38 to 42% chromium (Cr), and 2 to 2 aluminum (Al) by weight ratio. Boron (B) is added to the NiCrAl alloy containing 4% in a weight ratio of 20 to 150 ppm.
[0010]
NiCrAl alloy has a high melting point, which leads to poor workability. The addition of B lowers the melting point of the NiCrAl alloy and improves the workability. The amount of B added is limited to a range of 20 to 150 ppm by weight. This is because if it is less than 20 ppm, it is not very effective in improving workability, and if it exceeds 150 ppm, the physical properties of non-magnetic high-strength materials tend to be unstable, such as the formation of compounds with other metal elements. Based on.
[0011]
The above non-magnetic high-strength material is manufactured through a series of processes of casting-forging-aging treatment. Ni, Cr, and Al raw materials are blended within the weight ratio, and B is added to the weight ratio and cast. In general, various phases precipitate and disperse in the inside of the ingot gradually cooled in the mold, so that the hardness of the entire ingot tends to increase. In this case, it is essential to perform a homogenization treatment before forging. The temperature of the homogenization treatment is exemplified by about 1200 ° C.
[0012]
Forging is performed in order to once break the structure formed at the time of casting and extract the original characteristics of the material. Various methods such as rolling that are usually performed can be employed for forging. During forging, the ingot is reheated to about 1200 ° C. NiCrAl alloy can be made into a face-centered cubic single phase, and workability is improved. Also, the addition of B can sufficiently lower the working temperature during forging, and the workability of the NiCrAl alloy is greatly improved.
[0013]
An aging treatment is performed after forging. Prior to this, a pre-strain treatment can be performed by deforming to about 10% by groove rolling at room temperature or the like. Pre-strain treatment allows the introduction of lattice defects such as dislocations and atomic vacancies in the alloy, and the introduced lattice defects become the core of precipitates generated during the aging treatment, resulting in fine dispersion of the precipitates. As a result, the strength tends to increase.
[0014]
The treatment temperature in the aging treatment is effectively 500 ° C. or higher and lower than 800 ° C. When the aging temperature is less than 500 ° C., precipitates are not sufficiently precipitated, and the hardness varies, and when the temperature is 800 ° C. or more, the hardness sharply decreases. Preferably, the temperature is 700 ° C. or higher and lower than 800 ° C., and the aging treatment within this temperature range sufficiently increases the tensile strength. When the temperature is returned to room temperature after aging treatment, either furnace cooling or rapid cooling after exposure to the atmosphere may be used. There is no tendency for the cooling process to greatly affect the properties.
[0015]
Hereinafter, an Example is shown and the manufacturing method of the nonmagnetic high intensity | strength material of invention of this application is demonstrated in more detail.
[0016]
【Example】
A pressure cell was produced as an example of a nonmagnetic high-strength material according to the following procedure.
[1] Casting of B-added NiCrAl alloy NiCrAl alloy with Ni of 56.5%, Cr of 40%, and Al of 3.5% was added, and B was added at 50 ppm by weight. For the addition of B, a Ni-15.5 wt% B alloy prepared in advance was used. The raw material was melted using a high-frequency melting furnace, and an alumina crucible was used as the container.
[0017]
However, since Al has a lower melting point than other metals and alloys, melting was performed as follows.
[0018]
First, Ni, Cr, and B were dissolved in a vacuum, and then Al was added, and then the atmosphere was changed to argon (Ar) gas (100 to 300 Torr) in order to suppress the evaporation of Al and dissolved again. The liquid alloy thus mixed was cast into a mold (about 80 mm × 80 mm × 200 mm).
[2] Forging of cast ingot As described above, various phases precipitate and disperse in the ingot that is gradually cooled in the mold during the cooling process, so that the hardness of the entire ingot is high. In particular, it becomes impossible to cut the nest formed by hot drawing (heat shrinkage during cooling) at the top of the ingot, that is, the injection port of the liquid alloy.
[0019]
For this reason, the cast ingot was kept at 1200 ° C. for 5 hours, homogenized, and water-quenched, and then the nest portion was cut off.
[0020]
Then, after heating the prismatic ingot to 1200 ° C., initial forging was performed using a 300-ton press. Forging was performed while rotating the ingot by 90 °, and finally it was formed into a prismatic shape of 40 mm × 40 mm. In this forging process, the temperature of the ingot was drastically lowered via the press head of the press device, so that it was reheated to 1200 ° C. every time it was pressed. In addition, the reduction ratio in one press was about 5%.
[0021]
The forged product was further reduced to 40 mm square, 38 mm square, and 36 mm square, and finally rolled to 10 to 20 mm square in order to make it closer to the actual size and use it as a bar. During this rolling, the rolled product was reheated to 1200 ° C. each time it was rolled, as in the press working.
[0022]
The bar thus obtained was heated to 1200 ° C. and then quenched with water. The metal structure of the NiCrAl alloy has a particle size of about 10 μm. The 20 mm square bar had a particle size of 10 μm and a rolling reduction of 93.7%.
[0023]
The obtained bar had an elongation of 40% or more at room temperature, and could be extended to 140% or more.
[3] Pre-strain treatment and / or machining As described above, lattice defects such as dislocations and atomic vacancies introduced into the alloy become the core of precipitates generated during the aging treatment, and as a result, the precipitates are fine. Disperses and increases strength.
[0024]
Therefore, some bars were grooved at room temperature, pre-strained, and deformed to 10%. This was followed by machining to form a rod of a predetermined size for a pressure cell that was actually used.
[0025]
The other bars were machined without pre-straining and formed into rods of a predetermined size.
[4] Aging treatment The molded rod was vacuum sealed in a quartz tube and subjected to aging treatment.
[0026]
FIG. 1 is a graph showing the temperature dependency and time dependency of the hardness (Rockwell hardness C scale (HRC)) during aging treatment of a test piece cut out from a rod.
[0027]
During the aging treatment, the test piece was vacuum-sealed in a quartz tube, held at each aging temperature shown in FIG. 1 for 90 minutes or 120 minutes, and then cooled or rapidly cooled to room temperature. Hardness was measured with a Rockwell hardness tester, and the measurements were taken at three institutions to ensure fairness.
[0028]
As can be seen from FIG. 1, hardening occurs rapidly when the aging temperature is around 500 ° C., and the hardness becomes maximum at 550 ° C. On the other hand, when the aging temperature is 800 ° C. or higher, the hardness rapidly decreases again. Moreover, if it is less than 500 degreeC, dispersion | variation will arise in hardness. From this, it is considered that an aging temperature of 500 ° C. or higher and lower than 800 ° C. is appropriate for obtaining stable performance as a nonmagnetic high-strength material.
[0029]
FIG. 2 is a graph showing the results of a tensile test of the test piece after aging treatment.
[0030]
As can be seen from FIG. 2, when the aging temperature is 700 ° C. or higher, 0.2% yield stress is 2 GPa and rupture stress is 2.3 GPa regardless of pre-strained or unstrained material. It shows almost stable characteristics of about% or more.
[0031]
It is empirically known that, for a piston = cylinder type pressure cell used for physical property experiments, the ideal maximum generated pressure is generally about twice the yield stress. Of course, the value is greatly influenced by the design and processing technology of the cylinder, but from the viewpoint of material properties, the above data suggests that the pressure cell can achieve a maximum generated pressure of almost 4 GPa. .
[0032]
FIG. 3 is a graph comparing the results of a tensile test between a nonmagnetic high-strength material manufactured by the manufacturing method of the invention of this application and the aforementioned NiCo-based multiphase alloy (MP35N).
[0033]
As can be seen from FIG. 3, the mechanical properties of MP35N subjected to the optimum aging treatment are approximately 5% compared to the nonmagnetic high-strength material manufactured by the manufacturing method of the invention of this application. It is so low. Moreover, MP35N rapidly undergoes plastic deformation after the yield point. Whether the cause is due to the non-uniformity of the material itself is not certain at this stage, but as can be understood from the result shown in FIG. 3, the non-magnetic high-strength material manufactured by the manufacturing method of the invention of this application Has the characteristics that it has mechanical properties that are superior to those of the above-described Russian Alloy, that is, NiCo-based multiphase alloy (MP35N) that is considered to be comparable to NiCrAl alloy, and is stable.
[0034]
FIG. 4 is a graph comparing the temperature dependence of the magnetic susceptibility between the nonmagnetic high-strength material manufactured by the manufacturing method of the invention of this application and the NiCo-based multiphase alloy (MP35N).
[0035]
The magnetic susceptibility was measured with a SQUID magnetometer. Regarding the temperature dependence of the magnetic susceptibility of MP35N, the above-mentioned literature values are cited.
[0036]
As can be seen from FIG. 4, the non-magnetic high-strength material manufactured by the manufacturing method of the invention of this application shows a magnetic susceptibility that is an order of magnitude smaller at low temperatures than MP35N, and is excellent in non-magnetic conditions. ing.
[0037]
FIG. 4 also shows the temperature dependence of the magnetic susceptibility of a test piece that has not been subjected to aging treatment. Although the magnetic susceptibility is superior at a lower temperature than the test piece that has been subjected to aging treatment, The mechanical properties are far from those of specimens subjected to aging treatment.
[0038]
When actually manufacturing a non-magnetic pressure cell, the rod after aging treatment having the above characteristics is cold-fitted into an outer cylinder made of CuBe alloy, for example, as an inner cylinder, and manufactured into a two-layer cylinder. be able to. Further, final processing such as reamer finishing and screw adjustment can be performed to obtain a product.
[0039]
Of course, the invention of this application is not limited by the above embodiments and examples. Needless to say, various aspects such as operating conditions are possible.
[0040]
【The invention's effect】
As described above in detail, according to the invention of this application, workability is good, stable supply is possible, and sufficient mechanical properties are exhibited, physical properties experiments under pressure required under non-magnetic conditions and material synthesis under pressure Nonmagnetic high-strength materials that can be used not only as high-pressure materials, but also as machine parts such as nonmagnetic screws and tools such as nonmagnetic pliers are provided.
[Brief description of the drawings]
FIG. 1 is a graph showing temperature dependency and time dependency of hardness (Rockwell hardness C scale (HRC)) at the time of aging treatment for a test piece cut out from a rod manufactured in an example.
FIG. 2 is a graph showing the results of a tensile test of a test piece after aging treatment.
FIG. 3 is a graph comparing the results of a tensile test between a nonmagnetic high-strength material manufactured by the manufacturing method of the invention of this application and a NiCo-based multiphase alloy (MP35N).
FIG. 4 is a graph comparing the temperature dependence of magnetic susceptibility between a nonmagnetic high-strength material manufactured by the manufacturing method of the invention of this application and a NiCo-based multiphase alloy (MP35N).

Claims (1)

重量比で、ニッケル(Ni)を55〜58%、クロム(Cr)を38〜42%、及びアルミニウム(Al)を2〜4%含有するNiCrAl合金に、ボロン(B)が、重量比で20〜150ppm添加された非磁性高強度材料を、鋳造−鍛造−時効処理という一連の工程を経て製造するに当たり、鋳造して作製したインゴットを鍛造時に1200 ℃に再加熱することを特徴とする非磁性高強度材料の製造方法。In a NiCrAl alloy containing 55 to 58% nickel (Ni), 38 to 42% chromium (Cr), and 2 to 4% aluminum (Al) by weight, boron (B) is 20 by weight. A nonmagnetic high-strength material added with ~ 150ppm is manufactured through a series of steps of casting-forging-aging treatment, and the ingot produced by casting is reheated to 1200 ° C. during forging. Manufacturing method of high strength material.
JP2001176114A 2001-06-11 2001-06-11 Method for producing non-magnetic high-strength material Expired - Lifetime JP3769606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001176114A JP3769606B2 (en) 2001-06-11 2001-06-11 Method for producing non-magnetic high-strength material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001176114A JP3769606B2 (en) 2001-06-11 2001-06-11 Method for producing non-magnetic high-strength material

Publications (2)

Publication Number Publication Date
JP2002363673A JP2002363673A (en) 2002-12-18
JP3769606B2 true JP3769606B2 (en) 2006-04-26

Family

ID=19017149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001176114A Expired - Lifetime JP3769606B2 (en) 2001-06-11 2001-06-11 Method for producing non-magnetic high-strength material

Country Status (1)

Country Link
JP (1) JP3769606B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274443A (en) * 2005-03-03 2006-10-12 Daido Steel Co Ltd Nonmagnetc high-hardness alloy
CN110952053B (en) * 2019-12-20 2021-01-22 南京工程学院 Cogging process of nickel-based superalloy, alloy device and application of alloy device

Also Published As

Publication number Publication date
JP2002363673A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
CN113025865B (en) Preparation method of AlCoCrFeNi series two-phase structure high-entropy alloy
US5366570A (en) Titanium matrix composites
JP4995570B2 (en) Nickel base alloy and heat treatment method of nickel base alloy
Sampath Studies on the effect of grain refinement and thermal processing on shape memory characteristics of Cu–Al–Ni alloys
CN109804096A (en) High-strength aluminum alloy backboard and preparation method
CA2188898A1 (en) Method to produce fine-grained lamellar microstructures in gamma tiatanium aluminides
EP3685942A1 (en) Ni-based alloy softened powder, and method for producing said softened powder
Hills et al. The mechanical properties of quenched uranium-molybdenum alloys: Part I: Tensile tests on polycbystalline specimens
JP3769606B2 (en) Method for producing non-magnetic high-strength material
Seifollahi et al. The precipitation of η phase in an Fe-Ni-based superalloy with different Ti/Al ratios
US4305761A (en) Ni-base Eutectic alloy article and heat treatment
CN114086032A (en) GH4065A nickel-based high-temperature alloy and homogenization treatment process
JP6185347B2 (en) Intermediate material for splitting Ni-base superheat-resistant alloy and method for producing the same, and method for producing Ni-base superheat-resistant alloy
JP5929251B2 (en) Iron alloy
US9303304B2 (en) Process for the creation of uniform grain size in hot worked spinodal alloy
Opiekun Kinetics of secondary carbide precipitation in boron-modified cobalt alloys of MAR-M509 type
Asgarkhani et al. Effect of Aging Treatment on Microstructure and Mechanical Properties of Al0. 7CoCrFeNi High Entropy Alloy
KR102604458B1 (en) Commercially pure titanium having high strength and high uniform ductility and method of manufacturing the same
JP2013185249A (en) Iron alloy
JPH0499140A (en) Die material for plastic molding and its manufacture
Gorynin et al. TITANIUM'99
JP2003166026A (en) Magnet alloy with corrosion resistance and manufacturing method therefor
Polozov et al. Effect of heat treatment on microstructure and properties of Ti-22Al-25Nb alloy fabricated by selective laser melting
KR100209305B1 (en) Manufacturing method of gamma titanium aluminaid alloy
CN116607060A (en) Nano lamellar epsilon-phase reinforced nickel-based multi-principal element alloy, design method and preparation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

R150 Certificate of patent or registration of utility model

Ref document number: 3769606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term