JP3768588B2 - Manufacturing method of tip for arc welding - Google Patents

Manufacturing method of tip for arc welding Download PDF

Info

Publication number
JP3768588B2
JP3768588B2 JP09750196A JP9750196A JP3768588B2 JP 3768588 B2 JP3768588 B2 JP 3768588B2 JP 09750196 A JP09750196 A JP 09750196A JP 9750196 A JP9750196 A JP 9750196A JP 3768588 B2 JP3768588 B2 JP 3768588B2
Authority
JP
Japan
Prior art keywords
hole
tip
forging
diameter
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09750196A
Other languages
Japanese (ja)
Other versions
JPH09253783A (en
Inventor
弘 山神
雅信 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP09750196A priority Critical patent/JP3768588B2/en
Publication of JPH09253783A publication Critical patent/JPH09253783A/en
Application granted granted Critical
Publication of JP3768588B2 publication Critical patent/JP3768588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Forging (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、アーク溶接用トーチに使用されて、軸芯部に消耗性電極ワイヤへの給電用貫通孔を有するアーク溶接用チップの製造方法に関する。
【0002】
【従来の技術】
一般に、アーク溶接用チップは図3の(A)に示されるごとく、クローム銅合金の丸棒材よりなるチップ部材101を用いて、▲1▼細径のワイヤ挿通孔103のドリル加工を施し、▲2▼溶接用チップ前半部のテーパー部104の切削加工を施し、▲3▼溶接用チップを取付けるための雄ネジ106を施し、▲4▼ワイヤ案内用のテーパー部105の加工を施し、かつ▲5▼溶接用チップを着脱するための、いわゆるスパナ掛け部102の加工を施していた。
このように、丸棒材よりなるチップ部材101に、すべて機械加工を施して溶接用チップを製造するものとすれば、溶接用チップの製造コストが割高となる。特に、電極ワイヤの直径が、例えば0.8〜1.8mmである割には、チップの長さLが,例えば40〜45mmと長いため、ドリル加工時にドリルが折れ易く、このためドリル加工を低速で行なわざるを得なかった。即ち、ドリル加工に手間取ることにより、溶接用チップの製造コストが割高となっていた。
【0003】
上記に対処するため、特公昭56−25353号公報に記載のごとく、いわゆるスエージングによる溶接用チップの製造方法が提言されている。すなわち、図3の(B)に示されるごとく、予じめ大径部内径の穴107をあけたチップ部材101の軸芯部に硬線20を挿入し、このチップ部材101をダイス21,22,……により外方より中心方向に向って衝撃加圧しつつ、チップ部材101を左方向に所望量押しこんで、チップ部材101の前半部にワイヤ挿通孔103を形成するものである。
【0004】
【発明が解決しようとする課題】
ところで、上記スエージングにより溶接用チップを製造する場合、溶接用チップの長さLに対して、上記スエージングにより製作された溶接用チップの給電長さL2 は、ドリル加工により製作された溶接用チップの給電長さL1 よりも短く、溶接時におけるこの給電部L2 が早期に摩耗するため、溶接用チップの寿命が短いという欠点があった。すなわち、溶接作業時に溶接用チップを頻繁に交換しなければならないという欠点があった。
【0005】
本発明は上述の問題に鑑みてなされたもので、その目的は、加工が簡単で、かつ電極ワイヤの給電長さを長くすることができる溶接用チップの製造方法を提供することである。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本第1の発明は、軸芯部に消耗性電極ワイヤへの給電用貫通孔を有するアーク溶接用チップの製造方法に適用される。
その特徴とするところは、所望の長さに切断した丸棒に前記給電用貫通孔よりも大径の貫通孔の切削加工を施す第1の工程と、前記丸棒の半径方向の断面形状を少なくとも1組の平行な平面を有する多角形状に鍛造する第2の工程と、前記鍛造されたチップ部材の一端側に鍛造により先細のテーパー部を形成する第3の工程と、前記鍛造により縮径された孔を下孔として所望径の給電用貫通孔を施す切削加工および前記チップ部材の両端部を仕上加工する端末加工よりなる第4の工程と、前記第3および第4の工程と相前後して前記チップ部材の他端側に雄ネジを形成する第5の工程とからなることである。
【0007】
さらに、本第2の発明は、本第1の発明において、前記第5の工程が旋盤又は鍛造によるネジ下加工と、転造によるネジ加工とよりなることを特徴としている。
【0008】
本第3の発明は、本第1の発明において、前記第5の工程が旋盤又は鍛造によるネジ下加工と、切削によるネジ加工とよりなることを特徴としている。
【0009】
まず、第1の工程において、給電用貫通孔よりも大径の貫通孔の切削加工,すなわちドリル加工を施すため、小径の給電用貫通孔をドリル加工する場合に比べて加工が簡単となる。
例えば、目的とする給電用貫通孔の直径が0.8mmの場合、2.0〜2.2mmのドリルを用いることができる。すなわち2.0mmのドリルとすると0.8mmのドリルに対して面積比で約6.2倍となるため、大径の貫通孔の加工を極めて容易に行なうことができる。
勿論、チップ部材の材料は高価なクローム銅合金であるが、入手し易い汎用の丸棒であるため、材料費を安価とすることができる。
【0010】
上記大径の貫通孔が施された丸棒が、第2の工程において、半径方向の断面形状が少なくとも1組の平行な平面を有する多角形状に鍛造され、この後、第3の工程において、チップ部材の一端側に鍛造により先細のテーパー部が形成される。
上記第2および第3の工程により、チップ部材が半径方向に関して所望の形状に形成されると共に、チップ部材が長軸方向に伸展されて所望の形状に形成される。
【0011】
すなわち、大径の貫通孔が施されたチップ部材が、上記第2および第3の工程により、半径方向と長軸方向とに伸展加工されるため、チップ部材の金属組織が稠密化される。
このように、上記鍛造により、チップ部材が稠密化されて、チップ部材の導電率、抗張力および硬度が向上する。
【0012】
他方、チップ部材の軸芯部に着目した場合、上記第2および第3の工程により、チップ部材の軸芯部の貫通孔は、ほぼ塞がれた状態に縮径される。
【0013】
この後、上記第4の工程と、上記第3および第4の工程と相前後して第5の工程とが適宜に施されるが、本発明の特徴は、上記第4の工程において特に顕著に表われる。
すなわち、上記第4の工程において、チップ部材の軸芯部に所望径の給電用貫通孔が切削により施される。
【0014】
ところで、図4に示されるごとく、一般にドリルの先端には先端角αが118度の刃面が形成され、この刃面の先端部には110〜135度の、いわゆるチゼル角θをなす半径方向のチゼルエッジが形成されて、ドリル加工時には、このチゼルエッジにより孔の軸芯部が切削されて、所望の孔加工が施される。
【0015】
勿論、チゼルエッジは軸芯近傍に設けられているため回転速度が遅く、ドリル加工時には、ドリルの外周部に比べて切削力が小さい。
しかも、マクロ的に見れば、ドリル加工時には、ドリル軸芯の回転は実質的にゼロに近いため、この軸芯から僅かに半径方向に離れたチゼルエッジ部により軸芯近傍を切削することになる。
【0016】
このため、クローム銅の中実の棒材よりなるチップ部材に小径のドリル加工を施す場合には、切削力が実質的にゼロに近いチゼルエッジに相当するチップ部材の軸芯部がドリル加工の妨げとなり、しかも材質が硬いクローム銅合金であるため、ドリル加工のスピードが遅く、かつドリルが折れ易かった。
【0017】
ところで、本発明においては、第4の工程において、目的とする小径の給電用貫通孔を切削する寸前の状態は、上記第2および第3の工程により、すなわち鍛造により、チップ部材の軸芯部に施された大径の貫通孔が縮径されてほぼ塞がれた状態となっている。
この状態でチップ部材の軸芯部に所望径の給電用貫通孔を穿設するドリル加工が施される。
【0018】
このドリル加工時には、チップ部材の軸芯部に残存する塞鎖状の孔跡部は、マクロ的に見れば軸芯部が孔明きの状態と等価となっているため、チゼルエッジの軸芯部におけるドリル加工の妨げとなる状態が解消される。
さらに、チップ部材の軸芯部に残存する塞鎖状の孔跡部が長軸方向に延在されているため、当該孔跡部が、ドリル加工時に、ドリル先端の長軸方向の案内となって、ドリル加工作業の促進につながっている。
【0019】
【発明の実施の形態】
以下、本発明を図示の実施例により詳細に説明する。
図1および図2において、まず、図1の(A)に示されるごとく、第1の工程として、所望の長さに切断されたクローム銅合金よりなる中実の丸棒101に、目的とする給電用貫通孔103よりも大径の貫通孔107の切削加工,すなわちドリル加工が施される。
【0020】
次に、図1の(B)および図2に示されるごとく、第2の工程として、半径方向に揺動される鍛造工具31,32,……により、チップ部材101の半径方向の断面形状が少なくとも1組の平行な平面を有する多角形状に鍛造される。
この場合、多角形状としては、四角形状,六角形状あるいは八角形状に形成されるが、後述する鍛造効果と、製造後のアーク溶接用チップの利用状態とを勘案すれば、最も好ましい形状は六角形状であり、次に好ましい形状は四角形状である。
【0021】
次に、図1の(C)に示されるごとく、第3の工程として、チップ部材101の一端側に鍛造により先細のテーパー部104が形成される。
上記第2および第3の工程により、チップ部材101が半径方向に関して所望の形状に形成されると共に、チップ部材101が長軸方向に伸展されて所望の形状に形成される。
チップ部材101の軸芯部に着目した場合、上記第2および第3の工程により、チップ部材の軸芯部の貫通孔107は、ほぼ塞がれた状態に縮径された、孔跡部108とされる。
【0022】
次に、チップ部材101の他端部に、例えばネジ下加工が施されるが、この件については後述する。
【0023】
第3の工程の後、図1の(E1 )および(E2 )に示されるごとく、第4の工程として、前記鍛造によりほぼ塞がれた状態に縮径されたチップ部材101の軸芯部に所望径の給電用貫通孔103を施す切削加工、およびチップ部材101の両端部加工,ワイヤ案内用のテーパー加工105等の仕上加工をする端末加工が実施される。
【0024】
この後、例えば図1の(F)に示されるごとく、チップ部材101の端部に雄ネジ106を形成する第5の工程が実施される。
このチップ部材101の端部に雄ネジを形成する第5の工程は、図1の(D)と(F)とにより実施される。
以上により、アーク溶接用チップが製造される。
【0025】
上記本発明に係る製造方法によれば、
▲1▼ 第1の工程において、丸棒に、目的とする給電用貫通孔103よりも大径の貫通孔107のドリル加工が施され、例えば、目的とする給電用貫通孔の直径が0.8mmの場合、2.0〜2.2mmのドリルを用いることができる。
すなわち2.0mmのドリルとすると0.8mmのドリルに対して面積比で約6.2倍であるため、ドリルの折損に留意することなく迅速にドリル加工を行なうことができる。換言すれば大径の貫通孔107の加工を極めて容易に行なうことができる。
勿論、チップ部材の材料は高価なクローム銅合金であるが、入手し易い汎用の丸棒であるため、材料費を安価とすることができる。
【0026】
▲2▼ 大径の貫通孔が施されたチップ部材が、上記第2および第3の工程により、半径方向と長軸方向とに伸展加工されるため、チップ部材の金属組織が稠密化される。
このように、上記鍛造により、チップ部材が稠密化されて、チップ部材の導電率、抗張力および硬度が向上する。
【0027】
▲3▼ 上記第4の工程において、本発明の特徴が特に顕著に表われる。
一般に図4に示されるごとく、ドリル4の先端には先端角αが118度の刃面が形成され、この刃面の先端部には110〜135度のいわゆるチゼル角θをなす半径方向のチゼルエッジ5が形成されて、ドリル加工時には、このチゼルエッジ5により孔の軸芯部が切削されて、所望の孔加工が施される。
【0028】
勿論、チゼルエッジ5は軸芯近傍に設けられているため回転速度が遅く、ドリル加工時には、ドリルの外周部に比べて切削力が小さい。
しかも、マクロ的に見れば、ドリル加工時には、ドリル軸芯の回転は実質的にゼロに近いため、この軸芯から僅かに半径方向に離れたチゼルエッジ部により軸芯近傍を切削することになる。
【0029】
このため、クローム銅の中実の棒材よりなるチップ部材に小径のドリル加工を施す場合には、切削力が実質的にゼロに近いチゼルエッジに相当するチップ部材の軸芯部がドリル加工の妨げとなり、しかも材質が硬いクローム銅合金であるため、ドリル加工のスピードが遅く、かつドリルが折れ易かった。
【0030】
ところで、本発明においては、第4の工程において、目的とする小径の給電用貫通孔103を切削する寸前の状態は、上記第2および第3の工程により、すなわち鍛造により、チップ部材101の軸芯部に施された大径の貫通孔107が縮径されて、ほぼ塞がれた状態となっている。
【0031】
この状態でチップ部材101の軸芯部に所望径の給電用貫通孔103を穿設するドリル加工が施されるが、このドリル加工時には、チップ部材101の軸芯部に残存する塞鎖状の孔跡部108は、マクロ的に見れば軸芯部が孔明きの状態と等価となっているため、チゼルエッジの軸芯部におけるドリル加工の妨げとなる状態が解消される。
さらに、チップ部材の軸芯部に残存する塞鎖状の孔跡部108が長軸方向に延在されているため、当該孔跡部108が、ドリル加工時にドリル先端の長軸方向の案内となって、ドリル加工作業の促進につながっている。
【0032】
ちなみに、第4の工程において、チップ部材101の軸芯部に残存する塞鎖状の孔跡部108に所望径の給電用貫通孔103をドリル加工する場合、例えば0.8mmのドリル加工する時間は、クローム銅合金の中実の棒材に直接ドリル加工するときの時間の1/4 〜1/3 程度であった。
【0033】
なお、チップ部材101の端部に雄ネジ106を形成する第5の工程は、図1の(D)と(F)とにより実施されるとして説明したが、例えば旋盤又は鍛造によるネジ下加工と、この後、ネジ下加工部を切削又は転造によるネジ加工とを施すことができる。
【0034】
この場合、鍛造によりネジ下加工を施し、このネジ下加工部を転造によりネジ加工するものとすれば、チップ部材の材料を有効に利用でき、かつ雄ネジを迅速に形成することができる。
【0035】
勿論、ネジ下加工を旋盤により行なうものとすれば、鍛造機が不要であり、かつ手練れた旋盤作業であるため、加工を平易に行なうことができる。勿論この場合、雄ネジ加工を転造とすれば、ネジ形成時間が短縮する。
【0036】
上記に拘わらず、雄ネジ加工を鍛造により一気に施すこともできる。なお、チップ部材の一端部に雄ネジを形成する第5工程は、前記第3および第4工程と相前後して適宜に施すことができる。
勿論、上記において第4の工程における,チップ部材101の両端部加工,ワイヤ案内用のテーパー加工105等の仕上加工をする端末加工は、チップ製造の最終工程とすることができる。
【0037】
以上要するに、第1の工程において、中実の丸棒に、目的とする給電用貫通孔103よりも大径の貫通孔107のドリル加工を極めて容易に行なうことができることと相俟って、第4の工程において、チップ部材101の軸芯部に残存する塞鎖状の孔跡部108に所望径の給電用貫通孔103を短時間でドリル加工することができるため、加工が簡単で、かつドリルにより形成されたアーク溶接用チップの給電部は、従来のスエージング加工により製作されたものよりも長く形成され、しかも、鍛造によりチップ部材が稠密化されて、チップ部材の導電率、抗張力および硬度が向上するため、アーク溶接用チップとしての寿命が長くなる。
【0038】
【発明の効果】
以上の説明で明らかなように、本第1の発明に係るアーク溶接用チップの製造方法は、軸芯部に消耗性電極ワイヤへの給電用貫通孔を有するアーク溶接用チップの製造方法であって、
所望の長さに切断した丸棒に前記給電用貫通孔よりも大径の貫通孔の切削加工を施す第1の工程と、前記丸棒の半径方向の断面形状を少なくとも1組の平行な平面を有する多角形状に鍛造する第2の工程と、前記鍛造されたチップ部材の一端側に鍛造により先細のテーパー部を形成する第3の工程と、前記鍛造により縮径された孔を下孔として所望径の給電用貫通孔を施す切削加工および前記チップ部材の両端部を仕上加工する端末加工よりなる第4の工程と、前記第3および第4の工程と相前後して前記チップ部材の他端側に雄ネジを形成する第5の工程とよりなるため、
第1の工程において、丸棒に、目的とする給電用貫通孔よりも大径の貫通孔のドリル加工を極めて容易に行なうことができる
【0039】
さらに、第4の工程において、チップ部材の軸芯部に所望径の給電用貫通孔を穿設するに際して、
チップ部材の軸芯部に残存する塞鎖状の孔跡部は、マクロ的に見れば軸芯部が孔明きの状態と等価となっているため、チゼルエッジの軸芯部におけるドリル加工の妨げとなる状態が生起することがなく、
かつ、チップ部材の長軸方向に延在されている、軸芯部に残存する塞鎖状の孔跡部が、ドリル加工時に、ドリル先端の長軸方向の案内となって、ドリル加工作業の促進につながっているため、チップ部材の軸芯部に残存する塞鎖状の孔跡部に所望径の給電用貫通孔を短時間でドリル加工することができる。
【0040】
上記のごとく、各ドリル加工が容易に短時間で行なうことができるため、加工が簡単で、かつドリルにより形成されたアーク溶接用チップの給電部は、従来のスエージング加工により製作されたものよりも長く形成されることと相俟って、
鍛造により、チップ部材が稠密化されて、チップ部材の導電率、抗張力および硬度が向上するため、
アーク溶接用チップとしての寿命が長いアーク溶接用チップの製造方法を実現することができる。
【0041】
さらに、本第2の発明に係るアーク溶接用チップの製造方法は、本第1の発明において、前記第5の工程は旋盤又は鍛造によるネジ下加工と、転造によるネジ加工とよりなるため、ネジ形成時間が短縮される。
【図面の簡単な説明】
【図1】本発明に係る溶接用チップの製造順序を示す斜視図
【図2】図1(B)におけるII−II線断面矢視図
【図3】従来例を示す正面断面図
【図4】一般的なドリル加工の説明図である。
【符号の説明】
1…溶接用チップ, 101…チップ部材
102…スパナ掛け部, 103…ワイヤ挿通孔
106…雄ネジ, 107…貫通孔
108…孔跡部
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a tip for arc welding that is used in an arc welding torch and has a through-hole for feeding power to a consumable electrode wire in an axial core portion.
[0002]
[Prior art]
In general, as shown in FIG. 3A, an arc welding tip is drilled with a wire insertion hole 103 having a small diameter by using a tip member 101 made of a chrome copper alloy round bar, (2) Cutting the taper portion 104 in the first half of the welding tip, (3) Applying the male screw 106 for attaching the welding tip, (4) Processing the taper portion 105 for wire guidance, and (5) Processing of a so-called spanner hanging portion 102 for attaching / detaching the welding tip was performed.
In this way, if the tip member 101 made of a round bar material is all machined to produce a welding tip, the manufacturing cost of the welding tip becomes high. In particular, although the electrode wire has a diameter of, for example, 0.8 to 1.8 mm, the tip length L is, for example, 40 to 45 mm, so that the drill is easily broken during drilling. I had to do it at low speed. That is, the manufacturing cost of the welding tip has been increased by taking time and effort for drilling.
[0003]
In order to cope with the above, a method for manufacturing a welding tip by so-called swaging has been proposed as described in Japanese Patent Publication No. 56-25353. That is, as shown in FIG. 3B, the hard wire 20 is inserted into the shaft core portion of the tip member 101 in which a hole 107 having a large-diameter inner diameter is formed in advance, and the tip member 101 is inserted into the dies 21 and 22. ...,..., By pressing the tip member 101 to the left by a desired amount while impact-pressing from the outside toward the center direction to form a wire insertion hole 103 in the front half of the tip member 101.
[0004]
[Problems to be solved by the invention]
By the way, when the welding tip is manufactured by the above swaging, the feeding length L 2 of the welding tip manufactured by the swaging with respect to the length L of the welding tip is equal to the welding length manufactured by drilling. shorter than the feed length L 1 of the use chip, the power feeding section L 2 at the time of welding to wear prematurely, has a drawback that a short life of the welding tip. That is, there is a drawback that the welding tips must be frequently replaced during the welding operation.
[0005]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for manufacturing a welding tip that is easy to process and can increase the feeding length of an electrode wire.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the first aspect of the present invention is applied to a method for manufacturing an arc welding tip having a feed through hole for a consumable electrode wire in an axial core portion.
The feature is that a first step of cutting a through hole having a diameter larger than the through hole for feeding to a round bar cut to a desired length, and a cross-sectional shape in the radial direction of the round bar A second step of forging into a polygonal shape having at least one set of parallel planes; a third step of forming a tapered portion by forging on one end of the forged chip member; A fourth step comprising a cutting process for forming a feed through hole of a desired diameter with the formed hole as a lower hole and a terminal process for finishing both ends of the tip member; and the third and fourth steps. And a fifth step of forming a male screw on the other end side of the chip member.
[0007]
Furthermore, the second invention is characterized in that, in the first invention, the fifth step comprises a screwing process by lathe or forging and a screw process by rolling.
[0008]
According to a third aspect of the invention, in the first aspect of the invention, the fifth step includes a threading process by lathe or forging and a threading process by cutting.
[0009]
First, in the first step, cutting of a through-hole having a diameter larger than that of the power supply through-hole, that is, drilling is performed, so that the processing becomes simpler than the case of drilling a small-diameter power supply through-hole.
For example, when the diameter of the target power supply through hole is 0.8 mm, a drill of 2.0 to 2.2 mm can be used. That is, if the drill is 2.0 mm, the area ratio is about 6.2 times that of the 0.8 mm drill, so that processing of a large-diameter through hole can be performed very easily.
Of course, the material of the chip member is an expensive chrome copper alloy, but since it is an easily available general-purpose round bar, the material cost can be reduced.
[0010]
In the second step, the round bar provided with the large-diameter through-hole is forged into a polygonal shape in which the radial cross-sectional shape has at least one set of parallel planes. Thereafter, in the third step, A tapered taper portion is formed on one end side of the chip member by forging.
By the second and third steps, the tip member is formed in a desired shape in the radial direction, and the tip member is extended in the major axis direction to be formed in the desired shape.
[0011]
That is, since the tip member provided with the large-diameter through hole is stretched in the radial direction and the long axis direction by the second and third steps, the metal structure of the tip member is densified.
As described above, the forging densifies the tip member and improves the conductivity, tensile strength, and hardness of the tip member.
[0012]
On the other hand, when attention is paid to the shaft core portion of the chip member, the diameter of the through hole in the shaft core portion of the chip member is reduced to a substantially closed state by the second and third steps.
[0013]
Thereafter, the fourth step and the fifth step are appropriately performed before and after the third and fourth steps, but the features of the present invention are particularly remarkable in the fourth step. Appears in
That is, in the fourth step, a power supply through-hole having a desired diameter is formed by cutting the shaft core portion of the chip member.
[0014]
By the way, as shown in FIG. 4, a blade surface having a tip angle α of 118 degrees is generally formed at the tip of the drill, and a radial direction forming a so-called chisel angle θ of 110 to 135 degrees is formed at the tip of the blade surface. The chisel edge is formed, and at the time of drilling, the axial center portion of the hole is cut by the chisel edge, and a desired hole machining is performed.
[0015]
Of course, since the chisel edge is provided in the vicinity of the shaft center, the rotational speed is low, and the cutting force is smaller than that of the outer peripheral portion of the drill during drilling.
Moreover, from a macro perspective, during drilling, the rotation of the drill shaft is substantially close to zero, so the vicinity of the shaft is cut by a chisel edge portion slightly separated from the shaft in the radial direction.
[0016]
For this reason, when a small-diameter drill is performed on a chip member made of a solid bar material of chrome copper, the shaft core portion of the chip member corresponding to a chisel edge whose cutting force is substantially close to zero prevents drilling. Moreover, since the material is a hard chrome copper alloy, the drilling speed was slow and the drill was easy to break.
[0017]
By the way, in the present invention, in the fourth step, the state just before cutting the target small-diameter power supply through hole is the axial portion of the tip member by the second and third steps, that is, by forging. The large-diameter through-hole formed in is reduced in diameter and is almost closed.
In this state, drilling is performed to drill a power supply through-hole having a desired diameter in the shaft core portion of the tip member.
[0018]
At the time of this drilling process, the closed hole trace portion remaining on the shaft core portion of the tip member is equivalent to a state where the shaft core portion is perforated when viewed macroscopically. The state that hinders processing is eliminated.
Further, since the closed hole trace portion remaining in the shaft core portion of the tip member extends in the long axis direction, the hole trace portion serves as a guide in the long axis direction of the drill tip during drilling, This has led to the promotion of drilling work.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
In FIG. 1 and FIG. 2, first, as shown in FIG. 1A, as a first step, a solid round bar 101 made of a chrome copper alloy cut to a desired length is used as a target. Cutting of the through hole 107 having a diameter larger than that of the power supply through hole 103, that is, drilling is performed.
[0020]
Next, as shown in FIG. 1B and FIG. 2, as a second step, the radial cross-sectional shape of the tip member 101 is determined by the forging tools 31, 32,. Forged into a polygonal shape having at least one set of parallel planes.
In this case, the polygonal shape is formed in a quadrangular shape, a hexagonal shape, or an octagonal shape, but the most preferable shape is a hexagonal shape considering the forging effect described later and the state of use of the arc welding tip after manufacture. The next preferred shape is a square shape.
[0021]
Next, as shown in FIG. 1C, as a third step, a tapered tapered portion 104 is formed on one end side of the chip member 101 by forging.
By the second and third steps, the tip member 101 is formed in a desired shape in the radial direction, and the tip member 101 is extended in the long axis direction to be formed in the desired shape.
When attention is paid to the axial part of the tip member 101, the through hole 107 of the axial part of the tip member is reduced to a substantially closed state by the second and third steps. Is done.
[0022]
Next, the other end portion of the chip member 101 is subjected to, for example, screwing processing, which will be described later.
[0023]
After the third step, as shown in (E 1 ) and (E 2 ) of FIG. 1, as the fourth step, the shaft core of the tip member 101 whose diameter has been reduced to the substantially closed state by the forging. Cutting processing for forming a feed through hole 103 with a desired diameter in the portion, and end processing for finishing processing such as processing of both ends of the chip member 101 and taper processing 105 for wire guidance are performed.
[0024]
Thereafter, as shown in FIG. 1F, for example, a fifth step of forming the male screw 106 at the end of the chip member 101 is performed.
The fifth step of forming a male screw at the end of the chip member 101 is performed by (D) and (F) in FIG.
Thus, the arc welding tip is manufactured.
[0025]
According to the manufacturing method of the present invention,
(1) In the first step, the round bar is drilled with a through hole 107 having a diameter larger than that of the target power supply through hole 103. For example, the diameter of the target power supply through hole is 0. 0. In the case of 8 mm, a drill of 2.0 to 2.2 mm can be used.
That is, if the drill is 2.0 mm, the area ratio is about 6.2 times that of the 0.8 mm drill, so that drilling can be performed quickly without paying attention to breakage of the drill. In other words, the processing of the large-diameter through hole 107 can be performed very easily.
Of course, the material of the chip member is an expensive chrome copper alloy, but since it is an easily available general-purpose round bar, the material cost can be reduced.
[0026]
(2) Since the tip member provided with the large-diameter through hole is stretched in the radial direction and the major axis direction by the second and third steps, the metal structure of the tip member is densified. .
As described above, the forging densifies the tip member and improves the conductivity, tensile strength, and hardness of the tip member.
[0027]
(3) In the fourth step, the features of the present invention are particularly prominent.
In general, as shown in FIG. 4, a blade surface having a tip angle α of 118 degrees is formed at the tip of the drill 4, and a radial chisel edge forming a so-called chisel angle θ of 110 to 135 degrees is formed at the tip of the blade surface. 5 is formed, and at the time of drilling, the axial center portion of the hole is cut by the chisel edge 5 and desired hole processing is performed.
[0028]
Of course, since the chisel edge 5 is provided in the vicinity of the shaft center, the rotational speed is slow, and the cutting force is smaller than that of the outer peripheral portion of the drill during drilling.
Moreover, from a macro perspective, during drilling, the rotation of the drill shaft is substantially close to zero, so the vicinity of the shaft is cut by a chisel edge portion slightly separated from the shaft in the radial direction.
[0029]
For this reason, when a small-diameter drill is performed on a chip member made of a solid bar material of chrome copper, the shaft core portion of the chip member corresponding to a chisel edge whose cutting force is substantially close to zero prevents drilling. Moreover, since the material is a hard chrome copper alloy, the drilling speed was slow and the drill was easy to break.
[0030]
By the way, in the present invention, in the fourth step, the state just before the target small-diameter feed through hole 103 is cut is the axis of the tip member 101 by the second and third steps, that is, by forging. The large-diameter through-hole 107 provided in the core portion is reduced in diameter and is almost closed.
[0031]
In this state, a drilling process is performed in which a power supply through-hole 103 having a desired diameter is drilled in the shaft core part of the tip member 101. Since the shaft core portion is equivalent to a perforated state when viewed macroscopically, the state of the drill core portion in the shaft core portion of the chisel edge is eliminated.
Further, since the closed hole trace 108 remaining in the shaft core portion of the tip member extends in the long axis direction, the hole trace 108 serves as a guide in the long axis direction of the drill tip during drilling. , Leading to the promotion of drilling work.
[0032]
Incidentally, in the fourth step, when drilling the feed through hole 103 having a desired diameter in the closed hole trace portion 108 remaining in the shaft core portion of the tip member 101, for example, the time for drilling 0.8 mm is as follows. It was about 1/4 to 1/3 of the time when drilling directly into a solid bar of chrome copper alloy.
[0033]
Note that the fifth step of forming the male screw 106 at the end of the chip member 101 has been described as being performed by (D) and (F) of FIG. Thereafter, the threaded portion can be subjected to threading by cutting or rolling.
[0034]
In this case, if the unthreading process is performed by forging and the unthreading part is threaded by rolling, the material of the chip member can be used effectively, and the male thread can be formed quickly.
[0035]
Of course, if the under-screw processing is performed by a lathe, the forging machine is not necessary and the lathe operation is performed by hand, so that the processing can be easily performed. Of course, in this case, if the male thread processing is rolled, the thread formation time is shortened.
[0036]
Regardless of the above, male thread processing can also be performed at once by forging. In addition, the 5th process of forming a male screw in the one end part of a chip | tip member can be suitably given before and after the said 3rd and 4th process.
Needless to say, the end processing for finishing the ends of the chip member 101 and the taper processing 105 for guiding the wire in the fourth step in the above may be the final step of chip manufacturing.
[0037]
In short, in the first step, in combination with the fact that drilling of the through hole 107 having a diameter larger than that of the target through hole 103 for power supply can be performed extremely easily in the solid round bar, In the process 4, since the power supply through-hole 103 having a desired diameter can be drilled in the closed hole trace portion 108 remaining in the shaft core portion of the tip member 101 in a short time, the machining is simple and the drill is performed. The power supply part of the tip for arc welding formed by is formed longer than that manufactured by the conventional swaging process, and the tip member is densified by forging, and the conductivity, tensile strength and hardness of the tip member Therefore, the life as an arc welding tip is prolonged.
[0038]
【The invention's effect】
As is clear from the above description, the arc welding tip manufacturing method according to the first aspect of the present invention is an arc welding tip manufacturing method having a feedthrough hole for a consumable electrode wire in an axial portion. And
A first step of cutting a through-hole having a diameter larger than the through-hole for feeding to a round bar cut to a desired length; and at least one set of parallel planes in a radial cross-sectional shape of the round bar A second step of forging into a polygonal shape having a third shape, a third step of forming a tapered tapered portion on one end side of the forged tip member by forging, and a hole having a diameter reduced by the forging as a pilot hole A fourth step consisting of a cutting process for providing a power feed through hole of a desired diameter and a terminal process for finishing both ends of the chip member; and the other of the chip member before and after the third and fourth processes. Because it consists of a fifth step of forming a male screw on the end side,
In the first step, it is possible to extremely easily drill a through hole having a diameter larger than that of the target through hole for power supply in the round bar.
Furthermore, in the fourth step, when the through-hole for feeding with a desired diameter is drilled in the axial center portion of the chip member,
Since the closed hole trace portion remaining on the shaft core portion of the tip member is equivalent to a state in which the shaft core portion is perforated when viewed macroscopically, it hinders drilling at the shaft core portion of the chisel edge. The situation never happens,
In addition, the closed hole traces remaining in the shaft core portion extending in the long axis direction of the tip member serve as a guide in the long axis direction of the drill tip during drilling, thereby accelerating the drilling work. Therefore, it is possible to drill a power supply through-hole having a desired diameter in a closed hole trace portion remaining in the shaft core portion of the tip member in a short time.
[0040]
As described above, since each drilling can be easily performed in a short time, the machining is simple, and the power supply part of the arc welding tip formed by the drill is more than that produced by the conventional swaging process. Coupled with the formation of
Forging densifies the chip member and improves the conductivity, tensile strength and hardness of the chip member.
An arc welding tip manufacturing method having a long life as an arc welding tip can be realized.
[0041]
Further, in the manufacturing method of the tip for arc welding according to the second invention, in the first invention, the fifth step consists of under-screw processing by lathe or forging and screw processing by rolling, Screw formation time is shortened.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a manufacturing sequence of a welding tip according to the present invention. FIG. 2 is a sectional view taken along the line II-II in FIG. 1B. FIG. 3 is a front sectional view showing a conventional example. It is explanatory drawing of general drill processing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Welding tip, 101 ... Tip member 102 ... Spanner hooking part, 103 ... Wire insertion hole 106 ... Male screw, 107 ... Through-hole 108 ... Hole trace part

Claims (3)

軸芯部に消耗性電極ワイヤへの給電用貫通孔を有するアーク溶接用チップの製造方法において、所望の長さに切断した丸棒に前記給電用貫通孔よりも大径の貫通孔の切削加工を施す第1の工程と、前記丸棒の半径方向の断面形状を少なくとも1組の平行な平面を有する多角形状に形成すると共に前記丸棒が長軸方向に所望の長さ伸展し前記大径の貫通孔がほぼ寒がれた縮径状態の孔に鍛造する第2の工程と、前記鍛造されたチップ部材の一端側に鍛造により先細のテーパー部を形成する第3の工程と、前記鍛造により縮径された孔を下孔として所望径の給電用貫通孔を施す切削加工および前記チップ部材の両端部を仕上加工する端末加工よりなる第4の工程と、前記第3および第4の工程と相前後して前記チップ部材の他端側に雄ネジを形成する第5の工程とよりなるアーク溶接用チップの製造方法。In a method for manufacturing an arc welding tip having a feed through hole for a consumable electrode wire in a shaft core, a round bar cut to a desired length is cut into a through hole having a diameter larger than that of the feed through hole. And forming the cross section of the round bar in the radial direction into a polygonal shape having at least one set of parallel planes and extending the round bar to a desired length in the major axis direction. A second step of forging the through-hole into a hole in a reduced diameter state that is substantially cooled, a third step of forming a tapered taper portion on one end side of the forged tip member by forging, and the forging A fourth process comprising a cutting process in which a through-hole for power supply having a desired diameter is formed with a hole reduced in diameter as a lower hole and a terminal process in which both ends of the tip member are finished, and the third and fourth processes A male screw is formed on the other end of the tip member. Fifth step and become more arc welding chip manufacturing method of that. 前記第5の工程は旋盤又は鍛造によるネジ下加工と、転造によるネジ加工とよりなる請求項1に記載のアーク溶接用チップの製造方法。The arc welding tip manufacturing method according to claim 1, wherein the fifth step includes a threading process by lathe or forging and a threading process by rolling. 前記第5の工程は旋盤又は鍛造によるネジ下加工と、切削によるネジ加工とよりなる請求項1に記載のアーク溶接用チップの製造方法。2. The method for manufacturing a tip for arc welding according to claim 1, wherein the fifth step includes a threading process by lathe or forging and a threading process by cutting.
JP09750196A 1996-03-26 1996-03-26 Manufacturing method of tip for arc welding Expired - Lifetime JP3768588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09750196A JP3768588B2 (en) 1996-03-26 1996-03-26 Manufacturing method of tip for arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09750196A JP3768588B2 (en) 1996-03-26 1996-03-26 Manufacturing method of tip for arc welding

Publications (2)

Publication Number Publication Date
JPH09253783A JPH09253783A (en) 1997-09-30
JP3768588B2 true JP3768588B2 (en) 2006-04-19

Family

ID=14194019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09750196A Expired - Lifetime JP3768588B2 (en) 1996-03-26 1996-03-26 Manufacturing method of tip for arc welding

Country Status (1)

Country Link
JP (1) JP3768588B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224792A (en) * 2001-01-31 2002-08-13 Furukawa Electric Co Ltd:The Method for manufacturing hollow body of polygonal section and hollow body of polygonal section manufactured in the same method

Also Published As

Publication number Publication date
JPH09253783A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP3315988B2 (en) Spade drilling tool
EP2092995B1 (en) Self-drilling screw and method of making the same
US4116578A (en) Rotary tool for making holes
US7114891B2 (en) Thread forming tool with annular ridge
US4937428A (en) Consumable electrode type arc welding contact tip
US5971674A (en) Deep hole drill bit
JPH08504370A (en) Spiral drill with coolant channel and method of making the same
JP3768588B2 (en) Manufacturing method of tip for arc welding
EP0399334A2 (en) Method of producing contact tip
US5701779A (en) Chuck having formed jaws
JP3710876B2 (en) Manufacturing method of tip for arc welding
EP0507474A1 (en) method of manufacture of a long point drill screw
US4245846A (en) One-piece collet
CN215786995U (en) Composite forming milling cutter
JPH0655273A (en) Manufacture of contact tip for welding machine
US4249748A (en) One-piece collet and process for making same
JP2001514080A (en) Flow nozzle
JP3808455B2 (en) Chip cutting tool for tapping and female thread machining method
JPH10113742A (en) Manufacture of collet for tig torch
JPS59183985A (en) Welding tip and its production
JPH0647552A (en) Production of tip for welding
JPH0377740A (en) Forging punch
JP2006255765A (en) Method for manufacturing screw parts with through hole formed therein
GB2178986A (en) Drill screw
JPH088042Y2 (en) Structure of tool attachment part on the spindle of machine tool

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050330

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

EXPY Cancellation because of completion of term