JP3767925B2 - Process for producing 1,1,1-trifluoro-2-chloroethane and long-life catalyst for producing 1,1,1-trifluoro-2-chloroethane - Google Patents

Process for producing 1,1,1-trifluoro-2-chloroethane and long-life catalyst for producing 1,1,1-trifluoro-2-chloroethane Download PDF

Info

Publication number
JP3767925B2
JP3767925B2 JP15572395A JP15572395A JP3767925B2 JP 3767925 B2 JP3767925 B2 JP 3767925B2 JP 15572395 A JP15572395 A JP 15572395A JP 15572395 A JP15572395 A JP 15572395A JP 3767925 B2 JP3767925 B2 JP 3767925B2
Authority
JP
Japan
Prior art keywords
catalyst
trifluoro
chloroethane
producing
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15572395A
Other languages
Japanese (ja)
Other versions
JPH092984A (en
Inventor
昭雄 渡部
智弘 中野
Original Assignee
東ソ−・エフテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソ−・エフテック株式会社 filed Critical 東ソ−・エフテック株式会社
Priority to JP15572395A priority Critical patent/JP3767925B2/en
Publication of JPH092984A publication Critical patent/JPH092984A/en
Application granted granted Critical
Publication of JP3767925B2 publication Critical patent/JP3767925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、1,1,1−トリフルオロ−2−クロロエタンの製造方法および1,1,1−トリフルオロ−2−クロロエタンの製造に用いる長寿命触媒に関するものである。
【0002】
【従来の技術】
1,1,1−トリフルオロ−2−クロロエタン(HFC−133a)は、クーラー等の冷媒や医薬品の中間体として使用される有用なハロゲン化エタン化合物である。
【0003】
一般的なハロゲン化エタン化合物の製造方法として、例えば冷媒として使用される1,1,1,2−テトラフルオロエタン(HFC−134a)は、1,1,1−トリフルオロ−2−クロロエタンの塩素原子をフッ素原子に交換して製造される。また、トリフルオロエタノール、トリフルオロ酢酸クロリドおよびトリフルオロクロロブロモエタンのハロゲン化エタン化合物は、1−クロロ−2,2,2−トリフルオロエタン(HCFC−133a)から製造される。
【0004】
1,1,1−トリフルオロ−2−クロロエタンの製造方法としては、フッ化クロミル触媒の存在下にトリクロロエタンとフッ化水素を反応させる方法(英国特許第1,025,750号明細書)、水酸化クロム(III)を水溶性クロム(III)塩と水酸化マグネシウムまたは酸化マグネシウムとを水の存在下に反応させて得られるクロムおよびマグネシウムを含有する触媒の存在下に気相でトリクロロエタンおよびフッ化水素を反応させる方法が知られている(特開平3−52830号)。
【0005】
英国特許第1,025,750号明細書の触媒は、高い転化率(88〜96%)を達成しており、特開平3−52830号の触媒は高い転化率(95〜99%)と長寿命(連続420時間)を達成している。
【0006】
【発明が解決しようとする課題】
しかしながら、英国特許第1,025,750号明細書のフッ化クロミル触媒は、50〜100時間の連続反応後に、トリクロロエタンの転化率が急激に低下し、1,1,1−トリフルオロ−2−クロロエタンの工業的製造には適していない。
【0007】
一方、特開平3−52830号のクロム触媒は、水酸化クロム(III)を1モルの水溶性クロム(III)塩と少なくとも1.5モルの水酸化マグネシウムまたは酸化マグネシウムとを水の存在下に反応させて沈降させ、この反応混合物を水酸化クロムとマグネシウム塩を含有するペーストに転化させた後、顆粒状等に成形して乾燥させ、20〜500℃の温度でフッ化水素で処理するという、極めて煩雑な工程を必要とする欠点がある。
【0008】
本発明が、解決しようとする課題は、長寿命であり、かつ簡潔な工程により製造することのできる1−クロロ−2,2,2−トリフルオロエタン製造用触媒およびその触媒を用いた1,1,1−トリフルオロ−2−クロロエタンの製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、クロム系触媒について鋭意研究を重ねた結果、特定の比表面積を有する無水クロム酸触媒を活性炭に吸着させた触媒が上記課題を解決できることを見いだし、本発明を完成するに至った。
【0010】
すなわち、本発明は、活性炭に無水クロム酸を吸着させ、かつ全比表面積が450〜1000m2 /gである触媒の存在下、トリクロロエチレンとフッ化水素とを気相で反応させることを特徴とする1,1,1−トリフルオロ−2−クロロエタンの製造方法、
および活性炭に無水クロム酸を吸着させ、かつ全比表面積が450〜1000m /gであることを特徴とする、トリクロロエチレンとフッ化水素とから気相で、1,1,1−トリフルオロ−2−クロロエタンを製造するための長寿命触媒に関するものである。
【0011】
本発明における触媒は、活性炭に無水クロム酸を吸着させ、かつ全比表面積を450〜1000m2 /gとした触媒である。触媒の全比表面積を450〜1000m2 /gの範囲に調整するには、活性炭100重量部に対して、無水クロム酸を9〜72重量部吸着すればよい。
【0012】
本発明の触媒の全比表面積を450〜1000m2 /gの範囲に調整することにより、活性と触媒寿命を大幅に改善することができる。すなわち、本発明の触媒は、連続運転に適しており、1,1,1−トリフルオロ−2−クロロエタンの工業的製法に適している。触媒の全比表面積が、前記範囲を超えると、触媒活性が低下し、触媒寿命も低下する。
【0013】
本発明の触媒の担体となる活性炭は、特に限定されないが、例えば、以下の性質を有する活性炭を使用することができる。
【0014】
・乾燥減量 3%以下
・粒度 4〜6メッシュ
・強熱残分 1〜5%
・pH 5〜11
・充填密度 0.4〜0.5g/cc
・全比表面積 900〜1300m2/g
活性炭に無水クロム酸を吸着させるには、例えば、以下のような方法により行なえばよい。
【0015】
まず、所定量の無水クロム酸を所定量の水に溶解する。無水クロム酸量は、活性炭に吸着させる量により選定される。溶解するときの水温は室温または加熱してもよい。溶解時には撹拌をする方が溶解が早く進みかつ均一な水溶液となるため、撹拌しながら溶解するのが好ましい。無水クロム酸水溶液に所定量の活性炭を加え良く撹拌して無水クロム酸を活性炭に均一に吸着させ、活性炭に無水クロム酸水溶液を全て吸収させる。吸着に必要な時間に制限はなく、吸着熱がおさまった段階で終了すればよい。
【0016】
以上のように、無水クロム酸を活性炭に吸着させる方法には一般的な方法を採用することができ、しかも工業的に有利で簡単な操作で本発明の触媒を調製することができる。
【0017】
活性炭に無水クロム酸を吸着させた後、乾燥することにより本発明の触媒が得られるが、乾燥条件は、窒素やアルゴン等の不活性ガスの流通下で、200〜250℃の範囲で加熱することにより行なわれる。特に、無水クロム酸を吸着させた活性炭を、ニッケル製反応器に充填して、反応器の出口ガス中に水分が認められなくなるまで、窒素ガスの流通下で200〜250℃に加熱維持することにより、容易に乾燥することができる。
【0018】
活性炭に無水クロム酸を吸着後乾燥して得られる触媒は、反応に先立ち、賦活処理をする必要がある。賦活処理としては、フッ化水素を用いればよい。特に、本発明方法の原料となフッ化水素を用いれば、無水クロム酸を吸着させた活性炭触媒を反応器に充填し、そのままフッ化水素で活性化できるため、工業的に有利である。
【0019】
本発明により1,1,1−トリフルオロ−2−クロロエタンを製造するには、上記の触媒の存在下、トリクロロエチレンとフッ化水素を気相反応させればよい。反応圧力には特に制限はないが、大気圧から10kg/cm2までの範囲で適宜選択すればよく、反応温度は200〜370℃、好ましくは250〜350℃の範囲で行なえばよい。反応温度が200℃未満では、1,1,1−トリフルオロ−2−クロロエタンの生成率が低下し、370℃を超えると触媒が劣化しやすくなり、副生物も多く生成するので好ましくない。
【0020】
原料のトリクロロエチレンに対するフッ化水素のモル比は、3〜20、好ましくは5〜15がよく、また、反応容器中での原料の空間速度は、50〜1000Hr-1がよい。トリクロロエチレンに対するフッ化水素のモル比が3未満では、1,1,1−トリフルオロ−2−クロロエタンの生成率が低く、フッ化水素のモル比が高くなると1,1,1−トリフルオロ−2−クロロエタンの生成率は向上するが、
反応モル比が20を超えても1,1,1−トリフルオロ−2−クロロエタンの生成率の向上はみられない。従って、フッ化水素とトリクロロエチレンの反応モル比は少なくとも3:1でよいが、過剰量のフッ化水素は触媒寿命を長くする効果があるため、フッ化水素を過剰に使用することが好ましい。
【0021】
本発明方法における、トリクロロエチレンとフッ化水素の反応は気相反応であるため、原料は予め気化器等によりガス化しておく必要がある。この気化器の温度は原料を完全に気相に転換するのに充分な温度であればよい。気化器を経由した気体状の原料は、反応器に入る。反応器は、通常の管状反応器を使用することができる。触媒と原料の接触方式は、固定床、流動床等特に限定されないが、装置の簡単なことから、固定床方式が好ましい。
【0022】
【実施例】
実施例1
無水クロム酸(CrO3)216gを水800gに溶解した後、以下に示す活性炭600gを加えて攪拌し、全ての無水クロム酸水溶液を活性炭に吸着させた。この無水クロム酸を吸着させた活性炭550ccを内径27mm、長さ1100mmのニッケル製反応器に充填した。250℃に保持した反応管に窒素ガスを流通させながら30時間乾燥して無水クロム酸吸着活性炭触媒を調製した。この触媒の全比表面積は、550m2/gであった。その後反応器内の触媒層の温度を260℃で15時間フッ化水素処理して触媒を活性化した。
【0023】
(使用した活性炭の物性)
乾燥減量 0.4%以下
粒度 4〜6メッシュ
強熱残分 2.1%
pH 8.6
充填密度 0.43g/cc
全比表面積 1200m2/g
細孔容積 1.02cc/g
Na 0.014%
K 0.040%
Ca 0.011%
Mg 0.004%
アルカリ金属およびアルカリ土類金属の含有率は0.069%
実施例2
実施例1で調製した触媒を使用してトリクロロエチレンとフッ化水素を反応させた。反応は所定量のフッ化水素とトリクロロエチレンを気化器、混合機を経由して、反応器に導入して行い、1,1,1−トリフルオロ−2−クロロエタンを合成した。トリクロロエチレンに対するフッ化水素のモル比を14、空間速度を110Hr-1とし、反応温度を230〜310℃と変えて反応を行った。反応器から出てくる反応生成物を、水および水酸化ナトリウム水溶液を満たした洗浄槽に導入して生成した塩化水素および過剰のフッ化水素を除去し、さらに乾燥した。この反応生成物をガスクロマトグラフィーにより組成分析した。その結果を表1に示す。
【0024】
【表1】

Figure 0003767925
【0025】
実施例3
実施例1で調製した触媒を使用し、トリクロロエチレンに対するフッ化水素のモル比を18、反応温度を290℃に設定し、空間速度を200〜1000Hr-1と変えて反応を行った。その反応結果を表2に示す。
【0026】
【表2】
Figure 0003767925
【0027】
実施例4
実施例1で調製した触媒を使用し、反応温度を290℃、空間速度を400Hr-1と設定し、トリクロロエチレン(TCE)に対するフッ化水素(HF)のモル比を10−18と変えて反応を行った。その結果を表3に示す。
【0028】
【表3】
Figure 0003767925
【0029】
実施例5
実施例1〜4の結果から明らかなように、反応温度:230〜310℃、空間速度:200〜1000Hr-1、フッ化水素/トリクロロエチレンモル比:10〜18の範囲において良好な収率が得られた。そこで、実施例1の方法で活性炭に吸着させる無水クロム酸の量を、活性炭100重量部に対し無水クロム酸を9〜72重量部に変えて触媒を調製した。この触媒の全比表面積を測定し、この触媒を使用して、反応温度を290℃、空間速度を400Hr-1、トリクロロエチレンに対するフッ化水素の反応モル比を10と設定し、連続反応を行ない、触媒寿命(収率が50%に低下した時点を触媒寿命とした)を測定した。その結果を表4に示す。
【0030】
【表4】
Figure 0003767925
【0031】
実施例6
実施例1の方法で活性炭100部に対して無水クロム酸を36部吸着させ、管型反応器に充填した後、窒素ガスを流しながら250〜280℃で触媒を乾燥した。この触媒の全比表面積は600m2/gであった。この触媒の存在下で、トリクロロエチレンに対するフッ化水素のモル比を12、区間速度を600Hr-1、反応温度を290℃、反応圧力を5kg/cm2と設定して連続反応を行なったところ、750時間後においても、触媒の初期活性を維持していた。
【0032】
【発明の効果】
本発明の触媒を用いることにより、トリクロロエチレンとフッ化水素から、1,1,1−トリフルオロ−2−クロロエタンを、高収率かつ長時間連続して製造することができる。[0001]
[Industrial application fields]
The present invention relates to a method for producing 1,1,1-trifluoro-2-chloroethane and a long-life catalyst used for producing 1,1,1-trifluoro-2-chloroethane.
[0002]
[Prior art]
1,1,1-trifluoro-2-chloroethane (HFC-133a) is a useful halogenated ethane compound that is used as a refrigerant such as a cooler or an intermediate of pharmaceuticals.
[0003]
As a general method for producing a halogenated ethane compound, for example, 1,1,1,2-tetrafluoroethane (HFC-134a) used as a refrigerant is chlorine of 1,1,1-trifluoro-2-chloroethane. Manufactured by exchanging atoms for fluorine atoms. A halogenated ethane compound of trifluoroethanol, trifluoroacetic chloride and trifluorochlorobromoethane is produced from 1-chloro-2,2,2-trifluoroethane (HCFC-133a).
[0004]
As a method for producing 1,1,1-trifluoro-2-chloroethane, a method of reacting trichloroethane with hydrogen fluoride in the presence of a chromyl fluoride catalyst (UK Patent No. 1,025,750), water Trichloroethane and fluoride in the gas phase in the presence of a chromium and magnesium-containing catalyst obtained by reacting chromium (III) oxide with a water-soluble chromium (III) salt and magnesium hydroxide or magnesium oxide in the presence of water A method of reacting hydrogen is known (Japanese Patent Laid-Open No. 3-52830).
[0005]
The catalyst of British Patent 1,025,750 achieves a high conversion (88 to 96%), and the catalyst of JP-A-3-52830 has a high conversion (95 to 99%) and a long length. Life (420 hours continuous) is achieved.
[0006]
[Problems to be solved by the invention]
However, the chromyl fluoride catalyst of British Patent No. 1,025,750 shows that after a continuous reaction of 50 to 100 hours, the conversion of trichloroethane rapidly decreases, and 1,1,1-trifluoro-2- Not suitable for industrial production of chloroethane.
[0007]
On the other hand, the chromium catalyst disclosed in JP-A-3-52830 comprises chromium (III) hydroxide in the presence of 1 mol of water-soluble chromium (III) salt and at least 1.5 mol of magnesium hydroxide or magnesium oxide. The reaction mixture is allowed to settle and the reaction mixture is converted into a paste containing chromium hydroxide and magnesium salt, then formed into granules and dried, and treated with hydrogen fluoride at a temperature of 20 to 500 ° C. However, there is a drawback that requires a very complicated process.
[0008]
The problem to be solved by the present invention is a catalyst for producing 1-chloro-2,2,2-trifluoroethane, which has a long life and can be produced by a simple process, and 1,1 using the catalyst. The object is to provide a method for producing 1,1-trifluoro-2-chloroethane.
[0009]
[Means for Solving the Problems]
As a result of intensive studies on chromium-based catalysts, the present inventors have found that a catalyst in which a chromic anhydride catalyst having a specific specific surface area is adsorbed on activated carbon can solve the above-mentioned problems, and has completed the present invention. It was.
[0010]
That is, the present invention is characterized in that trichloroethylene and hydrogen fluoride are reacted in the gas phase in the presence of a catalyst having adsorbed chromic anhydride on activated carbon and a total specific surface area of 450 to 1000 m 2 / g. A process for producing 1,1,1-trifluoro-2-chloroethane;
And 1,1,1-trifluoro-2 in a gas phase from trichlorethylene and hydrogen fluoride, characterized by adsorbing chromic anhydride to activated carbon and having a total specific surface area of 450 to 1000 m 2 / g -It relates to a long-life catalyst for producing chloroethane.
[0011]
The catalyst in the present invention is a catalyst in which chromic anhydride is adsorbed on activated carbon and the total specific surface area is 450 to 1000 m 2 / g. In order to adjust the total specific surface area of the catalyst to the range of 450 to 1000 m 2 / g, 9 to 72 parts by weight of chromic anhydride may be adsorbed to 100 parts by weight of activated carbon.
[0012]
By adjusting the total specific surface area of the catalyst of the present invention in the range of 450 to 1000 m 2 / g, the activity and the catalyst life can be greatly improved. That is, the catalyst of the present invention is suitable for continuous operation and suitable for the industrial production of 1,1,1-trifluoro-2-chloroethane. When the total specific surface area of the catalyst exceeds the above range, the catalytic activity is reduced and the catalyst life is also reduced.
[0013]
The activated carbon that becomes the carrier of the catalyst of the present invention is not particularly limited. For example, activated carbon having the following properties can be used.
[0014]
-Loss on drying 3% or less-Particle size 4-6 mesh-Residue on ignition 1-5%
・ PH 5-11
・ Filling density 0.4-0.5g / cc
・ Total specific surface area 900 ~ 1300m 2 / g
In order to adsorb chromic anhydride to activated carbon, for example, the following method may be used.
[0015]
First, a predetermined amount of chromic anhydride is dissolved in a predetermined amount of water. The amount of chromic anhydride is selected according to the amount adsorbed on the activated carbon. The water temperature when dissolving may be room temperature or heating. It is preferable to stir at the time of dissolution because dissolution proceeds faster and a uniform aqueous solution is obtained. A predetermined amount of activated carbon is added to the chromic anhydride aqueous solution and stirred well to uniformly adsorb the chromic anhydride onto the activated carbon, and the activated carbon absorbs all of the chromic anhydride aqueous solution. There is no limitation on the time required for adsorption, and it may be completed when the heat of adsorption has subsided.
[0016]
As described above, a general method can be adopted as a method of adsorbing chromic anhydride on activated carbon, and the catalyst of the present invention can be prepared by an industrially advantageous and simple operation.
[0017]
The catalyst of the present invention can be obtained by adsorbing chromic anhydride on activated carbon and then drying, and the drying conditions are 200 to 250 ° C. under the flow of an inert gas such as nitrogen or argon. Is done. In particular, the activated carbon on which chromic anhydride has been adsorbed is charged into a nickel reactor and maintained at 200 to 250 ° C. under a stream of nitrogen gas until no moisture is observed in the outlet gas of the reactor. Thus, it can be easily dried.
[0018]
A catalyst obtained by drying after adsorbing chromic anhydride on activated carbon needs to be activated prior to the reaction. As the activation treatment, hydrogen fluoride may be used. In particular, the use of hydrogen fluoride as a raw material for the method of the present invention is industrially advantageous because an activated carbon catalyst adsorbed with chromic anhydride can be charged into a reactor and activated as it is with hydrogen fluoride.
[0019]
In order to produce 1,1,1-trifluoro-2-chloroethane according to the present invention, trichloroethylene and hydrogen fluoride may be reacted in the gas phase in the presence of the above catalyst. There is no particular restriction on the reaction pressure may be appropriately selected in the range of from atmospheric pressure to 10 kg / cm 2, the reaction temperature is two hundred to three hundred seventy ° C., preferably may be performed in the range of 250 to 350 ° C.. If the reaction temperature is less than 200 ° C., the production rate of 1,1,1-trifluoro-2-chloroethane decreases, and if it exceeds 370 ° C., the catalyst tends to deteriorate and many by-products are generated, which is not preferable.
[0020]
The molar ratio of hydrogen fluoride to trichloroethylene as a raw material is 3 to 20, preferably 5 to 15, and the space velocity of the raw material in the reaction vessel is preferably 50 to 1000 Hr- 1 . When the molar ratio of hydrogen fluoride to trichlorethylene is less than 3, the production rate of 1,1,1-trifluoro-2-chloroethane is low, and when the molar ratio of hydrogen fluoride is high, 1,1,1-trifluoro-2 -The production rate of chloroethane is improved,
Even when the reaction molar ratio exceeds 20, no improvement in the production rate of 1,1,1-trifluoro-2-chloroethane is observed. Therefore, the reaction molar ratio of hydrogen fluoride to trichlorethylene may be at least 3: 1. However, since excessive amount of hydrogen fluoride has an effect of extending the catalyst life, it is preferable to use excessive hydrogen fluoride.
[0021]
Since the reaction between trichlorethylene and hydrogen fluoride in the method of the present invention is a gas phase reaction, the raw material must be previously gasified by a vaporizer or the like. The temperature of the vaporizer may be a temperature sufficient to completely convert the raw material into the gas phase. The gaseous raw material via the vaporizer enters the reactor. As the reactor, a normal tubular reactor can be used. The contact method of the catalyst and the raw material is not particularly limited, such as a fixed bed or a fluidized bed, but the fixed bed method is preferable because of the simplicity of the apparatus.
[0022]
【Example】
Example 1
After 216 g of chromic anhydride (CrO 3 ) was dissolved in 800 g of water, 600 g of activated carbon shown below was added and stirred to adsorb all the chromic anhydride aqueous solution to the activated carbon. 550 cc of activated carbon adsorbed with chromic anhydride was charged into a nickel reactor having an inner diameter of 27 mm and a length of 1100 mm. The chromic anhydride-adsorbed activated carbon catalyst was prepared by drying for 30 hours while flowing nitrogen gas through the reaction tube maintained at 250 ° C. The total specific surface area of this catalyst was 550 m 2 / g. Thereafter, the temperature of the catalyst layer in the reactor was treated with hydrogen fluoride at 260 ° C. for 15 hours to activate the catalyst.
[0023]
(Physical properties of the activated carbon used)
Loss on drying 0.4% or less Particle size 4-6 mesh ignition residue 2.1%
pH 8.6
Filling density 0.43g / cc
Total specific surface area 1200m 2 / g
Pore volume 1.02cc / g
Na 0.014%
K 0.040%
Ca 0.011%
Mg 0.004%
Alkali metal and alkaline earth metal content is 0.069%
Example 2
Trichlorethylene and hydrogen fluoride were reacted using the catalyst prepared in Example 1. The reaction was carried out by introducing a predetermined amount of hydrogen fluoride and trichlorethylene into the reactor via a vaporizer and a mixer to synthesize 1,1,1-trifluoro-2-chloroethane. The reaction was carried out at a molar ratio of hydrogen fluoride to trichlorethylene of 14, a space velocity of 110 Hr −1 and a reaction temperature of 230 to 310 ° C. The reaction product coming out of the reactor was introduced into a washing tank filled with water and an aqueous sodium hydroxide solution to remove the produced hydrogen chloride and excess hydrogen fluoride, and further dried. The composition of this reaction product was analyzed by gas chromatography. The results are shown in Table 1.
[0024]
[Table 1]
Figure 0003767925
[0025]
Example 3
The catalyst prepared in Example 1 was used, the molar ratio of hydrogen fluoride to trichlorethylene was set to 18, the reaction temperature was set to 290 ° C., and the space velocity was changed from 200 to 1000 Hr −1 to carry out the reaction. The reaction results are shown in Table 2.
[0026]
[Table 2]
Figure 0003767925
[0027]
Example 4
Using the catalyst prepared in Example 1, the reaction temperature was set to 290 ° C., the space velocity was set to 400 Hr −1, and the molar ratio of hydrogen fluoride (HF) to trichlorethylene (TCE) was changed to 10-18. went. The results are shown in Table 3.
[0028]
[Table 3]
Figure 0003767925
[0029]
Example 5
As is clear from the results of Examples 1 to 4, a good yield was obtained in the range of reaction temperature: 230 to 310 ° C., space velocity: 200 to 1000 Hr −1 , and hydrogen fluoride / trichloroethylene molar ratio: 10 to 18. It was. Therefore, a catalyst was prepared by changing the amount of chromic anhydride adsorbed on the activated carbon by the method of Example 1 to 9 to 72 parts by weight of chromic anhydride relative to 100 parts by weight of the activated carbon. The total specific surface area of this catalyst was measured, and using this catalyst, a reaction temperature was set to 290 ° C., a space velocity was set to 400 Hr −1 , a reaction molar ratio of hydrogen fluoride to trichlorethylene was set to 10, and a continuous reaction was performed. The catalyst life (the time when the yield was reduced to 50% was defined as the catalyst life) was measured. The results are shown in Table 4.
[0030]
[Table 4]
Figure 0003767925
[0031]
Example 6
36 parts of chromic anhydride was adsorbed to 100 parts of activated carbon by the method of Example 1 and charged in a tubular reactor, and then the catalyst was dried at 250 to 280 ° C. while flowing nitrogen gas. The total specific surface area of this catalyst was 600 m 2 / g. In the presence of this catalyst, a continuous reaction was carried out with a molar ratio of hydrogen fluoride to trichlorethylene of 12, a zone speed of 600 Hr −1 , a reaction temperature of 290 ° C., and a reaction pressure of 5 kg / cm 2. Even after the time, the initial activity of the catalyst was maintained.
[0032]
【The invention's effect】
By using the catalyst of the present invention, 1,1,1-trifluoro-2-chloroethane can be produced continuously from trichloroethylene and hydrogen fluoride in a high yield and for a long time.

Claims (6)

活性炭に無水クロム酸を吸着させ、かつ全比表面積が450〜1000m2 /gである触媒の存在下、トリクロロエチレンとフッ化水素とを気相で反応させることを特徴とする1,1,1−トリフルオロ−2−クロロエタンの製造方法。1,1,1-characteristics characterized in that trichloroethylene and hydrogen fluoride are reacted in the gas phase in the presence of a catalyst having adsorbed chromic anhydride on activated carbon and a total specific surface area of 450 to 1000 m 2 / g. A method for producing trifluoro-2-chloroethane. 触媒が活性炭100重量部に対し無水クロム酸を5〜75重量部吸着させた触媒であることを特徴とする請求項1記載の1,1,1−トリフルオロ−2−クロロエタンの製造方法。2. The method for producing 1,1,1-trifluoro-2-chloroethane according to claim 1, wherein the catalyst is a catalyst in which 5 to 75 parts by weight of chromic anhydride is adsorbed to 100 parts by weight of activated carbon. 反応を、常圧または加圧下で、200〜370℃の温度範囲で行うことを特徴とする請求項1または2記載の1,1,1−トリフルオロ−2−クロロエタンの製造方法。The method for producing 1,1,1-trifluoro-2-chloroethane according to claim 1 or 2, wherein the reaction is carried out at a temperature range of 200 to 370 ° C under normal pressure or under pressure. トリクロロエチレンに対するフッ化水素のモル比を3〜20の範囲で反応を行なうことを特徴とする請求項1,2または3記載の1,1,1−トリフルオロ−2−クロロエタンの製造方法。The process for producing 1,1,1-trifluoro-2-chloroethane according to claim 1, 2 or 3, wherein the reaction is carried out at a molar ratio of hydrogen fluoride to trichlorethylene in the range of 3-20. 反応容器中における原料の空間速度が50〜1000Hr-1であることを特徴とする請求項1,2,3または4記載の1,1,1−トリフルオロ−2−クロロエタンの製造方法。The method for producing 1,1,1-trifluoro-2-chloroethane according to claim 1, 2, 3 or 4, wherein the space velocity of the raw material in the reaction vessel is 50 to 1000 Hr- 1 . 活性炭に無水クロム酸を吸着させ、かつ全比表面積が450〜1000m2 /gであることを特徴とする、トリクロロエチレンとフッ化水素とから気相で、1,1,1−トリフルオロ−2−クロロエタンを製造するための長寿命触媒。In a gas phase from trichlorethylene and hydrogen fluoride, characterized by adsorbing chromic anhydride on activated carbon and having a total specific surface area of 450 to 1000 m 2 / g, 1,1,1-trifluoro-2- Long life catalyst for producing chloroethane.
JP15572395A 1995-06-22 1995-06-22 Process for producing 1,1,1-trifluoro-2-chloroethane and long-life catalyst for producing 1,1,1-trifluoro-2-chloroethane Expired - Fee Related JP3767925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15572395A JP3767925B2 (en) 1995-06-22 1995-06-22 Process for producing 1,1,1-trifluoro-2-chloroethane and long-life catalyst for producing 1,1,1-trifluoro-2-chloroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15572395A JP3767925B2 (en) 1995-06-22 1995-06-22 Process for producing 1,1,1-trifluoro-2-chloroethane and long-life catalyst for producing 1,1,1-trifluoro-2-chloroethane

Publications (2)

Publication Number Publication Date
JPH092984A JPH092984A (en) 1997-01-07
JP3767925B2 true JP3767925B2 (en) 2006-04-19

Family

ID=15612068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15572395A Expired - Fee Related JP3767925B2 (en) 1995-06-22 1995-06-22 Process for producing 1,1,1-trifluoro-2-chloroethane and long-life catalyst for producing 1,1,1-trifluoro-2-chloroethane

Country Status (1)

Country Link
JP (1) JP3767925B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590130B2 (en) * 2001-06-14 2010-12-01 東ソー株式会社 Catalyst for producing 1,1,1-trifluoro-2-chloroethane, method for producing the same, and method for producing 1,1,1-trifluoro-2-chloroethane using the same

Also Published As

Publication number Publication date
JPH092984A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
KR100336337B1 (en) Fluorination catalyst and fluorination process
EP0641598A2 (en) Chromium-based fluorination catalyst, process for producing the catalyst, and fluorination process using the catalyst
CA2069149C (en) Fluorination catalyst and process for fluorinating halogenated hydrocarbon
JP6827246B2 (en) Method for producing halogenated butene compound
JP6392777B2 (en) Method for producing 1,3,3,3-tetrafluoropropene
JP3412165B2 (en) Fluorination catalyst and method for fluorination of halogenated hydrocarbon
KR20140107524A (en) High pressure catalyst activation method and catalyst produced thereby
JPH07106998B2 (en) Method for producing 1,1,1-trifluoro-2,2-dichloroethane
WO1994017020A1 (en) Process for producing 1,1,1,4,4,4-hexafluoro-2-butenes and 1,1,1,4,4,4-hexafluorobutane
JPH06102631B2 (en) Process for producing 1,1,1,2-tetrafluorochloroethane and pentafluoroethane
KR101163528B1 (en) Method of Making difluoromethane, 1,1,1-Trifluoroethane and 1,1-Difluoroethane
KR100346127B1 (en) Process for the manyfacture of difluoromethane
US6300531B1 (en) Fluorination catalyst and process for fluorinating halogenated hydrocarbon
JP3558385B2 (en) Chromium-based fluorination catalyst and fluorination method
JP3767925B2 (en) Process for producing 1,1,1-trifluoro-2-chloroethane and long-life catalyst for producing 1,1,1-trifluoro-2-chloroethane
CA2069126C (en) Process for fluorinating halogenated hydrocarbon
US5900514A (en) Synthesis of difluoromethane
JPH047332B2 (en)
JP5138605B2 (en) Method for producing pentafluoroethane
US6337299B1 (en) Fluorination catalyst and process for fluorinating halogenated hydrocarbon
US5494877A (en) Chromium-based fluorination catalyst containing gallium and production method thereof
JP3582798B2 (en) Fluorination catalyst and fluorination method
JPH0672915A (en) Production of 1,1,1,2-tetrafluoroethane
JP4384753B2 (en) Method for preparing 227
JP2675533B2 (en) Method for producing 1,1,1,2-tetrafluoroethane and catalyst for its synthesis

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees