JP3767643B2 - Teaching force sensor - Google Patents

Teaching force sensor Download PDF

Info

Publication number
JP3767643B2
JP3767643B2 JP33764296A JP33764296A JP3767643B2 JP 3767643 B2 JP3767643 B2 JP 3767643B2 JP 33764296 A JP33764296 A JP 33764296A JP 33764296 A JP33764296 A JP 33764296A JP 3767643 B2 JP3767643 B2 JP 3767643B2
Authority
JP
Japan
Prior art keywords
force
translational
teaching
force sensor
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33764296A
Other languages
Japanese (ja)
Other versions
JPH10156772A (en
Inventor
泰輔 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP33764296A priority Critical patent/JP3767643B2/en
Publication of JPH10156772A publication Critical patent/JPH10156772A/en
Application granted granted Critical
Publication of JP3767643B2 publication Critical patent/JP3767643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【産業上の利用分野】
本発明は、並進3軸の力情報から並進と回転の6軸方向の力情報を得ることのできる、マニピュレータのダイレクト・ティーチ用の簡易な力センサ装置に関するものである。
【0002】
【従来の技術】
従来、マニピュレータのいわゆるダイレクト・ティーチシステムは、図2に示すようになっている。このようなシステムは特開昭59-157715 号公報をはじめとして多くの考案がされている。図において、101はいくつかの関節とリンクでなるマニピュレータ本体、102はマニピュレータ本体101の先端につけた6軸力センサ、103はマニピュレータ本体101の先端の教示点、104は6軸力センサ102による6軸の力情報、105は目標インピーダンス、106は目標インピーダンス105の軌道修正量、107はもともとの目標軌道、108は軌道修正量106ともともとの目標軌道107の和をとった新たな目標軌道、109は新たな目標軌道108を入力するサーボコントローラ、110はマニピュレータ本体101の各アクチュエータへ与えるサーボコントローラの出力である。このように、従来は、5軸あるいは6軸の多自由度マニピュレータにおいてダイレクト・ティーチをおこなう場合、マニピュレータ本体101の先端に6軸力センサ102を配置し、並進と回転の6軸方向の力情報を直接計測し、これをもとに力制御系を構成し、マニピュレータの運動を制御することで、教示者が力をかけた方向にマニピュレータがならうような運動をさせる教示動作を実現していた。
【0003】
【発明が解決しようとする課題】
ところが従来技術では、6軸力センサ102を用いるため、力センサの構造が複雑になり、製造に困難を生じたり製造コストが高いという問題があった。また、並進と回転の6軸の力情報を同時に計測するため、教示のための運動も必然的に並進と回転の6軸方向となり、これがかえって教示者を混乱せしめ、教示点の位置決め精度を低下させていた。
そこで、本発明は、構造が簡単でしかも6軸の力情報を計測でき、さらに並進と回転の教示動作をわけることで教示者にとって教示のしやすい、簡易な教示用力センサ装置を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
上記の問題を解決するため、本発明は、力センサを用いた力制御によるマニピュレータの教示用力センサ装置において、前記教示用力センサ装置は、マニピュレータ手先に設けた並進3軸力センサと、並進方向の力計測と回転方向の力計測とを切替える切替えスイッチと、3軸の回転方向の中からいずれか1軸の計測方向を選択する選択スイッチとを備えるとともに、マニピュレータ手先の並進および回転運動の座標軸と前記並進3軸力センサに設定した座標軸は原点がそれぞれ他方の座標軸以外の位置に置いたのである。また、マニピュレータ手先の並進および回転運動の座標軸と前記並進3軸力センサの座標軸とが互いに平行になるように配置したのである。
【0005】
【作用】
上記手段により、構造が簡単でしかも6軸の力情報を計測でき、さらに並進と回転の教示動作をわけることで教示者にとって教示のしやすい、教示用力センサ装置を提供できる。
【0006】
【発明の実施の形態】
以下、本発明の実施例を図に基づいて説明する。図1は本発明の教示用力センサを示す図である。図において、1はいくつかのリンクでなるマニピュレータ本体、2はマニピュレータ本体1の先端につけた並進3軸力センサ、3は並進3軸力センサ2の力計測座標の中心、4は並進3軸力センサ2の力計測座標、5はマニピュレータ本体1の先端に設けたマニピュレータ手先の教示点の教示座標、6はマニピュレータ手先の教示点、7は並進3軸力センサ2による並進3軸の力情報、8は並進と回転の切り替えをする切替えスイッチ、9は座標変換された後の並進3軸の力情報、10は回転の3軸のうちいずれか1軸を選択する選択スイッチ、11は座標変換された後の回転力情報、12は目標インピーダンス、13は軌道修正量、14はもともとの目標軌道、15は新たな目標軌道、16はサーボコントローラ、17はマニピュレータのアクチュエータへ出力されるサーボコントローラの出力、18は並進への切替え点、19は回転への切替え点、20はX軸方向における回転への切替え点、21はY軸方向における回転への切替え点、22はZ軸方向における回転への切替え点、23はX軸方向における回転力情報、24はY軸方向における回転力情報、25はZ軸方向における回転力情報、26は並進力の座標変換、27は回転力の座標変換である。このような構成において、 並進3軸の力センサ2の力計測座標4はマニピュレータ本体1の先端に設けられたマニピュレータ手先の教示点6における教示点の教示座標5と各軸において互いに一直線上にこないように配置されている。並進3軸力センサ2で計測された力計測座標4にもとづく並進3軸の力情報7は切替えスイッチ8へ送られる。
まず、教示点6に対する並進力の計測と並進運動は以下のように実現する。この切替えスイッチ8が並進への切替え点18へ閉じているとき、前記並進3軸の力情報7は、並進力の座標変換26を施されたあと、マニピュレータ手先の教示点6の教示点の教示座標5に対する並進3自由度の力情報9として、目標インピーダンス12とから並進方向の軌道修正量13を計算する。この軌道修正量13をもともとの目標軌道14に加え、新たな目標軌道15としてサーボコントローラ16へ送る。サーボコントローラ16はマニピュレータ本体1の各アクチュエータの運動をサーボコントローラの出力17によって制御する。以上の作用により、並進3軸力センサ2に加えられた並進力に対し、これがあたかも教示点6に加わってマニピュレータ本体1がこの並進力にならうような並進動作を実現できる。
【0007】
また、教示点6に対する回転力の計測と回転運動は以下のように実現する。並進3軸力センサ2の計測軸に対応する力計測座標4とマニピュレータの手先の座標系とは、各座標軸が互いに並行で一直線上にこないように配置されている。このとき並進3軸力センサ2に加わる力のうち、並進力を計測すれば、この情報により教示点6に対する回転力を求めることができる。例えば、並進3軸力センサ2の座標系のX’軸とZ’軸のはる平面内の並進力を、マニピュレータの手先の教示点の教示座標5におけるY軸に対する回転力とする。すなわち、前記並進力のベクトルの大きさにそのベクトルと教示点6との距離を乗じて回転力とする。同様に、Z’軸とY’軸のはる平面内の並進力を、教示点の教示座標5におけるX軸に対する回転力とする。また、X’軸とY’軸のはる平面内の並進力を、教示点の教示座標5におけるZ軸に対する回転力とする。
切替えスイッチ8が回転への切替え点19へ閉じているとき、力センサの並進3軸の力情報7は選択スイッチ10へ送られる。この選択スイッチ10がX軸方向における回転への切替え点20へ閉じているとき、上記の並進3軸の力情報7は、X軸方向の回転に寄与する並進方向の力のみがX軸方向における回転力情報23となる。また、この選択スイッチ10がY軸方向における回転への切替え点21へ閉じているとき、上記の並進3軸の力情報7は、Y軸方向の回転に寄与する並進方向の力のみがY軸方向における回転力情報24となる。また、この選択スイッチ10がZ軸方向における回転への切替え点22へ閉じているとき、前記並進3軸の力情報7は、Z軸方向の回転に寄与する並進方向の力のみがZ軸方向における回転力情報25となる。これらのいずれかの回転力情報は、回転力の座標変換27を施されたあと、教示点6における回転力情報11として目標インピーダンス12とから回転方向の軌道修正量13を計算する。この軌道修正量13をもともとの目標軌道14に加え、新たな目標軌道15としてサーボコントローラ16へ送る。サーボコントローラ16はマニピュレータ本体1の各アクチュエータの運動をサーボコントローラの出力17によって制御する。以上の作用により、力センサに加えられた並進力に対し、これがあたかも教示点6に加わる回転力として働き、マニピュレータがこの回転力にならうような回転動作を実現できる。
【0008】
上記のスイッチの切り替えは教示者によって行われ、これにより、マニピュレータに並進方向の教示動作を行わせるのか、いずれかの回転軸方向にそった教示動作をおこなわせるのかを選択できる。
なお、上記の実施例では、力センサの座標系と教示座標系とを平行に配置したが、各座標系の軸が互いに一直線上にこないならば、軸どうしにねじりがあってもよく、その場合には、力センサ情報にまず座標変換を施せば後は上記の実施例にのっとって容易に構成することができる。
以上のようにして、構造が簡単でしかも6軸の力情報を計測でき、さらに並進と回転の教示動作をわけることで教示者にとって教示のしやすい、教示用力センサ装置を提供できる。
【0009】
【発明の効果】
以上述べたように、本発明によれば、構造が簡単でしかも6軸の力情報を計測でき、さらに並進と回転の教示動作をわけることで教示者にとって教示のしやすい、教示用力センサ装置を提供しうる効果がある。
【00010】
【図面の簡単な説明】
【図1】本発明の実施例を示す図である。
【図2】従来の実施例を示す図である。
【符号の説明】
1 マニピュレータ本体
2 並進3軸力センサ
3 力計測座標の中心
4 力計測座標
5 教示点の教示座標
6 教示点
7 並進3軸の力情報
8 切替えスイッチ
9 力情報
10 選択スイッチ
11 回転力情報
12 目標インピーダンス
13 軌道修正量
14 もともとの目標軌道
15 新たな目標軌道
16 サーボコントローラ
17 サーボコントローラの出力
18 並進への切替え点
19 回転への切替え点
20 X軸方向における回転への切替え点
21 Y軸方向における回転への切替え点
22 Z軸方向における回転への切替え点
23 X軸方向における回転力情報
24 Y軸方向における回転力情報
25 Z軸方向における回転力情報
26 並進力の座標変換
27 回転力の座標変換
101 マニピュレータ本体
102 6軸力センサ
103 教示点
104 6軸の力情報
105 目標インピーダンス
106 軌道修正量
107 もともとの目標軌道
108 新たな目標軌道
109 サーボコントローラ
110 サーボコントローラの出力
[Industrial application fields]
The present invention relates to a simple force sensor device for direct teaching of a manipulator that can obtain force information in six axial directions of translation and rotation from force information of three translational axes.
[0002]
[Prior art]
Conventionally, a so-called direct teach system of a manipulator is as shown in FIG. Such a system has been devised in many ways including Japanese Patent Application Laid-Open No. 59-157715. In the figure, 101 is a manipulator body composed of several joints and links, 102 is a six-axis force sensor attached to the tip of the manipulator body 101, 103 is a teaching point at the tip of the manipulator body 101, and 104 is a six-axis force sensor 102. Axis force information, 105 is a target impedance, 106 is a trajectory correction amount of the target impedance 105, 107 is an original target trajectory, 108 is a new target trajectory that is the sum of the original target trajectory 107 and the trajectory correction amount 106, 109 Is a servo controller that inputs a new target trajectory 108, and 110 is an output of the servo controller that is applied to each actuator of the manipulator body 101. Thus, conventionally, when direct teaching is performed in a 5-axis or 6-axis multi-degree-of-freedom manipulator, the 6-axis force sensor 102 is arranged at the tip of the manipulator body 101, and force information in 6 axes directions of translation and rotation is provided. The force control system is configured based on this, and the motion of the manipulator is controlled to realize the teaching operation that makes the manipulator move in the direction in which the teacher applied the force. It was.
[0003]
[Problems to be solved by the invention]
However, in the prior art, since the 6-axis force sensor 102 is used, the structure of the force sensor is complicated, and there are problems that manufacturing is difficult and manufacturing cost is high. In addition, because the force information of 6 axes of translation and rotation is measured simultaneously, the motion for teaching is inevitably 6 directions of translation and rotation, which confuses the instructor and lowers the teaching point positioning accuracy. I was letting.
Accordingly, the present invention provides a simple teaching force sensor device that is simple in structure and capable of measuring force information of six axes and that is easy for a teacher to teach by separating translation and rotation teaching operations. It is the purpose.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a force sensor device for teaching a manipulator by force control using a force sensor , wherein the teaching force sensor device includes a translational triaxial force sensor provided on a manipulator hand, and a translational direction sensor. A changeover switch for switching between force measurement and force measurement in the rotational direction, a selection switch for selecting any one of the three rotational directions, and a coordinate axis for translation and rotational motion of the manipulator hand The coordinate axes set in the translational three-axis force sensor have their origins located at positions other than the other coordinate axis. Further, the coordinate axes of the translational and rotational movements of the manipulator hand and the coordinate axes of the translational triaxial force sensor are arranged so as to be parallel to each other.
[0005]
[Action]
By the above means, it is possible to provide a teaching force sensor device that is simple in structure and capable of measuring force information of six axes and that is easy for a teacher to teach by separating translation and rotation teaching operations.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a teaching force sensor according to the present invention. In the figure, 1 is a manipulator body comprising several links, 2 is a translational triaxial force sensor attached to the tip of the manipulator body 1, 3 is the center of the force measurement coordinate of the translational triaxial force sensor 2, and 4 is a translational triaxial force. Force measuring coordinates of the sensor 2, 5 is a teaching coordinate of a teaching point of a manipulator hand provided at the tip of the manipulator body 1, 6 is a teaching point of a manipulator hand, 7 is translational triaxial force information by the translational triaxial force sensor 2, 8 is a selector switch for switching between translation and rotation, 9 is force information of the translational three axes after coordinate conversion, 10 is a selection switch for selecting any one of the three rotation axes, and 11 is coordinate conversion. , 12 is the target impedance, 13 is the trajectory correction amount, 14 is the original target trajectory, 15 is the new target trajectory, 16 is the servo controller, and 17 is the manipulator. Output of servo controller output to the actuator, 18 is a switching point to translation, 19 is a switching point to rotation, 20 is a switching point to rotation in the X-axis direction, 21 is a switching point to rotation in the Y-axis direction, 22 is a switching point to rotation in the Z-axis direction, 23 is rotational force information in the X-axis direction, 24 is rotational force information in the Y-axis direction, 25 is rotational force information in the Z-axis direction, and 26 is coordinate conversion of translational force. Reference numeral 27 denotes coordinate conversion of rotational force. In such a configuration, the force measurement coordinates 4 of the translational three-axis force sensor 2 do not come in a straight line with the teaching coordinates 5 of the teaching point at the teaching point 6 of the manipulator hand provided at the tip of the manipulator body 1. Are arranged as follows. The translational triaxial force information 7 based on the force measurement coordinates 4 measured by the translational triaxial force sensor 2 is sent to the changeover switch 8.
First, the translational force measurement and translational movement for the teaching point 6 are realized as follows. When the changeover switch 8 is closed to the translation switching point 18, the translational triaxial force information 7 is subjected to the translational force coordinate conversion 26, and then the teaching point teaching point 6 of the manipulator hand is taught. As force information 9 having three degrees of freedom for translation with respect to the coordinate 5, a trajectory correction amount 13 in the translation direction is calculated from the target impedance 12. This trajectory correction amount 13 is sent to the servo controller 16 as a new target trajectory 15 in addition to the original target trajectory 14. The servo controller 16 controls the movement of each actuator of the manipulator body 1 by the output 17 of the servo controller. With the above operation, the translational force applied to the translational triaxial force sensor 2 can be realized as if it is added to the teaching point 6 and the manipulator body 1 follows the translational force.
[0007]
Further, the measurement of the rotational force and the rotational motion with respect to the teaching point 6 are realized as follows. The force measurement coordinate 4 corresponding to the measurement axis of the translational triaxial force sensor 2 and the coordinate system of the hand of the manipulator are arranged so that the coordinate axes are not parallel to each other and do not come on a straight line. At this time, if the translational force is measured among the forces applied to the translational triaxial force sensor 2, the rotational force for the teaching point 6 can be obtained from this information. For example, the translational force in the plane between the X ′ axis and the Z ′ axis of the coordinate system of the translational triaxial force sensor 2 is set as the rotational force with respect to the Y axis at the teaching coordinate 5 of the teaching point of the hand of the manipulator. That is, the magnitude of the translation force vector is multiplied by the distance between the vector and the teaching point 6 to obtain a rotational force. Similarly, the translational force in the plane between the Z ′ axis and the Y ′ axis is the rotational force with respect to the X axis at the teaching coordinate 5 of the teaching point. Further, the translational force in the plane where the X ′ axis and the Y ′ axis meet is the rotational force with respect to the Z axis at the teaching coordinate 5 of the teaching point.
When the changeover switch 8 is closed to the changeover point 19 for rotation, the translational triaxial force information 7 of the force sensor is sent to the selection switch 10. When the selection switch 10 is closed to the rotation switching point 20 in the X-axis direction, the above-mentioned translational triaxial force information 7 indicates that only the translational force that contributes to the rotation in the X-axis direction is in the X-axis direction. The rotational force information 23 is obtained. When the selection switch 10 is closed at the switching point 21 for rotation in the Y-axis direction, the translational 3-axis force information 7 indicates that only the translational force that contributes to the rotation in the Y-axis direction is the Y-axis. It becomes the rotational force information 24 in the direction. Further, when the selection switch 10 is closed to the switching point 22 for rotation in the Z-axis direction, the translational triaxial force information 7 indicates that only the translational force that contributes to the rotation in the Z-axis direction is the Z-axis direction. Is the rotational force information 25 at. Any one of these rotational force information is subjected to rotational force coordinate conversion 27, and thereafter, the rotational amount trajectory correction amount 13 is calculated from the target impedance 12 as the rotational force information 11 at the teaching point 6. This trajectory correction amount 13 is sent to the servo controller 16 as a new target trajectory 15 in addition to the original target trajectory 14. The servo controller 16 controls the movement of each actuator of the manipulator body 1 by the output 17 of the servo controller. With the above action, the translational force applied to the force sensor acts as a rotational force applied to the teaching point 6, and a rotational operation in which the manipulator follows this rotational force can be realized.
[0008]
The above switching of the switches is performed by a teacher, and thereby, it is possible to select whether the manipulator performs a teaching operation in the translation direction or a teaching operation along any rotation axis direction.
In the above embodiment, the coordinate system of the force sensor and the teaching coordinate system are arranged in parallel. However, if the axes of each coordinate system are not aligned with each other, the axes may be twisted. In this case, if the coordinate conversion is first performed on the force sensor information, it can be easily configured according to the above embodiment.
As described above, it is possible to provide a teaching force sensor device that has a simple structure and that can measure force information of six axes and that is easy for a teacher to teach by separating translation and rotation teaching operations.
[0009]
【The invention's effect】
As described above, according to the present invention, there is provided a teaching force sensor device that is simple in structure and capable of measuring six-axis force information and that is easy for a teacher to teach by separating translation and rotation teaching operations. There is an effect that can be provided.
[00010]
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 is a diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Manipulator body 2 Translation 3-axis force sensor 3 Center of force measurement coordinate 4 Force measurement coordinate 5 Teaching point teaching coordinate 6 Teaching point 7 Translation 3-axis force information 8 Changeover switch 9 Force information 10 Selection switch 11 Rotation force information 12 Target Impedance 13 Trajectory correction amount 14 Original target trajectory 15 New target trajectory 16 Servo controller 17 Servo controller output 18 Switching point 19 for translation 19 Switching point 20 for rotation Switching point 21 for rotation in the X axis direction In the Y axis direction Switching point 22 for rotation Switching point 23 for rotation in the Z-axis direction Rotary force information 24 in the X-axis direction Rotary force information 25 in the Y-axis direction Rotary force information 26 in the Z-axis direction Translational force coordinate conversion 27 Rotational force coordinates Conversion 101 Manipulator body 102 6-axis force sensor 103 Teaching point 104 6-axis force information 10 5 Target impedance 106 Trajectory correction amount 107 Original target trajectory 108 New target trajectory 109 Servo controller 110 Output of servo controller

Claims (2)

力センサを用いた力制御によるマニピュレータの教示用力センサ装置において、
前記教示用力センサ装置は、
マニピュレータ手先に設けた並進3軸力センサと、
並進方向の力計測と回転方向の力計測とを切替える切替えスイッチと、
3軸の回転方向の中からいずれか1軸の計測方向を選択する選択スイッチとを備えるとともに、
マニピュレータ手先の並進および回転運動の座標軸と前記並進3軸力センサに設定した座標軸は原点がそれぞれ他方の座標軸以外の位置に置かれることを特徴とする教示用力センサ装置
In a force sensor device for teaching a manipulator by force control using a force sensor ,
The teaching force sensor device comprises:
A translational triaxial force sensor provided on the manipulator hand;
A changeover switch that switches between translational force measurement and rotational force measurement;
A selection switch for selecting one of the measurement directions from the three rotation directions,
A teaching force sensor device characterized in that the coordinate axes of the translational and rotational motions of the manipulator hand and the coordinate axes set in the translational triaxial force sensor are located at positions other than the other coordinate axes.
マニピュレータ手先の並進および回転運動の座標軸と前記並進3軸力センサの座標軸とが互いに平行になるように配置したことを特徴とする請求項1記載の教示用力センサ装置
【0001】
2. The teaching force sensor device according to claim 1, wherein the coordinate axes of the translational and rotational movements of the manipulator hand and the coordinate axes of the translational triaxial force sensor are arranged in parallel to each other.
[0001]
JP33764296A 1996-12-02 1996-12-02 Teaching force sensor Expired - Fee Related JP3767643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33764296A JP3767643B2 (en) 1996-12-02 1996-12-02 Teaching force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33764296A JP3767643B2 (en) 1996-12-02 1996-12-02 Teaching force sensor

Publications (2)

Publication Number Publication Date
JPH10156772A JPH10156772A (en) 1998-06-16
JP3767643B2 true JP3767643B2 (en) 2006-04-19

Family

ID=18310587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33764296A Expired - Fee Related JP3767643B2 (en) 1996-12-02 1996-12-02 Teaching force sensor

Country Status (1)

Country Link
JP (1) JP3767643B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5637883B2 (en) * 2011-02-01 2014-12-10 ファナック株式会社 Robot teaching device for direct teaching of robots based on force sensor output
JP6007636B2 (en) * 2012-07-20 2016-10-12 セイコーエプソン株式会社 Robot control system and robot control apparatus
CN106994687B (en) * 2017-03-30 2019-08-20 北京卫星环境工程研究所 Industrial robot end six-dimension force sensor Installation posture scaling method

Also Published As

Publication number Publication date
JPH10156772A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
Tandirci et al. The characteristic point and the characteristic length of robotic manipulators
Tsai Robot analysis: the mechanics of serial and parallel manipulators
Riehl et al. On the determination of cable characteristics for large dimension cable-driven parallel mechanisms
Kawasaki et al. Control of multi-fingered haptic interface opposite to human hand
JP3767643B2 (en) Teaching force sensor
Nurahmi et al. Dynamic analysis of the 3-RRPS metamorphic parallel mechanism based on instantaneous screw axis
Pfeiffer Grasping with hydraulic fingers-an example of mechatronics
Cakir et al. An educational tool for 6‐DOF industrial robots with quaternion algebra
Hui et al. Mechanisms for haptic feedback
Kuo et al. Motion planning and control of interactive humanoid robotic arms
Bai et al. A humanoid robotic hand capable of internal assembly and measurement in spacesuit gloves
JP7352267B1 (en) Articulated robot, control method for an articulated robot, robot system, and article manufacturing method
Joinié-Maurin et al. Design of a linear haptic display based on approximate straight line mechanisms
JPH05337860A (en) Robot hand teaching device and robot hand
WO2024048285A1 (en) Articulated robot, articulated robot control method, robot system, and article manufacturing method
Alwan et al. Modeling of Gough Stewart Robot manipulator inverse kinematics by using MSC ADAMS software
JPS60218114A (en) Teaching device of robot arm
de Dios Flores-Mendez et al. Design of a dynamically reconfigurable 3T1R parallel kinematic manipulator
JPS62189504A (en) Control method for robot
DOS SANTOS et al. INVERSE KINEMATICS OF THE UNDERWATER VEHICLE-MANIPULATOR SYSTEMS USING KINEMATIC CONSTRAINS.
JPH04101787A (en) Control device for master slave manipulator of different structure
Kottege et al. Vitual Robot Arm Control Model
Hess-Coelho et al. A new family of 3-DOF parallel robot manipulators for pick-and-place operations
Guenther et al. A new approach to the underwater vehicle-manipulator systems kinematics
JP2735160B1 (en) Position / posture non-interfering arm mechanism with command mode in end effector coordinate system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees