JP3768606B2 - Method for correcting gear cut-off gear set-up and gear cutting machine - Google Patents

Method for correcting gear cut-off gear set-up and gear cutting machine Download PDF

Info

Publication number
JP3768606B2
JP3768606B2 JP19954796A JP19954796A JP3768606B2 JP 3768606 B2 JP3768606 B2 JP 3768606B2 JP 19954796 A JP19954796 A JP 19954796A JP 19954796 A JP19954796 A JP 19954796A JP 3768606 B2 JP3768606 B2 JP 3768606B2
Authority
JP
Japan
Prior art keywords
cutter
workpiece
gear
shaft
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19954796A
Other languages
Japanese (ja)
Other versions
JPH1029115A (en
Inventor
山 順 一 森
野 芳 夫 塩
滝 重 隆 池
Original Assignee
豊精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊精密工業株式会社 filed Critical 豊精密工業株式会社
Priority to JP19954796A priority Critical patent/JP3768606B2/en
Publication of JPH1029115A publication Critical patent/JPH1029115A/en
Application granted granted Critical
Publication of JP3768606B2 publication Critical patent/JP3768606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gear Processing (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、かさ歯車の歯切段取り修正方法並びに歯切盤に係り、特に機械からカッタの繰り出し機構と人間の手作業を無用化し、同時にカッタ高さの誤差を小さくし、調整時間を短縮することができるかさ歯車の歯切段取り修正方法並びに歯切盤に関する。
【0002】
【従来の技術】
従来、かさ歯車歯切盤はカッタヘッドを傾斜させることによって工作物の圧力角とカッタの圧力角を一致させて歯切りをするもので、例えば特公昭30−3900号などが知られている。このかさ歯車の諸元計算や歯切りのための機械段取りの計算は、その基準を工作物のピッチ円錐の頂点としている。歯切盤では、仮想歯車を表現しているクレードルと工作物との幾何学的な位置関係、歯車諸元によって決まるカッタの位置関係などがピッチ円錐の頂点を基準として決められている。カッタの刃先は歯底円錐の頂点を含む平面に設定されている。これまでの歯切盤には、カッタスピンドルをその軸方向に調整することができる繰り出し機構と、カッタの刃先が歯底円錐の頂点を含む平面内にあることが確認できるゲ−ジがあって、再研削することによりカッタの高さが変化しても、カッタの刃先を歯底円錐の頂点を含む平面に調整して使用している。
【0003】
【発明が解決しようとする課題】
前記従来方式において、カッタの高さの誤差は、加工される歯車の歯当たりや歯厚に影響を及ぼすものであり、カッタの繰出機構は、繰出すためのネジやクランプ機能が必要であり、それらが機械構成上切削抵抗を直接受ける部分に設けられるため、機械の剛性を低下させる原因になっている。また、これらの作業は、手作業のため熟練作業者と多くの作業時間を要するという問題点があった。この発明は前記実情に鑑みて、機械からカッタの繰出機構と人間が行う手作業を無用化し、同時にカッタ高さの誤差を小さくし、調整時間を短縮することとし、カッタの高さとして基準位置から刃先までの距離をセンサとスケ−ルを用いて自動的に計測し、その距離により機械段取りの修正量を計算して自動的に機械段取りを修正し歯切りをする、かさ歯車の歯切段取り修正方法並びに歯切盤を提供することを目的として開発されたものである。
【0004】
【課題を解決するための手段】
この発明は前記課題を解決し、目的を達成するために次のような技術的な手段を講じた。
【0005】
A.カッタ軸の繰出機構のないかさ歯車歯切盤の歯切段取り修正方法において、
ワーク1のピッチ円錐の頂点Pを基準とし、該頂点Pに中心が接して、前記ワーク1の歯1Aと噛み合うように仮想された仮想歯車2を表現するクレードル軸2Bを形成し、カッタ3の刃先3Aが前記ワーク1の歯底円錐面1Bに接するようにカッタ軸3Bがクレードル軸に対してθ角度傾斜するように構成されており、
前記カッタ軸3Bと平行に、かつカッタの刃先3Aと対面して刃先3A方向へ進退自在に配設されたセンサ4と、
該センサ4の先端部がカッタ3の刃先3Aと接触したとき、その位置を読み取るスケール5とを有し、
正常なカッタ3の刃先3Aが接するワークの歯底円錐面1Bの位置をあらかじめ記憶しておき、前記センサ4の検出値により差分ΔSを計測し、
該差分ΔSをもとに
(a)ワークの切込み深さを調整する摺動部の停止位置S=差分△S× COS θ
(b)刃先3Aを再研削したときのワーク1のピッチ円錐の頂点Pからカッタ軸3Bの中心の距離L2−正常時のワーク1のピッチ円錐の頂点Pからカッタ軸3Bの中心の距離L1=△S× SIN θ
を算出して、
歯車歯切盤の制御装置により前記ワークの切込み深さを調整する摺動部の停止位置Sと、クレードル軸の中心からの距離を調整してなることを特徴とする。
【0006】
B.カッタ軸の繰出機構のないかさ歯車歯切盤において、
ワーク1のピッチ円錐の頂点Pを基準とし、該頂点Pに中心が接して、前記ワーク1の歯1Aと噛み合うように仮想された仮想歯車2を表現するクレードル軸2Bを形成し、カッタ3の刃先3Aが前記ワーク1の歯底円錐面1Bに接するようにカッタ軸3Bがクレードル軸に対してθ角度傾斜するように構成されており、
前記カッタ軸3Bと平行に、かつカッタの刃先3Aと対面して刃先3A方向へ進退自在に配設されたセンサ4と、
該センサ4の先端部がカッタ3の刃先3Aと接触したとき、その位置を読み取るスケール5とを設け、
正常なカッタ3の刃先3Aが接するワークの歯底円錐面1Bの位置をあらかじめ記憶しておき、前記センサ4の検出値により差分ΔSを計測し、
該差分ΔSをもとに
(a)ワークの切込み深さを調整する摺動部の停止位置S=差分△S× COS θ
(b)刃先3Aを再研削したときのワーク1のピッチ円錐の頂点Pからカッタ軸3Bの中心の距離L2−正常時のワーク1のピッチ円錐の頂点Pからカッタ軸3Bの中心の距離L1=△S× SIN θを算出して、
制御装置により前記ワークの切込み深さを調整する摺動部の停止位置Sと、クレードル軸の中心からの距離を調整してなることを特徴とする
【0007】
【作用】
以上のように構成されたこの発明は次のような作用がある。すなわち、従来の歯切盤によってカッタが摩耗し、再研削をすると、再研削に準じてカッタ軸を前進させることによって誤差補正をしていたが、この発明においては、カッタ刃先に高感度のセンサ例えばタッチセンサが接触することによって移動量を計測する。それをスケ−ル例えばリニアスケ−ルが読み取る。これによって、刃先の位置が計算されるから、該計算に応じた修正値で工作物の切込深さその他機械段取りを制御装置により自動的に調節して正しく歯切をすることができる。
【0008】
【発明の実施の形態】
この発明の実施の形態例を図を参照して説明する。図1はカッタとセンサとの関係を示す略示的平面図、図2は歯切盤の斜視図、図3はワ−クと仮想歯車、カッタとの関係を示す略示的平面図、図4は仮想歯車を正面から見た場合のカッタの中心の位置を示す。図3において、かさ歯車の諸元計算や歯切りのための機械段取りの計算は、その基準をワ−ク1のピッチ円錐の頂点Pとしている。歯切盤では仮想歯車2を表現しているクレド−ル軸2Bの中心はそのピッチ円錐の頂点Pと接する。ワ−ク1の歯1Aはこの仮想歯車2の歯2Aと噛み合うように仮想して歯切りされるもので、カッタ3の刃先3Aはワ−ク1の歯底円錐面1Bに接するようにカッタ軸3Bは傾斜するように構成されている。このカッタ3は切削加工をすることによって切味が劣化し、再研削するため、図1に仮想線33で示すようにカッタ刃先の高さが短く変化して来る。その結果図4に示すように刃先3Aを再研削したときのカッタ軸3Bの中心はワ−ク1のピッチ円錐の頂点PからL1の距離ないしM1の距離が正しいのに、△Lだけ伸びてL2になり、また△Mだけ縮まってM2となる。従って従来はこの△L・△Mのカッタの高さの誤差はカッタ軸3Bをワ−ク1の方へ繰り出すことで調整を図って来たが、それら調整の作業は手作業のために熟練作業者を必要としかつ作業時間を要した。加えて、カッタ繰出機構は繰出しネジ,クランプ機構等複雑な機構を必要とし、その部分は切削抵抗を直に受ける部分でもあるために機械の剛性を低下させる原因になっている。本発明は、そのカッタ繰出機構を使用しないもので、具体的には図1に示すようにセンサ4(具体的にはタッチセンサ)とスケ−ル5(具体的にはリニアスケ−ル)を使用する。図1において、カッタ軸3Bはクレードル軸2Bに対してθ角ほど傾斜している平面を示している。実線のカッタ3は正式な位置にあることを示し、再研削によって高さが△Sだけ低くなったカッタすなわち再研削後のカッタ33を仮想線で示す。正常位置のカッタ3でクレド−ル軸2Bに対してカッタ軸3Bはθ角度傾き、クレードル軸2B中心から距離L1隔たった位置にカッタ中心があり、カッタ3の刃先3Aはワ−ク1の歯底円錐の頂点を含む平面1Bに接している。一方、再研削後のカッタ33は実線のカッタ3に対して刃先3Aの高さに△の差があるため、実線のカッタ3に対してクレードルの軸方向距離で△S、クレド−ル中心とカッタ中心との隔たりにL2−L1の差△Lだけ差が生じている。このカッタ軸3Bと平行に、かつカッタの刃先3Aと対面して刃先3A方向へ進退自在にセンサ4(具体的にはタッチセンサ)が配設されている。該センサ4は図示省略したNC制御によるサ−ボモ−タ,ボ−ルネジなどの駆動装置によって進退するもので、センサ4の先端部がカッタ3の刃先3Aと接触したとき、その位置をスケ−ル5(具体的にはリニアスケ−ル)で読み取ることができる。前記、ワ−クの歯底円錐の頂点を含む平面1Bの位置は前記スケ−ル5の読みの値の中にあらかじめ設定してあるので、△Lの差が算出され、工作物の切込み深さを調整する摺動部の停止位置S=差距離△S×COSθ,L2−L1=△S×SINθを計算する。しかる後、この数値に基づいて図示しない制御装置によって歯切盤の他の機械段取部、すなわち、工作物の切込み深さを調整する摺動部の停止位置、及びクレードル中心からの距離を調整することによって、クレードル中心に対しθ角度傾斜しカッタの刃先に接する平面を含む新しい円錐の頂点を基準として正しく歯切りをすることができる。
【0009】
図2はカッタ軸の繰出機構のない歯切盤の斜視図である。歯切盤6の構成の概略を説明する。ベッド7の上にワ−ク保持ユニット8とカッタユニット9が配設されている。ワ−ク保持ユニット8はモ−タ10の稼動により、カッタユニット9方向へ進退ができる。ワ−ク主軸11はモ−タ12の稼動で回転する。カッタユニット9はモ−タ13の稼動で矢示X方向へ進退し、刃物軸頭14はモ−タ15の稼動で矢示Y方向へ上下動する。カッタ16はモ−タ17で回転し、上のモ−タ18でカッタ軸を傾斜させることができる。詳しい機構は特開平2−237718号を参照されたい。前記センサ4(リニアセンサ)とスケ−ル5(リニアスケール)は、このカッタ16の前方に位置するようにベッド7上に配設するか、刃物軸頭14に任意の支持具を介して配設する等、配設手段は限定されない。前記各モ−タはすべて図示省略したNC制御装置により制御すると共に、センサ4とスケ−ル5の駆動装置(図示省略)も同じNC制御装置で制御される。前記図1に示したL2−L1=△Lは、図2の刃物軸頭14を図中の矢示X軸,矢示Y軸方向へ移動させることによってカッタ軸3Bの半径方向の修正をすることができ、また図1における△Sは、図2におけるワ−ク保持ユニット8の矢示Z軸方向の補正で修正をすることができる。これによって、図2の歯切盤6がカッタの繰出機構を具えていなくても、カッタ刃先の再研削量に対して常に好ましい修正をすることができ、そのことは装置としてカッタの繰出機構を無用化したので、機械剛性を向上させることができた。また人間が行う手作業を無用化し、同時に歯切誤差を小さくし、調整時間を短縮することができるようになった。
【0010】
【発明の効果】
この発明は前述のように構成されたので、次のようなすぐれた効果を有している。
【0011】
A.センサとスケ−ルを用いて自動的にカッタ刃先の位置を計測し、その計測値によって機械段取の修正量を計算して自動的に機械段取を修正し歯切りをすることができるため、歯切盤から複雑なカッタ繰出機構を除去することができ、歯切盤の機械構成上特に刃物軸頭の切削抵抗を軽減させ、機械の剛性を向上させることができる効果がある。
【0012】
B.センサとスケ−ルを用いてNC制御装置を介して各駆動部を自動制御するため、人間が行う手作業を無用化し、同時にカッタ高さの誤差が常に修正されて小さくなり、調整時間も著しく短縮することができる効果がある。
【0013】
C.自動制御によりカッタ高さの誤差が調整されるので、熟練工の作業を必要とせず、常にどこでも同一の調整効果をあげることができ、均等な歯切加工を効率よくすることができる効果がある。
【図面の簡単な説明】
【図1】カッタとセンサとの関係を示す略示的平面図である。
【図2】歯切盤の斜視図である。
【図3】カッタとワ−クの関係を示す略示的平面図である。
【図4】カッタとワ−クの関係を示す略示的な正面図である。
【符号の説明】
1 ワ−ク
1A 歯
1B ワークの歯底円錐の頂点を含む平面
2 仮想歯車
2A 仮想歯車の歯先
2B クレードル軸
3 カッタ
3A 刃先
3B カッタ軸
33 再研削後のカッタ
4 センサ
5 スケ−ル
6 歯切盤
7 ベッド
8 ワ−ク保持ユニット
9 カッタユニット
10 モ−タ
11 ワ−ク主軸
12,13 モ−タ
14 刃物軸頭
15 モ−タ
16 カッタ
17,18 モ−タ
P カッタの歯底円錐の頂点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for correcting gear tooth setup of a bevel gear and a gear cutting machine, and in particular, eliminates a cutter feeding mechanism from a machine and manual work by a human, and at the same time reduces an error in the cutter height and shortens an adjustment time. The present invention relates to a bevel gear gear set-up correction method and a gear cutting machine.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a bevel gear cutting machine performs gear cutting by causing a cutter head to incline so that the pressure angle of a workpiece coincides with the pressure angle of a cutter. For example, Japanese Patent Publication No. 30-3900 is known. In the calculation of the specifications of the bevel gear and the calculation of the machine setup for gear cutting, the reference is the apex of the pitch cone of the workpiece. In the gear cutting machine, the geometric positional relationship between the cradle representing the virtual gear and the workpiece, the positional relationship of the cutter determined by the gear specifications, and the like are determined based on the apex of the pitch cone. The cutting edge of the cutter is set to a plane including the apex of the root cone. Conventional gear cutters have a feeding mechanism that can adjust the cutter spindle in the axial direction, and a gage that can confirm that the cutting edge of the cutter is in a plane that includes the apex of the root cone. Even if the height of the cutter changes by re-grinding, the cutter blade edge is adjusted to a plane including the apex of the root cone.
[0003]
[Problems to be solved by the invention]
In the conventional method, the error of the cutter height affects the tooth contact and tooth thickness of the gear to be processed, and the cutter feeding mechanism requires a screw and a clamping function for feeding, Since they are provided in the portion that directly receives the cutting force due to the machine configuration, this causes a reduction in the rigidity of the machine. Moreover, since these operations are manual operations, there is a problem that a lot of work time is required with skilled workers. In view of the above circumstances, the present invention eliminates the cutter feeding mechanism from the machine and the manual operation performed by humans, simultaneously reduces the error in the cutter height, shortens the adjustment time, and sets the reference position as the cutter height. The distance from the blade to the cutting edge is automatically measured using a sensor and scale, and the correction amount of the machine setup is calculated based on the distance to automatically correct the machine setup and gear cut. It was developed for the purpose of providing a set-up correction method and a gear cutter.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems and achieve the object, the present invention has taken the following technical means.
[0005]
A. In the method for correcting the gear set-up of the bevel gear cutting machine without the cutter shaft feeding mechanism,
A cradle shaft 2B representing a virtual gear 2 that is assumed to be engaged with the teeth 1A of the workpiece 1 is formed with the vertex P of the pitch cone of the workpiece 1 as a reference, and the center is in contact with the vertex P. The cutter shaft 3B is configured to be inclined by θ angle with respect to the cradle shaft so that the cutting edge 3A is in contact with the bottom cone surface 1B of the workpiece 1.
A sensor 4 disposed in parallel with the cutter shaft 3B and facing the cutter blade edge 3A so as to be movable forward and backward in the direction of the blade edge 3A;
A scale 5 that reads the position of the tip of the sensor 4 when the tip of the sensor 4 comes into contact with the cutting edge 3A of the cutter 3;
The position of the tooth bottom conical surface 1B of the workpiece that is in contact with the cutting edge 3A of the normal cutter 3 is stored in advance, and the difference ΔS is measured by the detection value of the sensor 4;
Based on the difference ΔS
(A) Stop position S of the sliding portion for adjusting the depth of cut of the workpiece S = difference ΔS × COS θ
(B) The distance L1 from the apex P of the pitch cone of the workpiece 1 to the center of the cutter shaft 3B when the cutting edge 3A is reground L2—the distance L1 of the center of the cutter shaft 3B from the apex P of the pitch cone of the workpiece 1 when normal △ S × SIN θ
To calculate
It is characterized by adjusting the stop position S of the sliding part for adjusting the cutting depth of the workpiece and the distance from the center of the cradle shaft by a gear gear cutting machine control device.
[0006]
B. In a bevel gear cutting machine without a cutter shaft feeding mechanism,
A cradle shaft 2B representing a virtual gear 2 that is assumed to be engaged with the teeth 1A of the workpiece 1 is formed with the vertex P of the pitch cone of the workpiece 1 as a reference, and the center is in contact with the vertex P. The cutter shaft 3B is configured to be inclined by θ angle with respect to the cradle shaft so that the cutting edge 3A is in contact with the bottom cone surface 1B of the workpiece 1.
A sensor 4 disposed in parallel with the cutter shaft 3B and facing the cutter blade edge 3A so as to be movable forward and backward in the direction of the blade edge 3A;
A scale 5 for reading the position of the tip of the sensor 4 when the tip of the sensor 4 comes into contact with the cutting edge 3A of the cutter 3;
The position of the tooth bottom conical surface 1B of the workpiece that is in contact with the cutting edge 3A of the normal cutter 3 is stored in advance, and the difference ΔS is measured by the detection value of the sensor 4;
Based on the difference ΔS
(A) Stop position S of the sliding portion for adjusting the depth of cut of the workpiece S = difference ΔS × COS θ
(B) The distance L1 from the apex P of the pitch cone of the workpiece 1 to the center of the cutter shaft 3B when the cutting edge 3A is reground L2—the distance L1 of the center of the cutter shaft 3B from the apex P of the pitch cone of the workpiece 1 when normal △ S × SIN θ
It is characterized by adjusting the stop position S of the sliding portion for adjusting the cut depth of the workpiece by the control device and the distance from the center of the cradle shaft .
[0007]
[Action]
The present invention configured as described above has the following effects. That is, when the cutter is worn by the conventional gear cutter and re-ground, error correction is performed by advancing the cutter shaft in accordance with re-grinding. For example, the amount of movement is measured by contact of a touch sensor. This is read by a scale, for example, a linear scale. As a result, the position of the cutting edge is calculated, so that the cutting depth of the workpiece and other machine setups can be automatically adjusted by the control device with a correction value corresponding to the calculation, and the gear can be cut correctly.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. 1 is a schematic plan view showing a relationship between a cutter and a sensor, FIG. 2 is a perspective view of a gear cutter, FIG. 3 is a schematic plan view showing a relationship between a work, a virtual gear, and a cutter. 4 indicates the position of the center of the cutter when the virtual gear is viewed from the front. In FIG. 3, the specifications of the bevel gear specifications and the machine setup calculation for gear cutting are based on the apex P of the pitch cone of the work 1. In the gear cutter, the center of the cradle shaft 2B representing the virtual gear 2 is in contact with the apex P of the pitch cone. The tooth 1A of the work 1 is virtually cut so as to mesh with the tooth 2A of the virtual gear 2, and the cutting edge 3A of the cutter 3 is cut so that it contacts the tooth bottom conical surface 1B. The shaft 3B is configured to be inclined. Since the cutter 3 is sharpened by cutting and is reground, the height of the cutter blade edge is changed short as shown by the phantom line 33 in FIG. As a result, as shown in FIG. 4, the center of the cutter shaft 3B when the cutting edge 3A is reground is extended by ΔL even though the distance L1 or M1 from the apex P of the pitch cone of the work 1 is correct. It becomes L2, and it shrinks by ΔM to become M2. Therefore, conventionally, the error in the height of the cutter of ΔL and ΔM has been adjusted by feeding the cutter shaft 3B toward the work 1, but these adjustment operations are skillful for manual operation. An operator was required and work time was required. In addition, the cutter feeding mechanism requires a complicated mechanism such as a feeding screw and a clamping mechanism, and this part is a part that directly receives cutting resistance, which causes a reduction in the rigidity of the machine. The present invention does not use the cutter feeding mechanism, and specifically uses a sensor 4 (specifically, a touch sensor) and a scale 5 (specifically, a linear scale) as shown in FIG. To do. In FIG. 1, the cutter shaft 3 </ b> B indicates a plane that is inclined about the θ angle with respect to the cradle shaft 2 </ b> B. The solid-line cutter 3 indicates that it is in a proper position, and the cutter whose height has been lowered by ΔS by re-grinding, that is, the cutter 33 after re-grinding is indicated by a virtual line. In the normal position cutter 3, the cutter shaft 3B is inclined at an angle of θ with respect to the cradle shaft 2B, the cutter center is located at a distance L1 from the center of the cradle shaft 2B, and the cutting edge 3A of the cutter 3 is the tooth of the workpiece 1 It is in contact with the plane 1B including the apex of the bottom cone. On the other hand, since the cutter 33 after re-grinding has a Δ difference in the height of the cutting edge 3A with respect to the solid-line cutter 3, ΔS is the cradle axial distance from the solid-line cutter 3 and the center of the cradle. There is a difference by a difference ΔL of L2−L1 in the distance from the cutter center. A sensor 4 (specifically, a touch sensor) is disposed in parallel with the cutter shaft 3B and facing the cutter blade edge 3A so as to be movable forward and backward in the direction of the blade edge 3A. The sensor 4 is advanced or retracted by a driving device such as a servo motor or ball screw by NC control (not shown). When the tip of the sensor 4 comes into contact with the cutting edge 3A of the cutter 3, its position is scaled. The data can be read with a rule 5 (specifically, a linear scale). Since the position of the plane 1B including the apex of the tooth root cone of the workpiece is set in advance in the reading value of the scale 5, the difference of ΔL is calculated and the depth of cut of the workpiece is calculated. The stop position S of the sliding portion for adjusting the height S = difference distance ΔS × COSθ, L2−L1 = ΔS × SINθ is calculated. After that, based on this numerical value, the stop position of the other machine setup part of the gear cutting machine, that is, the sliding part that adjusts the cutting depth of the workpiece, and the distance from the cradle center are adjusted by a control device (not shown). By doing so, gear cutting can be correctly performed with reference to the apex of a new cone including a plane inclined at an angle of θ with respect to the center of the cradle and in contact with the cutting edge of the cutter.
[0009]
FIG. 2 is a perspective view of a gear cutter without a cutter shaft feeding mechanism. An outline of the configuration of the gear cutter 6 will be described. A work holding unit 8 and a cutter unit 9 are disposed on the bed 7. The work holding unit 8 can move forward and backward in the direction of the cutter unit 9 by operating the motor 10. The work spindle 11 is rotated by the operation of the motor 12. The cutter unit 9 advances and retreats in the direction indicated by the arrow X when the motor 13 operates, and the cutter head 14 moves up and down in the direction indicated by the arrow Y when the motor 15 operates. The cutter 16 can be rotated by a motor 17 and the cutter shaft can be inclined by the upper motor 18. For the detailed mechanism, refer to JP-A-2-237718. The sensor 4 (linear sensor) and the scale 5 (linear scale) are arranged on the bed 7 so as to be positioned in front of the cutter 16, or are arranged on the cutter shaft head 14 via an arbitrary support. Arrangement means, such as providing, is not limited. The motors are all controlled by an NC control device (not shown), and the drive devices (not shown) for the sensor 4 and the scale 5 are also controlled by the same NC control device. L2−L1 = ΔL shown in FIG. 1 is used to correct the cutter shaft 3B in the radial direction by moving the cutter head 14 shown in FIG. 2 in the directions indicated by the arrows X and Y. 1 can be corrected by correcting the work holding unit 8 in FIG. 2 in the direction of the arrow Z-axis. Thus, even if the gear cutter 6 of FIG. 2 does not have a cutter feeding mechanism, it is possible to always make a preferable correction to the amount of regrinding of the cutter blade edge. This means that the cutter feeding mechanism is used as a device. Since it was made unnecessary, the mechanical rigidity could be improved. In addition, it has become possible to eliminate the manual work performed by humans and at the same time reduce the gear cutting error and shorten the adjustment time.
[0010]
【The invention's effect】
Since the present invention is configured as described above, it has the following excellent effects.
[0011]
A. Because the position of the cutter blade edge is automatically measured using the sensor and scale, and the amount of correction of the machine setup is calculated based on the measured value, the machine setup can be automatically corrected and gear cutting can be performed. The complicated cutter feed mechanism can be removed from the gear cutting machine, and the cutting force of the cutter shaft head can be particularly reduced in terms of the machine configuration of the gear cutting machine, and the rigidity of the machine can be improved.
[0012]
B. Since each drive unit is automatically controlled via the NC controller using sensors and scales, manual work done by humans is eliminated, and at the same time, the error in the cutter height is always corrected and reduced, and the adjustment time is also significant. There is an effect that can be shortened.
[0013]
C. Since the error of the cutter height is adjusted by automatic control, the same adjustment effect can be obtained everywhere without requiring the work of a skilled worker, and there is an effect that uniform gear cutting can be efficiently performed.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a relationship between a cutter and a sensor.
FIG. 2 is a perspective view of a gear cutter.
FIG. 3 is a schematic plan view showing a relationship between a cutter and a workpiece.
FIG. 4 is a schematic front view showing a relationship between a cutter and a workpiece.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Work 1A Tooth 1B Plane 2 including vertex of workpiece bottom cone 2 Virtual gear 2A Virtual gear tooth tip 2B Cradle shaft 3 Cutter 3A Blade tip 3B Cutter shaft 33 Cutter 4 after re-grinding 4 Sensor 5 Scale 6 Tooth Cutting board 7 Bed 8 Work holding unit 9 Cutter unit 10 Motor 11 Work spindle 12, 13 Motor 14 Cutting shaft head 15 Motor 16 Cutter 17, 18 Motor P Cone root cone Vertex of

Claims (2)

カッタ軸の繰出機構のないかさ歯車歯切盤の歯切段取り修正方法において、
ワーク1のピッチ円錐の頂点Pを基準とし、該頂点Pに中心が接して、前記ワーク1の歯1Aと噛み合うように仮想された仮想歯車2を表現するクレードル軸2Bを形成し、カッタ3の刃先3Aが前記ワーク1の歯底円錐面1Bに接するようにカッタ軸3Bがクレードル軸に対してθ角度傾斜するように構成されており、
前記カッタ軸3Bと平行に、かつカッタの刃先3Aと対面して刃先3A方向へ進退自在に配設されたセンサ4と、
該センサ4の先端部がカッタ3の刃先3Aと接触したとき、その位置を読み取るスケール5とを有し、
正常なカッタ3の刃先3Aが接するワークの歯底円錐面1Bの位置をあらかじめ記憶しておき、前記センサ4の検出値により差分ΔSを計測し、
該差分ΔSをもとに
(a)ワークの切込み深さを調整する摺動部の停止位置S=差分△S× COS θ
(b)刃先3Aを再研削したときのワーク1のピッチ円錐の頂点Pからカッタ軸3Bの中心の距離L2−正常時のワーク1のピッチ円錐の頂点Pからカッタ軸3Bの中心の距離L1=△S× SIN θ
を算出して、
歯車歯切盤の制御装置により前記ワークの切込み深さを調整する摺動部の停止位置Sと、クレードル軸の中心からの距離を調整してなることを特徴とするかさ歯車の歯切段取り修正方法。
In the method for correcting the gear set-up of the bevel gear cutting machine without the cutter shaft feeding mechanism,
A cradle shaft 2B representing a virtual gear 2 that is assumed to be engaged with the teeth 1A of the workpiece 1 is formed with the vertex P of the pitch cone of the workpiece 1 as a reference, and the center is in contact with the vertex P. The cutter shaft 3B is configured to be inclined by θ angle with respect to the cradle shaft so that the cutting edge 3A is in contact with the bottom cone surface 1B of the workpiece 1.
A sensor 4 disposed in parallel with the cutter shaft 3B and facing the cutter blade edge 3A so as to be movable forward and backward in the direction of the blade edge 3A;
A scale 5 that reads the position of the tip of the sensor 4 when the tip of the sensor 4 comes into contact with the cutting edge 3A of the cutter 3;
The position of the tooth bottom conical surface 1B of the workpiece that is in contact with the cutting edge 3A of the normal cutter 3 is stored in advance, and the difference ΔS is measured by the detection value of the sensor 4;
Based on the difference ΔS
(A) Stop position S of the sliding portion for adjusting the depth of cut of the workpiece S = difference ΔS × COS θ
(B) The distance L1 from the apex P of the pitch cone of the workpiece 1 to the center of the cutter shaft 3B when the cutting edge 3A is reground L2—the distance L1 of the center of the cutter shaft 3B from the apex P of the pitch cone of the workpiece 1 when normal △ S × SIN θ
To calculate
Gear bevel gear set-up correction characterized by adjusting the stop position S of the sliding part for adjusting the cutting depth of the workpiece and the distance from the center of the cradle shaft by a gear gear cutting machine control device Method.
カッタ軸の繰出機構のないかさ歯車歯切盤において、
ワーク1のピッチ円錐の頂点Pを基準とし、該頂点Pに中心が接して、前記ワーク1の歯1Aと噛み合うように仮想された仮想歯車2を表現するクレードル軸2Bを形成し、カッタ3の刃先3Aが前記ワーク1の歯底円錐面1Bに接するようにカッタ軸3Bがクレードル軸に対してθ角度傾斜するように構成されており、
前記カッタ軸3Bと平行に、かつカッタの刃先3Aと対面して刃先3A方向へ進退自在に配設されたセンサ4と、
該センサ4の先端部がカッタ3の刃先3Aと接触したとき、その位置を読み取るスケール5とを設け、
正常なカッタ3の刃先3Aが接するワークの歯底円錐面1Bの位置をあらかじめ記憶しておき、前記センサ4の検出値により差分ΔSを計測し、
該差分ΔSをもとに
(a)ワークの切込み深さを調整する摺動部の停止位置S=差分△S× COS θ
(b)刃先3Aを再研削したときのワーク1のピッチ円錐の頂点Pからカッタ軸3Bの中心の距離L2−正常時のワーク1のピッチ円錐の頂点Pからカッタ軸3Bの中心の距離L1=△S× SIN θを算出して、
制御装置により前記ワークの切込み深さを調整する摺動部の停止位置Sと、クレードル軸の中心からの距離を調整してなることを特徴とするかさ歯車歯切り盤。
In a bevel gear cutting machine without a cutter shaft feeding mechanism,
A cradle shaft 2B representing a virtual gear 2 that is assumed to be engaged with the teeth 1A of the workpiece 1 is formed with the vertex P of the pitch cone of the workpiece 1 as a reference, and the center is in contact with the vertex P. The cutter shaft 3B is configured to be inclined by θ angle with respect to the cradle shaft so that the cutting edge 3A is in contact with the bottom cone surface 1B of the workpiece 1.
A sensor 4 disposed in parallel with the cutter shaft 3B and facing the cutter blade edge 3A so as to be movable forward and backward in the direction of the blade edge 3A;
A scale 5 for reading the position of the tip of the sensor 4 when the tip of the sensor 4 comes into contact with the cutting edge 3A of the cutter 3;
The position of the tooth bottom conical surface 1B of the workpiece that is in contact with the cutting edge 3A of the normal cutter 3 is stored in advance, and the difference ΔS is measured by the detection value of the sensor 4;
Based on the difference ΔS
(A) Stop position S of the sliding portion for adjusting the depth of cut of the workpiece S = difference ΔS × COS θ
(B) The distance L1 from the apex P of the pitch cone of the workpiece 1 to the center of the cutter shaft 3B when the cutting edge 3A is reground L2—the distance L1 of the center of the cutter shaft 3B from the apex P of the pitch cone of the workpiece 1 when normal △ S × SIN θ
A bevel gear cutting machine characterized by adjusting the stop position S of the sliding portion for adjusting the cutting depth of the workpiece by the control device and the distance from the center of the cradle shaft .
JP19954796A 1996-07-11 1996-07-11 Method for correcting gear cut-off gear set-up and gear cutting machine Expired - Lifetime JP3768606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19954796A JP3768606B2 (en) 1996-07-11 1996-07-11 Method for correcting gear cut-off gear set-up and gear cutting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19954796A JP3768606B2 (en) 1996-07-11 1996-07-11 Method for correcting gear cut-off gear set-up and gear cutting machine

Publications (2)

Publication Number Publication Date
JPH1029115A JPH1029115A (en) 1998-02-03
JP3768606B2 true JP3768606B2 (en) 2006-04-19

Family

ID=16409648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19954796A Expired - Lifetime JP3768606B2 (en) 1996-07-11 1996-07-11 Method for correcting gear cut-off gear set-up and gear cutting machine

Country Status (1)

Country Link
JP (1) JP3768606B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6644242B2 (en) 2001-07-06 2003-11-11 Guppy Co., Ltd. Aquatic animal incubation device
JP5745754B2 (en) * 2009-07-30 2015-07-08 株式会社岡本工作機械製作所 Method for manufacturing a bevel gear using a cradle-type bevel gear generator

Also Published As

Publication number Publication date
JPH1029115A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
JP2000512378A (en) Multifunctional measuring device
US6038489A (en) Machine tools
US4947015A (en) Process for the control of the feed motion and touch-on motion of a grinding wheel
US4819515A (en) Method and apparatus for grinding saw teeth
US6109137A (en) Machine for machining workpieces with cutting teeth, in particular saw blades
JPS60201873A (en) Taper grinder
US7198441B2 (en) Method and machine for cutting spiral bevel gears
JP3768606B2 (en) Method for correcting gear cut-off gear set-up and gear cutting machine
JP2001521825A (en) Machine for machining workpieces with cutting teeth, especially saw teeth
EP0950214B1 (en) Method of controlling a machine tool
JP3489879B2 (en) Presser for machines processing wood, synthetic materials, etc.
JPH0248393B2 (en)
JP4517269B2 (en) Dicing machine with Z correction
JPH05337787A (en) Boring diameter correcting device of machine tool
JP3686393B2 (en) Router polishing machine
JPH0710481B2 (en) NC broach grinder
JP2002028863A (en) Vertical dressing method for grinding wheel and grinding device
JP4930700B2 (en) Cutting tool grinding method and cutting tool grinding apparatus
JP2001138135A (en) Device for grinding gear or gear type tool
ITVR990011A1 (en) PROCEDURE AND EQUIPMENT FOR SHARPENING THE LOWER, UPPER AND / OR FRONT LEVEL SURFACES OF THE TEETH OF A SAW.
JPS6156805A (en) Curved surface machining method
JP2001071238A (en) Method and device for regrinding end mill and regrinding program
JPS637444Y2 (en)
JPS5835388Y2 (en) Tooth thickness adjustment device for gear cutting machines
JP2620269B2 (en) Grinding control method in roll grinder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term