JP3768450B2 - Manufacturing method of optical waveguide component - Google Patents

Manufacturing method of optical waveguide component Download PDF

Info

Publication number
JP3768450B2
JP3768450B2 JP2002037108A JP2002037108A JP3768450B2 JP 3768450 B2 JP3768450 B2 JP 3768450B2 JP 2002037108 A JP2002037108 A JP 2002037108A JP 2002037108 A JP2002037108 A JP 2002037108A JP 3768450 B2 JP3768450 B2 JP 3768450B2
Authority
JP
Japan
Prior art keywords
optical waveguide
propagation loss
substrate
heat treatment
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002037108A
Other languages
Japanese (ja)
Other versions
JP2003240994A (en
Inventor
武司 福田
紫文 石川
朋子 四方
健 佐久間
英行 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002037108A priority Critical patent/JP3768450B2/en
Publication of JP2003240994A publication Critical patent/JP2003240994A/en
Application granted granted Critical
Publication of JP3768450B2 publication Critical patent/JP3768450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信分野において用いられる光導波路部品の製造方法に関し、特に、損失を低減し、損失の偏波依存性を抑制した光導波路部品の製造方法に関する。
【0002】
【従来の技術】
光導波路を形成するにあたり、近年フェムト秒パルスレーザ光をレンズによって、ガラス等の透明材料内部に集光照射することにより屈折率の高い領域を誘起し、これを精密ステージを用いて走査して透明材料内部に直接3次元形状の光導波路を形成する方法が提案されており、この技術が特開平9−311237号公報において開示されている。
【0003】
【発明が解決しようとする課題】
しかし、従来の方法で作製した光導波路は伝搬損失が大きく、光導波路部品として光通信システムで用いる場合には信号光の劣化などの問題を引き起こす。また、損失の偏波依存性も大きく信号光の偏光状態によって光導波路の特性が変化するという問題点もあった。
本発明は、このような事情を考慮してなされたもので、損失を低減し、損失の偏波依存性を抑制することが可能な光導波路部品の製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
以上の課題を解決するために、請求項1記載の発明は、近赤外波長領域のフェムト秒レーザ光を石英ガラスからなる基板に集光照射し、該基板またはレーザ光導入光学系を走査し、該基板内部に高屈折領域を連続的に誘起して光導波路コアを形成した後、この光導波路コアが形成された基板を600℃から1000℃の温度範囲内で2時間以上加熱処理することを特徴とする光導波路部品の製造方法である。
これにより、伝搬損失を低減し、伝搬損失の偏波依存性を抑制することが可能な光導波路部品の製造方法を実現することができる。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
図1に、本発明の光導波路部品の製造方法において用いられる装置の一例を示す。
図1中、符号1は光源であり、符号2は光源1から送られたレーザ光である。レーザ光2は、ハーフミラー3で反射され、対物レンズ4で集光される。対物レンズ4によって集光されたレーザ光2は、導波路が形成される基板5に集光照射される。この基板5として、例えば光学研磨されたガラスが用いられるが、これに限定されるものではなく、使用波長帯域において透明であり、レーザ光の集光照射によって屈折率上昇領域を誘起することができるものであれば、石英ガラス、石英を主成分とした石英系ガラス等に限定されず、高分子樹脂等、他の材料を用いてもよい。
符号6は精密ステージであり、この精密ステージ6は、CCDカメラ7によって基板5の位置がモニタされ、この結果に基づいて位置が調整される。この精密ステージ6をX軸方向、Y軸方向またはZ軸方向に走査することにより、レーザ光2の集光点を基板5内部で相対移動させ、光導波路として機能する連続した高屈折率領域を基板5内部に形成することによって、光導波路部品が製造される。
【0008】
この例の光導波路部品の製造方法においては、上述した方法により、石英ガラス等からなる基板5にフェムト秒レーザを集光照射して作製した光導波路部品に対して熱処理を行うことによって、光導波路の伝搬損失及び伝搬損失の偏波依存性を低減している。なお、伝搬損失の偏波依存性とは、あらゆる偏波を伝搬させたときの伝搬損失の最大値と最小値の差として定義されるものである。
加熱処理の温度範囲は、後述するように、600℃から1000℃の温度範囲内とすることが好ましく、加熱処理時間は2時間以上とすることが好ましい。
【0009】
ここでは、中心波長800nm、パルス幅170fs、繰り返し周波数200kHzのフェムト秒レーザをN.A.0.5の対物レンズ4で集光して基板5に照射し、この基板5を30μm/sで走査することによって、長さ20mmの直線導波路を形成した。この条件を固定し、以下に示す条件で光導波路を作製し熱処理を行った。
以下に、その具体例を示す。
【0010】
(実施例1)
光源1から出射したフェムト秒レーザを、対物レンズ4を用いて基板5に集光照射して光導波路を形成した。基板5内部に照射されるレーザ光の強度は85mWである。
作製した光導波路の伝搬損失と伝搬損失の偏波依存性を評価し、600℃で2時間熱処理を行った後、再度光導波路の伝搬損失と伝搬損失の偏波依存性を評価した。図2と図3に、熱処理前と熱処理後での伝搬損失と、伝搬損失の偏波依存性を示す。 熱処理前での伝搬損失は6〜9dB、熱処理前での伝搬損失の偏波依存性は0.3dBであるのに対し、600℃で2時間の熱処理後には伝搬損失は4〜5dB、伝搬損失の偏波依存性は0.1dBとなり、熱処理の効果が確認された。
【0011】
(実施例2)
光源1から出射したフェムト秒レーザを、対物レンズ4を用いて基板5に集光照射して光導波路を形成した。基板5内部に照射されるレーザ光の強度は80mWである。
作製した光導波路の伝搬損失と伝搬損失の偏波依存性を評価し、850℃で2時間熱処理を行った後、再度光導波路の伝搬損失と伝搬損失の偏波依存性を評価した。図4と図5に、熱処理前と熱処理後での伝搬損失と、伝搬損失の偏波依存性を示す。熱処理前での伝搬損失は5〜7dB、熱処理前での伝搬損失の偏波依存性は0.1〜0.2dBであるのに対して、850℃で2時間の熱処理後には伝搬損失は4〜5dB、伝搬損失の偏波依存性は0.1dBとなり、熱処理の効果が確認された。
【0012】
(実施例3)
光源1から出射したフェムト秒レーザを、対物レンズ4を用いて基板5に集光照射して光導波路を形成した。基板5表面に照射されるレーザ光の強度は85mWである。
作製した光導波路の伝搬損失と伝搬損失の偏波依存性を評価し、1000℃で2時間熱処理を行った後、再度光導波路の伝搬損失と伝搬損失の偏波依存性を評価した。図6と図7に、熱処理前と熱処理後での伝搬損失と、伝搬損失の偏波依存性を示す。熱処理前では伝搬損失は8〜10dB、伝搬損失の偏波依存性は0.1dBであるのに対して、1000℃で2時間の熱処理後には伝搬損失は5〜6dB、伝搬損失の偏波依存性は0.05dBとなり、熱処理の効果が確認された。
【0013】
この例の光導波路部品の製造方法によると、レーザ光2を透明材料からなる基板5に集光照射し、基板5またはレーザ光導入光学系を走査し、基板5内部に高屈折率領域を連続的に誘起して光導波路コアを形成した後、この光導波路コアが形成された基板5を一定時間加熱処理することにより、伝搬損失を低減し、伝搬損失の偏波依存性を抑制することが可能な光導波路部品の製造方法を実現することができる。
この効果は、好ましくは加熱処理の温度範囲を600℃から1000℃の温度範囲内とし、加熱処理時間を2時間以上とすることによって得ることができる。
【0014】
【発明の効果】
以上説明したように、本発明によると、レーザ光を透明材料からなる基板に集光照射し、基板またはレーザ光導入光学系を走査し、基板内部に高屈折率領域を連続的に誘起して光導波路コアを形成した後、この光導波路コアが形成された基板を一定時間加熱処理することにより、伝搬損失を低減し、伝搬損失の偏波依存性を抑制することが可能な光導波路部品の製造方法を実現することができる。
この効果は、好ましくは加熱処理の温度範囲を600℃から1000℃の温度範囲内とし、加熱処理時間を2時間以上とすることによって得ることができる。
【図面の簡単な説明】
【図1】本発明の光導波路部品の製造方法において用いられる装置の一例を示す図である。
【図2】本発明の光導波路部品の製造方法において、600℃で2時間加熱したときの伝搬損失を、熱処理前の伝搬損失と比較して示した図である。
【図3】本発明の光導波路部品の製造方法において、600℃で2時間加熱したときの伝搬損失の偏波依存性を、熱処理前の伝搬損失の偏波依存性と比較して示した図である。
【図4】本発明の光導波路部品の製造方法において、850℃で2時間加熱したときの伝搬損失を、熱処理前の伝搬損失と比較して示した図である。
【図5】本発明の光導波路部品の製造方法において、850℃で2時間加熱したときの伝搬損失の偏波依存性を、熱処理前の伝搬損失の偏波依存性と比較して示した図である。
【図6】本発明の光導波路部品の製造方法において、1000℃で2時間加熱したときの伝搬損失を、熱処理前の伝搬損失と比較して示した図である。
【図7】本発明の光導波路部品の製造方法において、1000℃で2時間加熱したときの伝搬損失の偏波依存性を、熱処理前の伝搬損失の偏波依存性と比較して示した図である。
【符号の説明】
1…光源、2…レーザ光、3…ハーフミラー、4…対物レンズ、
5…基板、6…精密ステージ、7…CCDカメラ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing an optical waveguide component used in the field of optical communication, and more particularly to a method of manufacturing an optical waveguide component that reduces loss and suppresses polarization dependence of loss.
[0002]
[Prior art]
In forming optical waveguides, in recent years, femtosecond pulsed laser light is focused and irradiated inside a transparent material such as glass by a lens to induce a region with a high refractive index, which is then scanned and scanned using a precision stage. A method of directly forming a three-dimensional optical waveguide inside a material has been proposed, and this technique is disclosed in Japanese Patent Laid-Open No. 9-311237.
[0003]
[Problems to be solved by the invention]
However, an optical waveguide manufactured by a conventional method has a large propagation loss, and causes problems such as degradation of signal light when used in an optical communication system as an optical waveguide component. Further, there is a problem that the characteristic of the optical waveguide changes depending on the polarization state of the signal light because the loss has a large polarization dependency.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method of manufacturing an optical waveguide component capable of reducing loss and suppressing the polarization dependence of loss.
[0004]
[Means for Solving the Problems]
In order to solve the above-described problems, the invention described in claim 1 condenses and irradiates a substrate made of quartz glass with femtosecond laser light in the near-infrared wavelength region, and scans the substrate or the laser light introducing optical system. Then, after continuously inducing a high refractive region in the substrate to form an optical waveguide core, the substrate on which the optical waveguide core is formed is heat-treated within a temperature range of 600 ° C. to 1000 ° C. for 2 hours or more. An optical waveguide component manufacturing method characterized by the following.
Thereby, the manufacturing method of the optical waveguide component which can reduce propagation loss and can suppress the polarization dependence of propagation loss is realizable.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
FIG. 1 shows an example of an apparatus used in the method for manufacturing an optical waveguide component of the present invention.
In FIG. 1, reference numeral 1 is a light source, and reference numeral 2 is a laser beam sent from the light source 1. The laser beam 2 is reflected by the half mirror 3 and condensed by the objective lens 4. The laser beam 2 collected by the objective lens 4 is condensed and irradiated onto a substrate 5 on which a waveguide is formed. As the substrate 5, for example, optically polished glass is used. However, the invention is not limited to this, and the substrate 5 is transparent in the used wavelength band, and can induce a refractive index increase region by condensing irradiation of laser light. As long as it is a thing, it is not limited to quartz glass, quartz glass mainly composed of quartz, and other materials such as polymer resin may be used.
Reference numeral 6 denotes a precision stage, and the position of the substrate 5 is monitored by the CCD camera 7 and the position is adjusted based on the result. By scanning the precision stage 6 in the X-axis direction, the Y-axis direction, or the Z-axis direction, the condensing point of the laser light 2 is relatively moved inside the substrate 5, and a continuous high refractive index region that functions as an optical waveguide is formed. By forming the substrate 5 inside, an optical waveguide component is manufactured.
[0008]
In the manufacturing method of the optical waveguide component of this example, the optical waveguide is manufactured by performing heat treatment on the optical waveguide component manufactured by condensing and irradiating the femtosecond laser on the substrate 5 made of quartz glass or the like by the above-described method. Propagation loss and polarization dependency of propagation loss are reduced. The polarization dependence of the propagation loss is defined as the difference between the maximum value and the minimum value of the propagation loss when any polarization is propagated.
As will be described later, the temperature range of the heat treatment is preferably in the temperature range of 600 ° C. to 1000 ° C., and the heat treatment time is preferably 2 hours or more.
[0009]
Here, a femtosecond laser having a central wavelength of 800 nm, a pulse width of 170 fs, and a repetition frequency of 200 kHz is condensed by an NA0.5 objective lens 4 and irradiated onto the substrate 5, and this substrate 5 is scanned at 30 μm / s. A straight waveguide having a length of 20 mm was formed. This condition was fixed, and an optical waveguide was produced and heat-treated under the following conditions.
The specific example is shown below.
[0010]
Example 1
A femtosecond laser emitted from the light source 1 was condensed and irradiated onto the substrate 5 using the objective lens 4 to form an optical waveguide. The intensity of the laser beam irradiated inside the substrate 5 is 85 mW.
The propagation loss of the fabricated optical waveguide and the polarization dependence of the propagation loss were evaluated. After heat treatment at 600 ° C. for 2 hours, the polarization dependence of the propagation loss and propagation loss of the optical waveguide was evaluated again. 2 and 3 show the propagation loss before and after the heat treatment, and the polarization dependence of the propagation loss. Propagation loss before heat treatment is 6 to 9 dB and the polarization dependence of propagation loss before heat treatment is 0.3 dB, whereas propagation loss is 4 to 5 dB after heat treatment at 600 ° C. for 2 hours. The polarization dependence was 0.1 dB, confirming the effect of heat treatment.
[0011]
(Example 2)
A femtosecond laser emitted from the light source 1 was condensed and irradiated onto the substrate 5 using the objective lens 4 to form an optical waveguide. The intensity of the laser beam irradiated inside the substrate 5 is 80 mW.
The propagation loss of the fabricated optical waveguide and the polarization dependence of the propagation loss were evaluated. After heat treatment at 850 ° C. for 2 hours, the polarization dependence of the propagation loss and propagation loss of the optical waveguide was evaluated again. 4 and 5 show the propagation loss before and after the heat treatment and the polarization dependence of the propagation loss. Propagation loss before heat treatment is 5 to 7 dB, polarization dependence of propagation loss before heat treatment is 0.1 to 0.2 dB, whereas propagation loss is 4 to 5 dB after heat treatment at 850 ° C. for 2 hours, The polarization dependence of propagation loss was 0.1 dB, confirming the effect of heat treatment.
[0012]
Example 3
A femtosecond laser emitted from the light source 1 was condensed and irradiated onto the substrate 5 using the objective lens 4 to form an optical waveguide. The intensity of the laser beam irradiated on the surface of the substrate 5 is 85 mW.
The propagation loss of the fabricated optical waveguide and the polarization dependence of the propagation loss were evaluated. After heat treatment at 1000 ° C for 2 hours, the polarization dependence of the propagation loss and propagation loss of the optical waveguide was evaluated again. 6 and 7 show the propagation loss before and after the heat treatment, and the polarization dependence of the propagation loss. Propagation loss is 8 to 10 dB before heat treatment and the polarization dependence of propagation loss is 0.1 dB, whereas propagation loss is 5 to 6 dB after heat treatment at 1000 ° C. for 2 hours, and polarization dependence of propagation loss Was 0.05 dB, confirming the effect of heat treatment.
[0013]
According to the manufacturing method of the optical waveguide component of this example, the laser beam 2 is condensed and irradiated onto the substrate 5 made of a transparent material, the substrate 5 or the laser beam introducing optical system is scanned, and the high refractive index region is continuously formed inside the substrate 5. The optical waveguide core is formed by induction, and then the substrate 5 on which the optical waveguide core is formed is subjected to heat treatment for a certain time, thereby reducing the propagation loss and suppressing the polarization dependence of the propagation loss. A method for manufacturing a possible optical waveguide component can be realized.
This effect can be obtained preferably by setting the temperature range of the heat treatment to a temperature range of 600 ° C. to 1000 ° C. and setting the heat treatment time to 2 hours or more.
[0014]
【The invention's effect】
As described above, according to the present invention, a laser beam is focused on a substrate made of a transparent material, scanned by a substrate or a laser beam introduction optical system, and a high refractive index region is continuously induced inside the substrate. After forming the optical waveguide core, the substrate on which the optical waveguide core is formed is subjected to heat treatment for a certain period of time, thereby reducing the propagation loss and suppressing the polarization dependence of the propagation loss. A manufacturing method can be realized.
This effect can be obtained preferably by setting the temperature range of the heat treatment to a temperature range of 600 ° C. to 1000 ° C. and setting the heat treatment time to 2 hours or more.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an apparatus used in a method for manufacturing an optical waveguide component according to the present invention.
FIG. 2 is a diagram showing propagation loss when heated at 600 ° C. for 2 hours in the method of manufacturing an optical waveguide component of the present invention compared with propagation loss before heat treatment.
FIG. 3 is a diagram showing the polarization dependence of propagation loss when heated at 600 ° C. for 2 hours in the method of manufacturing an optical waveguide component of the present invention, compared with the polarization dependence of propagation loss before heat treatment. It is.
FIG. 4 is a diagram showing the propagation loss when heated at 850 ° C. for 2 hours in the method of manufacturing an optical waveguide component of the present invention in comparison with the propagation loss before heat treatment.
FIG. 5 is a diagram showing the polarization dependence of propagation loss when heated at 850 ° C. for 2 hours in the optical waveguide component manufacturing method of the present invention, compared with the polarization dependence of propagation loss before heat treatment. It is.
FIG. 6 is a diagram showing propagation loss when heated at 1000 ° C. for 2 hours in the method of manufacturing an optical waveguide component of the present invention, compared with propagation loss before heat treatment.
FIG. 7 is a diagram showing the polarization dependence of propagation loss when heated at 1000 ° C. for 2 hours in the method of manufacturing an optical waveguide component of the present invention in comparison with the polarization dependence of propagation loss before heat treatment. It is.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Laser beam, 3 ... Half mirror, 4 ... Objective lens,
5 ... Substrate, 6 ... Precision stage, 7 ... CCD camera.

Claims (1)

近赤外波長領域のフェムト秒レーザ光を石英ガラスからなる基板に集光照射し、該基板またはレーザ光導入光学系を走査し、該基板内部に高屈折領域を連続的に誘起して光導波路コアを形成した後、この光導波路コアが形成された基板を600℃から1000℃の温度範囲内で2時間以上加熱処理することを特徴とする光導波路部品の製造方法。 Femtosecond laser light in the near-infrared wavelength region is focused and irradiated onto a quartz glass substrate, the substrate or laser light introducing optical system is scanned, and a high refractive region is continuously induced inside the substrate to produce an optical waveguide. A method for producing an optical waveguide component, comprising: forming a core, and then heat-treating the substrate on which the optical waveguide core is formed within a temperature range of 600 ° C. to 1000 ° C. for 2 hours or more .
JP2002037108A 2002-02-14 2002-02-14 Manufacturing method of optical waveguide component Expired - Fee Related JP3768450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002037108A JP3768450B2 (en) 2002-02-14 2002-02-14 Manufacturing method of optical waveguide component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002037108A JP3768450B2 (en) 2002-02-14 2002-02-14 Manufacturing method of optical waveguide component

Publications (2)

Publication Number Publication Date
JP2003240994A JP2003240994A (en) 2003-08-27
JP3768450B2 true JP3768450B2 (en) 2006-04-19

Family

ID=27778808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002037108A Expired - Fee Related JP3768450B2 (en) 2002-02-14 2002-02-14 Manufacturing method of optical waveguide component

Country Status (1)

Country Link
JP (1) JP3768450B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT413891B (en) * 2003-12-29 2006-07-15 Austria Tech & System Tech CIRCUIT BOARD ELEMENT WITH AT LEAST ONE LIGHT WAVEGUIDE, AND METHOD FOR PRODUCING SUCH A LADDER PLATE ELEMENT

Also Published As

Publication number Publication date
JP2003240994A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
EP1075926B1 (en) End finishing of plastic optical fibers using laser ablation
US8515224B2 (en) Method for writing high power resistant bragg gratings using short wavelength ultrafast pulses
Kamata et al. Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser
JP2004295066A (en) Method for manufacturing optical waveguide
JP2004196585A (en) Method for forming heterogeneous phase within material with laser beam, structure and optical parts
JP3426154B2 (en) Manufacturing method of optical waveguide with grating
JP3768450B2 (en) Manufacturing method of optical waveguide component
TWI746646B (en) Compositional modification of glass articles through laser heating and methods for making the same and optical waveguide device, electronic device
JP2002372641A (en) Method for manufacturing optical waveguide, optical waveguide and wavelength conversion device
KR20040068219A (en) Refractive index modulation in glass using a femtosecond laser
JP3925209B2 (en) Manufacturing method of waveguide
JP2001236644A (en) Method of changing refractive index of solid material
US5763340A (en) Method for production of SiO2 glass material having regions changed in light refractive index and SiO2 glass material produced by the method
JP4565082B2 (en) Transparent material processing method and transparent material processing apparatus
JP2002116336A (en) Method for manufacturing optically anisotropic optical waveguide
JP3826740B2 (en) Laser direct writing waveguide and manufacturing method thereof
JPH063539A (en) Production of optical waveguide with slit
JP4115883B2 (en) Optical waveguide component processing method, grating manufacturing method
Zhang et al. Type II femtosecond laser writing of Bragg grating waveguides in bulk glass
CN110824615B (en) Waveguide grating coupler based on photo-thermal sensitive refraction glass and preparation method thereof
JP4128368B2 (en) Manufacturing method of optical waveguide component
JP2002311277A (en) Production method for glass waveguide
JP3929852B2 (en) Y branch optical waveguide and method for manufacturing the same
RU2578747C1 (en) Method of forming shell of a waveguide structure in a transparent bulk materials and cladding of the waveguide structure
JP3823770B2 (en) Optical waveguide and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees