JP3767487B2 - Hot and cold rolled steel sheets with excellent weldability - Google Patents

Hot and cold rolled steel sheets with excellent weldability Download PDF

Info

Publication number
JP3767487B2
JP3767487B2 JP2002025234A JP2002025234A JP3767487B2 JP 3767487 B2 JP3767487 B2 JP 3767487B2 JP 2002025234 A JP2002025234 A JP 2002025234A JP 2002025234 A JP2002025234 A JP 2002025234A JP 3767487 B2 JP3767487 B2 JP 3767487B2
Authority
JP
Japan
Prior art keywords
inclusions
welding
hot
less
flash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002025234A
Other languages
Japanese (ja)
Other versions
JP2003226936A (en
Inventor
広志 松田
総人 北野
俊明 占部
康伸 長滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002025234A priority Critical patent/JP3767487B2/en
Publication of JP2003226936A publication Critical patent/JP2003226936A/en
Application granted granted Critical
Publication of JP3767487B2 publication Critical patent/JP3767487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、フラッシュ溶接性あるいはアブセット溶接性等の溶接性に優れた熱延鋼板および冷延鋼板に関する。
【0002】
【従来の技術】
近年、地球環境保全の見地から、自動車の燃費向上が重要な課題となっている。このため、車体材料の高強度化により薄肉化を図り、車体そのものを軽量化しようとする動きが活発である。しかしながら、鋼板の高強度化は延性の低下、即ち成型加工性の低下を招くことから、高強度と高加工性を併せ持つ材料の開発が望まれている。
【0003】
このような要求に対して、これまでにフェライト−マルテンサイト二相鋼(Dual-Phase鋼)や残留オーステナイトの加工誘起変態を利用したTRIP鋼など、種々の複合組織鋼板が開発されてきた。
【0004】
通常、これらの鋼板は、転炉あるいは電気炉等で溶製された鋼スラブを熱間圧延して製造されるか、あるいはさらに酸洗した後、冷間圧延−焼鈍もしくは熱冷延下地の鋼板に溶融亜鉛めっきを施して製造される。
【0005】
これらの高加工性高張力鋼板の製造に際し、熱間圧延された鋼板は、通常、酸洗ラインの入側に設置された溶接機で接合されて、後続する各製造ラインに通板され、所定の処理が施される。このとき、溶接部には製造ライン内で溶接部以外の鋼板の正常部と同様の処理が施される。
【0006】
溶接部強度が低い場合、製造ライン内、特に大きな圧延荷重と張力が付与される冷間圧延ラインで、溶接部破断が発生しやすい。溶接部破断が発生した場合、製造効率の大幅な低下や、破断材による圧延ロール損傷などの設備損傷による製造コストの大幅な増加を招く。このため、溶接部は、前記した製造ライン内で破断しない強度を有することが必要である。
【0007】
熱間圧延された鋼板の接合には、種々の溶接方法が用いられるが、その中でフラッシュ溶接およびアプセット溶接は、レーザ溶接などに比較して設備コスト、ランニングコストが安い。しかしながら、これらの方法により、Si,Al,Mn等の介在物を形成しやすい合金成分を含有した鋼板を溶接した場合、溶接界面に介在物が残留し、それが起点となってき裂が生じ、溶接部強度が低下しやすい。
【0008】
以下では、比較的高効率であることから、酸洗ラインの入側における先行鋼板と後行鋼板との接続に使用されることが多い、フラッシュ溶接について説明する。フラッシュ溶接は、以下の3段階の過程により被溶接材に溶接部を形成して接続する溶接方法である。
【0009】
▲1▼ 被溶接材両端に電圧を印加した状態で、突き合わせ端面を適切な速度で接近させ、局部的な接触部を生じさせる。
【0010】
▲2▼ この接触部に流れる高電流密度の短絡電流による抵抗発熱と、接触短絡部の溶融破断に伴い発生するアークによって端面を局部的に集中加熱する。この時、アークによって、端面の溶融金属が飛散する。この溶融金属の飛散現象をフラッシングという。(フラッシュ過程)
▲3▼ フラッシングによって端面全面の温度を上昇させ、突き合わせ端面の全面にほぼ一様な溶融層を形成させた時点で、急速に被溶接材を前進させ、溶接部を加圧・変形して、被溶接材同志を接合する。(アプセット過程)
前記したように、このようなフラッシュ溶接により、Al,Si,Mn等の介在物を形成しやすい合金成分を含有した鋼板を溶接する場合、溶接界面に介在物が残留し、それが起点となってき裂が生じやすい。
【0011】
ここで、Dual-Phase鋼やTRIP鋼は、フェライトと第二相のバランス調整、特にTRIP鋼の場合は残留オーステナイトを残すために、SiやAlを多く含有する場合がある。このため、これらの鋼板の製造に用いる熱延鋼板をフラッシュ溶接する場合、前記合金成分に起因する介在物の溶接界面への残存を回避することが重要である。
【0012】
介在物の溶接界面への残存を回避する方法としては、まず前記したアプセット過程において、溶接界面から介在物を完全に排出できるように溶接条件を最適化し、それを厳密に管理、実施していくことが挙げられる。しかし、介在物を形成しやすい合金元素を多く含有した鋼板の場合、適正な溶接条件範囲自体が存在しないか、存在しても条件範囲は著しく狭くなっている。
【0013】
また、たとえ適正な溶接条件範囲が存在するとしても、フラッシュ電流の大きさやフラッシュ時間、アプセット電流の大きさやアプセット時間、さらにはフラッシュ代やアプセット代などの多数の要素が交絡した複雑な溶接条件を厳密に管理し、安定した操業を行うことは、工業的に極めて困難である。
【0014】
そこで、溶接時における介在物の生成、特に介在物中で、最も容易に生成する酸化物の生成を抑制し、介在物の残存を回避する方法が提案されている。例えば、特開昭49-96947号公報には、溶接部近傍で還元性ガスを含むガスを燃焼させることにより、大気中酸素を遮断する方法、特開昭56-50789号公報には、突き合わせ溶接部分を気密化し、不活性ガスでシールドして溶接する方法が提案されている。
【0015】
特開昭59-118282号公報には、溶接部近傍に炭素重合体、有機化合物、有機珪素化合物や亜鉛、亜鉛粉末含有物、カルシウム、マグネシウム合金やその含有物などの保護ガス発生物質を溶接部近傍に塗布し、溶接時の熱により保護ガスを発生させる方法が提案されている。
【0016】
その他、特開昭62-275581号公報には、同様にグリースを溶接部近傍に塗布し、溶接時の熱により保護ガスを発生させる方法が提案されている。また、特開昭63-203281号公報には、グリースの塗布方法が提案されている。
【0017】
【発明が解決しようとする課題】
しかし、前記従来技術には、以下に述べる問題点がある。
【0018】
特開昭49-96947号公報に提案の技術は、ガスの燃焼を利用するため、ガス燃焼設備設置とその運用によるコスト増加や、火炎による周辺設備への熱的影響の増大という問題があり、実用的ではない。
【0019】
特開昭56-50789号公報に提案の技術は、気密化に伴う設備改造やその運用によるコスト増加、溶接機にこれら設備を取り付けることにより微妙な調整を必要とする突き合わせ部周辺の保守作業に支障がでるといった問題が生じる。さらに、Si,Al,Mnなど酸化性の強い合金元素が多く含有されている場合、酸化物などの介在物が溶接界面に残存していることがあり、溶接部強度について必ずしも十分な信頼性を得ることができない。
【0020】
特開昭59-118282号公報、特開昭62-275581号公報、特開昭63-203281号公報に提案の技術は、比較的容易に適正な溶接条件範囲を広げることができるが、溶接中の溶接部周辺を大気からシールドする効果は必ずしも完全ではなく、また、Si,Al,Mnなど酸化性の強い合金元素が多く含有されている場合、酸化物などの介在物が溶接界面に残存していることがあり、溶接部強度について必ずしも十分な信頼性を得ることができない。
【0021】
また、鋼板へのグリースなどの塗布工程が増えることになり、効率面の低下、設備コストの増加を引き起こす。さらに、これらの方法を使用した場合、グリース等が溶接機などに付着、残存し、スパッタなどが付着しやすくなる。スパッタが電極表面に付着した場合、電極と鋼板の接触が局部的になり、ダイバーンなどの溶接欠陥を発生する。また、鋼板通板中にスパッタが鋼板上に落下すると、鋼板表面に傷を生じるため、グリースなどを除去する煩雑な清掃を行わねばならない。以上のような理由から、これらもその実施を極力避けたい方法である。
【0022】
このため、実際の製造ラインでは、Si,Al等を大量に含有し、酸化物による介在物を生成しやすい合金成分を含む場合、酸化性成分元素を多く含有しない軟鋼ストリップなどを難溶接材間に挿入して溶接し、交互通板することも行われている。
【0023】
本発明は、前記した事情を考慮してなされたものであり、グリース等の塗布、酸化性成分元素を多く含有しない材料との交互通板などを行うことなく、製造ライン内で溶接部破断を発生させない溶接部強度を得ることができるフラッシュ溶接性およびアプセット溶接性に優れた熱延鋼板およびこの熱延鋼板を素材として製造する高加工性高張力冷延鋼板を提供することを目的とする。
【0024】
【課題を解決するための手段】
前記課題を解決するための、本発明の特徴とする構成は以下のとおりである。すなわち、質量%で、C:0.05〜0.2%、Si:2.0%以下、Mn:0.5〜3.5%、P:0.1%以下、S:0.02%以下、Al:0.01〜2.0%以下、N:0.007%以下、残部がFeおよび不可避不純物からなる鋼板であって、鋼板中に含まれる直径0.1〜1.0μmの介在物が2000個/mm2以下、直径1.0μm超の介在物が[3.9-(Si (質量 % +Al (質量 % )]×100個/mm2以下であることを特徴とする溶接性に優れた熱延鋼板である。
【0025】
また、この発明の熱延鋼板をフラッシュ溶接またはアプセット溶接した後、冷間圧延を施して製造した冷延鋼板とすることもできる。
【0026】
以下、本発明について説明する。本発明は、Si, Mn, Alなど酸化性の強い合金元素を多く含有する熱延鋼板をフラッシュ溶接した場合、溶接時の酸化物の生成を抑制しても、溶接界面に介在物が残存し、そのために溶接部強度が低下する場合がある点に着目し、鋼板成分組成や鋼板中の介在物とフラッシュ溶接性の関係について詳細に調査した結果なされた。
【0027】
調査の過程で、フラッシュ溶接性は、鋼板成分組成により直接影響されるのではなく、鋼板中の介在物により大きく影響を受けること、さらに、後記するように鋼板中の介在物は、その大きさによってフラッシュ性に及ぼす影響が異なっていることが見出された。本発明はこの知見に基づき、鋼板中の介在物の大きさと個数を適切な範囲にすることにより、良好なフラッシュ溶接性とアプセット溶接性を得ることを可能とした点に大きな特徴がある。
【0028】
まず、本発明の化学成分の限定理由について述べる。
【0029】
C : 0.05〜0.2%
Cは、オーステナイトを安定化させる元素であり、マルテンサイトの体積および硬さの増加、又は室温でオーステナイトを残留させるために必要な元素である。C量が0.05%未満では、製造条件の最適化を図ったとしても、鋼板の強度の確保、またTRIP鋼では残留オーステナイト量を確保することが難しい。一方、C量が0.2%を超えると、溶接部および熱影響部の硬化が著しく、溶接性が劣化する。こうした観点から、C量を0.05〜0.2%の範囲内とする。
【0030】
Si : 2.0%以下
Siは、鋼の強化に有効な元素である。また、フェライト生成元素であり、オーステナイト中へのCの濃化促進および炭化物の生成を抑制することから、マルテンサイトの硬さの調整、残留オーステナイトの生成を促進する働きがあるので、複合組織鋼およびTRIP鋼に添加されることが多い。しかしながら、過剰な添加はフェライトの脆化を招き、材料の強度−延性バランスを劣化させることになる。従って、添加量を2.0%以下に限定する。
【0031】
Mn : 0.5〜3.5%
Mnは、鋼の強化に有効な元素である。また、オーステナイトを安定化させる元素であり、マルテンサイトの体積および硬さの増加、又は室温でオーステナイトを残留させるために必要な元素である。この効果は、Mn が 0.5%以上で得られる。一方、Mnを3.5%を超えて過剰に添加すると、オーステナイトが安定化しすぎて、マルテンサイトへの加工誘起変態、即ちTRIP効果が発現しなくなることがある。また、固溶強化による強度上昇が所望の範囲を超えることがある。従って、Mn量を0.5〜3.5%とする。
【0032】
P : 0.1%以下
Pは、鋼の強化に有効な元素であるが、0.1%を超えて過剰に添加すると、粒界偏析により脆化を引き起こし、耐衝撃性を劣化させる。従って、P量を0.1%以下とする。
【0033】
S :0.02%以下
Sは、MnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となるので極力低い方がよいが、製造コストの面から0.02%以下とする。
【0034】
Al : 0.01〜2.0%
Alは、鋼中のNを固定することにより固溶Nによる降伏点伸びの回復を抑える作用がある。この作用は、0.01%未満では発揮されない。また、フェライト生成元素であり、オーステナイト中へのCの濃化促進および炭化物の生成を抑制することから、マルテンサイトの硬さの調整、残留オーステナイトの生成を促進する働きがあるので、複合組織鋼およびTRIP鋼に多量に添加される場合がある。しかしながら、過剰な添加はフェライトの脆化を招き、材料の強度−延性バランスを劣化させることになる。従って、添加量を2.0%以下に限定する。
【0035】
N : 0.007%以下
Nは、鋼の耐時効性を最も大きく劣化させる元素であり、少ないほどよく、0.007%を超えると耐時効性の劣化が顕著となる。従って、N量を0.007%以下とする。
【0036】
本発明の鋼板には、上記の化学成分以外にも、鋼板の特性を損なわない程度の微量成分も含み得るものであり、このような鋼板も発明の技術範囲に含まれる。
【0037】
次に本発明の鋼板の介在物について説明する。鋼板中の介在物は、その直径が1.0μmを境に溶接時の溶融状況が異なり、フラッシュ性に及ぼす影響が異なる。ここで、介在物の寸法は直径で表し、この直径は介在物の形状を円形に換算したときの直径、即ち円相当直径で表す。なお、介在物の個数は、直径1.0 μm超の介在物は光学顕微鏡で、直径0.1〜1.0μmの介在物は走査型電子顕微鏡で容易に測定可能である。
【0038】
直径1.0 μm超の介在物: [3.9-(Si (質量 % +Al (質量 % )]×100個/mm2以下
直径1.0μm超の比較的大きな介在物は、溶接時に完全には溶解しないため、溶融界面に残留しやすく、一部大きく成長する場合も認められる。この介在物の許容量は、酸化物を形成するSi (質量 % +Al (質量 % の合計量により変化し、後述の実験式:[3.9-(Si (質量 % +Al (質量 % )]×100個/mm2を超えると、き裂の発生が顕著となる。従って、直径1.0μm超の介在物を[3.9-(Si (質量 % +Al (質量 % )]×100個/mm2以下とする。
【0039】
直径0.1〜1.0μmの介在物:2000個/mm2以下
直径1.0μm以下の介在物は、溶接時にほぼ完全に溶解するが、溶接終了時に溶融界面に微細に再生成し、フラットスポットを形成することがある。そのため、溶接界面の強度が低下し、フラッシュ溶接性を劣化させる。これは、直径1.0 μm以下の介在物が2000個/mm2を超えると顕著となる。従って、直径1.0 μm以下の介在物を2000個/mm2以下とする。
【0040】
なお、直径1.0μm以下の介在物として観察する際、その下限を直径0.1μmとしているが、これは直径0.1μm未満の介在物の量(質量)は、直径0.1〜1.0μmの介在物に対して無視しうることによる。直径0.1μm未満の介在物は直径0.1〜1.0μmの介在物に対して、直径が1/10以下のため体積は10-3倍より小さくなる。従って、仮に多数存在しても、その量は無視できるのである。
【0041】
【発明の実施の形態】
本発明の熱延鋼板の製造方法は、化学成分、および直径1.0μm超の介在物の個数と直径0.1〜1.0μmの介在物の個数の両方を、それぞれ所定の範囲内に調整するものであれば、どのような形態でもかまわない。例えば、真空溶解炉、転炉または電気炉で所定の成分範囲に溶製した溶鋼を、脱ガス処理などを施し、造塊鋳造、連続鋳造あるいはストリップキャスタによって鋳造し、熱片状態での直送圧延あるいは鋼片再加熱後に熱間加工を行って、熱延鋼板を製造する。
【0042】
その際、主に一次脱酸生成物である直径1.0μm超の介在物の制御は、例えば、溶鋼脱ガス時間を長くするとか、またはスラグ組成の調整によりスラグからの再酸化を防止することなどにより行う。さらに、主に二次脱酸生成物である直径0.1〜1.0μmの介在物の制御は、鋳造速度、鋳造時の加熱、補助加熱、保熱、鋳片厚さ、冷却条件など溶鋼の凝固冷却速度を調整することにより行うことができる。
【0043】
Sについては溶銑、取鍋精錬などで脱Sするか、Sの少ない原料、副原料を用いて精錬することが望ましい。
【0044】
熱間加工は、分塊圧延、粗圧延、仕上げ熱延の内、仕上げ熱延は必須であるが、分塊圧延、粗圧延は鋳造後の鋼塊、鋼片、鋳造板などの厚さ寸法、リジング抑制などにより適宜選択して行うことができる。
【0045】
このようにして製造された熱延鋼板はフラッシュ溶接性、アプセット溶接性に優れるので、熱間圧延された鋼板のまま、あるいはさらに酸洗等の脱スケール等の処理を施した後、フラッシュ溶接やアプセット溶接を施す熱延鋼板の用途に広く使用することができる。
【0046】
また、前記熱延鋼板は、フラッシュ溶接等により先行鋼板と後行鋼板を接続した後、酸洗ラインや冷間圧延ライン等の各製造ラインを通板して処理を施しても、溶接部で破断しないので、冷間圧延する各種鋼板の素材として使用することができる。さらに、熱延鋼板を素材として製造した各種鋼板も優れたフラッシュ溶接性およびアプセット溶接性を有している。
【0047】
なお、ここではフラッシュ溶接性を冷間圧延ラインにおける通板性で評価しているが、この評価結果は、ラインの通板性のみでなく、溶接部が加工を受ける場合のき裂発生の有無を示すものであり、これは容易に推察可能である。
【0048】
以下、前記したSi,Alと介在物の関係について詳述する。
【0049】
まず、表1に示す成分組成の板厚2.8〜3.0mm、板幅1200mmの熱延鋼板を突き合わせ、フラッシュ溶接を行った。なお、表1の鋼板の成分組成の表示しない残部はFeおよび不可避不純物である。溶接条件は、フラッシュ時間8.5秒、フラッシュ長さ12mm、アプセット代3.5mmである。溶接部から排出されたフラッシュメタルは、バイトにより母材表面と同じ高さになるまで研削した。
【0050】
【表1】

Figure 0003767487
【0051】
フラッシュ溶接性は、板幅1200mmの溶接材から100mm幅の試験片を10片取り出し、実験室冷間圧延機で圧延し、破断の有無、あるいは破断は生じないが表面にき裂が観察された場合はき裂長さを測定した。き裂長さは、両面のき裂長さが両面の溶接部全体の長さ(100mm×2)に占める割合を、き裂長さ率(%、き裂長さ合計mm/溶接部全体の長さmm×100)として求め、この値により評価した。
【0052】
冷間圧延は、ロール間ギャップを2.6mmから、0.2mmずつ減じて1.2mm付近になるまで冷間圧延を繰り返し、その後、ギャップを0.2〜0.05mmに調節して最終的な板厚を1.2mmとした。通常の酸洗ラインまたは冷間圧延ラインでは、き裂長さ率が10%以下であれば、ライン内で溶接部破断が発生することがなく、安定した通板が可能である。なお、繰り返し圧延の途中で、上下貫通したき裂が生じた場合は、その時点で破断と判断し、圧延を中止した。
【0053】
表1に示すように、全体的にはSiの増加とともにき裂長さ率が増加する傾向が認められるが、ほぼ同一成分組成の鋼板であってもき裂長さ率にかなりのばらつきがある。したがって、鋼板成分組成のみではフラッシュ溶接性の良否を判断できないので、鋼板成分組成のみの限定ではフラッシュ溶接性の改善を行えないことがわかった。
【0054】
引き続き検討を行い、溶接前後の鋼板中の介在物の観察結果と溶接性の調査結果から、以下のことがわかった。
【0055】
▲1▼直径1.0 μm超の介在物
フラッシュ溶接時において、これら介在物は、溶融金属中ではその大半が溶融しているのに対し、溶融界面近傍では溶融せず、逆に温度上昇により成長する。このような介在物の成長は、溶融界面に近いほど著しくなっている。溶融金属自身はアプセット過程さえ適正に行えば、比較的容易に排出される。しかし、溶融界面近傍で成長した介在物は、アプセット時に排出されにくく、溶接界面に残留してき裂の起点となる。
【0056】
▲2▼直径0.1〜1.0μmの介在物
フラッシュ溶接時において、溶融金属中ではこれらの介在物はほぼ完全に溶融している。溶融界面近傍では、凝集して大きくなるものも一部存在するが、溶接時における温度上昇により大半は溶融する。溶融金属自身はアプセット過程さえ適正に行えば、比較的容易に排出される。しかし、溶融界面近傍で溶融した介在物は、溶接終了後の急冷時に溶接界面に微細に再生成し、フラットスポットを形成する。このフラットスポットが溶接界面に広く存在すると、界面強度は低下する。特に、き裂が発生した場合、その伝播を容易にする。
【0057】
以上の結果から、これらの介在物の大きさと量を規定することにより、グリース等の塗布、酸化性成分元素を多く含有しない材料との交互通板などを行うことなく、製造ライン内で溶接部破断を発生させない溶接部強度を得ることができるフラッシュ溶接性がより安定した鋼板を得ることができるのではないかと考えた。
【0058】
このような知見に基づき、介在物の量およびサイズとフラッシュ溶接性の関係について引き続き調査を行った。介在物観察については、直径1.0μm超の介在物観察は光学顕微鏡で、直径0.1〜1.0μmの介在物観察は走査型電子顕微鏡で行った。
【0059】
図1は、鋼板のSiとAlの含有量の和および直径1.0μm超の介在物の個数とフラッシュ溶接性の関係を示す図である。図中の鋼板の直径0.1〜1.0μmの介在物の個数は700〜1500個/mm2でほぼ一定とした。なお、介在物測定は、直径1.0 μm超の介在物は光学顕微鏡で、直径0.1〜1.0μmの介在物は走査型電子顕微鏡で行った。
【0060】
図から明らかなように、き裂長さ率が10%以下となる直径1.0μm超の介在物の個数の上限と、SiとAlの含有量の和には明確な相関がある。図中の直線を式で表すと、縦軸=390-100(Si (質量 % +Al (質量 % )となる。従って、直径1.0μm超の介在物の個数が、[3.9-(Si (質量 % +Al (質量 % )]×100個/mm2以下であれば、き裂長さ率がライン通板時の許容範囲内の10%以下になることがわかる。
【0061】
次に、直径0.1〜1.0μmの介在物の影響を調査した。そのため表2に示す成分組成の鋼板A、Bを下記のようにして製造した。なお、表2の鋼板の成分組成の表示しない残部はFeおよび不可避不純物である。また、直径1.0μm超の介在物の個数を本発明範囲内の[3.9-(Si (質量 % +Al (質量 % )]×100個/mm2以下とした。
【0062】
【表2】
Figure 0003767487
【0063】
鋼板中に存在する介在物は、溶鋼の溶製段階で生成する一次脱酸生成物と、凝固冷却時に溶解度の低下により晶出する二次脱酸生成物とに分かれる。そこで、表2 に示す成分組成に溶製した鋼を、真空溶解炉を用い、スラグの塩基度・組成の調整、脱ガス処理時間の調整、さらに溶鋼凝固時の冷却速度の調整を行って、介在物のサイズおよび個数を調整した鋳片を製造した。これらの鋳片を熱間圧延し、板厚2.0mm、板幅100mmの試料を製造した。
【0064】
この試料について介在物観察およびフラッシュ溶接を行い、溶接後に前述と同様の方法で、ロール間ギャップを2.6mmから1.2mmまで、実験室冷間圧延を行い、前述の評価方法により、き裂長さ率等の溶接部の品質を評価した。介在物観察については、前述と同様、直径1.0μm超の介在物観察は光学顕微鏡で、直径0.1〜1.0μmの介在物観察は走査型電子顕微鏡で行った。
【0065】
以上の結果を図2〜4(表2の鋼A〜Cに対応)に示す。これらの図は、直径0.1〜1.0μmの介在物の個数とき裂長さ率の関係を示す図である。いずれの図においても、直径0.1〜1.0μmの介在物の個数が2000個/mm2以下の範囲で、き裂長さ率が10%以下であることがわかる。
【0066】
【実施例】
表3および表4に示す化学成分の鋼を溶製し、種々の精錬−鋳造条件で鋳片を製造した。すなわち、介在物の大きさと個数の調整は、スラグ組成の調整により塩基度を変化させること、真空度・脱ガス時間を変化させること、あるいは鋳造時の溶鋼の凝固冷却速度を変えることにより行った。なお、表3〜4の化学成分の表示しない残部は、 Feおよび不可避不純物である。
【0067】
【表3】
Figure 0003767487
【0068】
【表4】
Figure 0003767487
【0069】
このようにして得た鋳片を1200℃に加熱した後、熱間圧延で板厚3.0mm、板幅1200mmの熱延鋼板とし、フラッシュ溶接機で溶接を行った。溶接条件は、フラッシュ時間8.5秒、フラッシュ長さ12mm、アプセット代3.5mmである。溶接部から排出されたフラッシュメタルは、バイトにより母材表面と同じ高さになるまで研削した。
【0070】
フラッシュ溶接性は、板幅1200mmの溶接材から100mm幅の試験片を10片取り出し、前述と同様の方法で介在物の観察を行い、実験室冷間圧延により、き裂長さ率の測定を行った。以上の測定結果を表3に併せて示す。
【0071】
表3により、本発明例の鋼は、総てき裂長さ率が10%以下となっており、フラッシュ溶接性が非常に良好である。
【0072】
【発明の効果】
以上詳述したように、本発明の熱延鋼板は、グリース等の塗布、酸化性成分元素を多く含有しない材料との交互通板などを行うことなく、良好なフラッシュ溶接性およびアプセット溶接性を示す。したがって、フラッシュ溶接やアプセット溶接を行う熱延鋼板の用途に広く使用することができる。また、この熱延鋼板を、フラッシュ溶接やアプセット溶接で接続して冷間圧延ライン等の各製造ラインに通板した場合、各製造ライン内で溶接部破断がないので、破断に伴う製造効率の低下や圧延ロール損傷などの設備損傷による製造コストの増加を防止することができる。
【0073】
また、この熱延鋼板を素材として用いて製造された冷延鋼板についても、前記した効果および特性を得ることができる。
【図面の簡単な説明】
【図1】 Si+Al量、介在物(1.0μm超)個数とフラッシュ溶接性の関係を示す図。
【図2】介在物(0.1〜1.0μm)の個数とき裂長さ率の関係を示す図(表2鋼A)。
【図3】介在物(0.1〜1.0μm)の個数とき裂長さ率の関係を示す図(表2鋼B)。
【図4】介在物(0.1〜1.0μm)の個数とき裂長さ率の関係を示す図(表2鋼C)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot-rolled steel sheet and a cold-rolled steel sheet excellent in weldability such as flash weldability or abset weldability.
[0002]
[Prior art]
In recent years, improving the fuel efficiency of automobiles has become an important issue from the viewpoint of global environmental conservation. For this reason, efforts are being made to reduce the thickness of the vehicle body by increasing the strength of the vehicle body material and to reduce the weight of the vehicle body itself. However, increasing the strength of a steel sheet results in a decrease in ductility, that is, a decrease in molding processability, and therefore development of a material having both high strength and high processability is desired.
[0003]
In response to such demands, various composite steel sheets such as ferritic-martensitic dual-phase steel (Dual-Phase steel) and TRIP steel utilizing work-induced transformation of retained austenite have been developed.
[0004]
Usually, these steel sheets are manufactured by hot-rolling steel slabs melted in a converter or electric furnace, or after pickling, and then cold-rolling-annealing or hot-cold rolling steel sheets. Is manufactured by hot dip galvanizing.
[0005]
In the production of these high-workability high-tensile steel plates, the hot-rolled steel plates are usually joined by a welding machine installed on the entry side of the pickling line, passed through each subsequent production line, and predetermined Is processed. At this time, the welded portion is subjected to the same processing as the normal portion of the steel plate other than the welded portion in the production line.
[0006]
When the weld strength is low, breakage of the weld is likely to occur in the production line, particularly in a cold rolling line to which a large rolling load and tension are applied. When a welded portion breaks, the production efficiency is greatly reduced, and the production cost is greatly increased due to equipment damage such as rolling roll damage caused by the fractured material. For this reason, a welding part needs to have the intensity | strength which does not fracture within an above-described manufacturing line.
[0007]
Various welding methods are used for joining hot-rolled steel sheets. Among them, flash welding and upset welding are cheaper in equipment cost and running cost than laser welding or the like. However, by these methods, when a steel sheet containing an alloy component that easily forms inclusions such as Si, Al, Mn, etc. is welded, the inclusions remain at the weld interface, which causes cracks to occur, The weld strength tends to decrease.
[0008]
Below, since it is comparatively highly efficient, flash welding which is often used for the connection of the preceding steel plate and the succeeding steel plate on the entry side of the pickling line will be described. Flash welding is a welding method in which a welded portion is formed and connected to a material to be welded by the following three-stage process.
[0009]
(1) With the voltage applied to both ends of the work piece, the butt end faces are approached at an appropriate speed to generate local contact portions.
[0010]
{Circle around (2)} The end face is locally concentrated and heated by resistance heat generation due to a high-current-density short-circuit current flowing through the contact portion and an arc generated due to melt fracture of the contact short-circuit portion. At this time, the molten metal on the end face is scattered by the arc. This phenomenon of molten metal scattering is called flushing. (Flash process)
(3) When the temperature of the entire end face is increased by flushing and a substantially uniform molten layer is formed on the entire face of the butted end face, the welded material is rapidly advanced, and the weld is pressed and deformed. Joining workpieces together. (Upset process)
As described above, when welding a steel sheet containing an alloy component that easily forms inclusions such as Al, Si, and Mn by such flash welding, inclusions remain at the weld interface, which is the starting point. Cracks are likely to occur.
[0011]
Here, Dual-Phase steel and TRIP steel may contain a large amount of Si and Al in order to adjust the balance between ferrite and second phase, particularly in the case of TRIP steel, to leave residual austenite. For this reason, when flash-welding hot-rolled steel sheets used in the production of these steel sheets, it is important to avoid the inclusions remaining on the weld interface due to the alloy components.
[0012]
As a method of avoiding the inclusion remaining on the weld interface, first, in the upset process described above, the welding conditions are optimized so that the inclusion can be completely discharged from the weld interface, and it is strictly controlled and implemented. Can be mentioned. However, in the case of a steel sheet containing a large amount of alloying elements that easily form inclusions, the proper welding condition range itself does not exist, or even if it exists, the condition range is extremely narrow.
[0013]
Even if there is an appropriate welding condition range, it is possible to create complex welding conditions in which many factors such as the flash current magnitude and flash time, the upset current magnitude and upset time, and the flash and upset costs are entangled. It is extremely difficult industrially to perform strict control and stable operation.
[0014]
Accordingly, a method has been proposed in which the formation of inclusions during welding, particularly the formation of oxides that are most easily generated in the inclusions, is suppressed, and the remaining inclusions are avoided. For example, JP-A-49-96947 discloses a method of blocking atmospheric oxygen by burning a gas containing a reducing gas in the vicinity of a weld, and JP-A-56-50789 discloses butt welding. A method has been proposed in which a portion is hermetically sealed and shielded with an inert gas for welding.
[0015]
In JP-A-59-118282, a protective gas generating material such as a carbon polymer, an organic compound, an organosilicon compound, zinc, a zinc powder-containing material, calcium, a magnesium alloy or its inclusion is provided in the vicinity of the welded portion. A method of applying a protective gas in the vicinity and generating a protective gas by heat during welding has been proposed.
[0016]
In addition, Japanese Patent Application Laid-Open No. 62-275581 similarly proposes a method in which grease is applied in the vicinity of a weld and a protective gas is generated by heat during welding. Japanese Unexamined Patent Publication No. 63-203281 proposes a grease application method.
[0017]
[Problems to be solved by the invention]
However, the prior art has the following problems.
[0018]
Since the technique proposed in Japanese Patent Laid-Open No. 49-96947 uses gas combustion, there is a problem of increased cost due to the installation and operation of gas combustion equipment, and thermal influence on peripheral equipment due to flame, Not practical.
[0019]
The technology proposed in Japanese Patent Application Laid-Open No. 56-50789 can be used for maintenance work around the abutting section that requires fine adjustment by installing these equipment on the welding machine, by remodeling equipment due to airtightness and increasing costs due to its operation. Problems such as problems occur. In addition, when a large amount of highly oxidizable alloy elements such as Si, Al, and Mn are contained, inclusions such as oxides may remain at the weld interface, and the weld strength is not always sufficiently reliable. Can't get.
[0020]
The techniques proposed in JP-A-59-118282, JP-A-62-275581, and JP-A-63-203281 can expand the appropriate welding condition range relatively easily. The effect of shielding the periphery of the welded part from the atmosphere is not always perfect, and if there are many highly oxidizable alloy elements such as Si, Al and Mn, inclusions such as oxide remain at the weld interface. In some cases, sufficient reliability cannot be obtained with respect to the strength of the welded portion.
[0021]
In addition, the number of steps for applying grease or the like to the steel sheet increases, causing a reduction in efficiency and an increase in equipment costs. Furthermore, when these methods are used, grease or the like adheres and remains on the welding machine or the like, and spatter or the like tends to adhere. When spatter adheres to the electrode surface, the contact between the electrode and the steel plate becomes localized, and welding defects such as die burn are generated. Further, if spatter falls on the steel plate while passing through the steel plate, the surface of the steel plate is scratched. Therefore, complicated cleaning for removing grease and the like must be performed. For the reasons described above, these are methods that should be avoided as much as possible.
[0022]
For this reason, in an actual production line, when containing an alloy component that contains a large amount of Si, Al, etc., and is likely to generate inclusions due to oxides, a mild steel strip that does not contain a large amount of oxidative component elements, etc. It is also carried out by inserting into the welding and welding and alternately passing plates.
[0023]
The present invention has been made in consideration of the above-mentioned circumstances, and it is possible to break a welded part in a production line without performing application of grease or the like, or alternate plate with a material not containing a large amount of oxidizing component elements. It is an object of the present invention to provide a hot-rolled steel sheet excellent in flash weldability and upset weldability capable of obtaining welded portion strength that does not occur, and a high workability high-tensile cold-rolled steel sheet manufactured using this hot-rolled steel sheet as a raw material.
[0024]
[Means for Solving the Problems]
In order to solve the above problems, the characteristic features of the present invention are as follows. That is, in mass%, C: 0.05 to 0.2%, Si: 2.0% or less, Mn: 0.5 to 3.5%, P: 0.1% or less, S: 0.02% or less, Al: 0.01 to 2.0% or less, N: 0.007% Hereinafter, the balance is a steel plate composed of Fe and inevitable impurities, and the inclusions contained in the steel plate are 2,000 / mm 2 or less in diameter of 0.1 to 1.0 μm and inclusions in the diameter of more than 1.0 μm are [3.9- ( Si ( Mass % ) + Al (mass % ) )] × 100 pieces / mm 2 or less, a hot-rolled steel sheet having excellent weldability.
[0025]
Moreover, after carrying out flash welding or upset welding of the hot rolled steel plate of this invention, it can also be set as the cold rolled steel plate manufactured by giving cold rolling.
[0026]
The present invention will be described below. In the present invention, when hot-rolled steel sheet containing a large amount of highly oxidizable alloy elements such as Si, Mn, Al is flash welded, inclusions remain at the weld interface even if the generation of oxide during welding is suppressed. Therefore, paying attention to the fact that the weld strength may be lowered for that purpose, it was made as a result of a detailed investigation on the relationship between the steel plate component composition and the inclusions in the steel plate and flash weldability.
[0027]
In the course of the investigation, the flash weldability is not directly influenced by the steel plate composition, but is greatly influenced by the inclusions in the steel plate. Further, as will be described later, the inclusions in the steel plate It was found that the effect on flash properties was different. Based on this knowledge, the present invention has a great feature in that it is possible to obtain good flash weldability and upset weldability by adjusting the size and number of inclusions in the steel sheet to an appropriate range.
[0028]
First, the reasons for limiting the chemical components of the present invention will be described.
[0029]
C: 0.05-0.2%
C is an element that stabilizes austenite, and is an element necessary for increasing the volume and hardness of martensite or for retaining austenite at room temperature. If the C content is less than 0.05%, it is difficult to ensure the strength of the steel sheet and to secure the retained austenite content with TRIP steel, even if the production conditions are optimized. On the other hand, if the C content exceeds 0.2%, the welded part and the heat-affected zone are markedly cured, and the weldability deteriorates. From such a viewpoint, the C content is set in the range of 0.05 to 0.2%.
[0030]
Si: 2.0% or less
Si is an element effective for strengthening steel. In addition, it is a ferrite-forming element and has the function of adjusting the hardness of martensite and promoting the formation of retained austenite because it promotes the concentration of C in austenite and suppresses the formation of carbides. And often added to TRIP steel. However, excessive addition causes embrittlement of the ferrite and deteriorates the strength-ductility balance of the material. Therefore, the addition amount is limited to 2.0% or less.
[0031]
Mn: 0.5-3.5%
Mn is an element effective for strengthening steel. Further, it is an element that stabilizes austenite, and is an element that is necessary for increasing the volume and hardness of martensite or for retaining austenite at room temperature. This effect is obtained when Mn is 0.5% or more. On the other hand, if Mn is added in excess of 3.5%, austenite is too stabilized, and the processing-induced transformation to martensite, that is, the TRIP effect may not be exhibited. Moreover, the strength increase by solid solution strengthening may exceed a desired range. Therefore, the Mn content is 0.5 to 3.5%.
[0032]
P: 0.1% or less
P is an element effective for strengthening steel, but if added in excess of 0.1%, it causes embrittlement due to grain boundary segregation and degrades impact resistance. Therefore, the P content is 0.1% or less.
[0033]
S: 0.02% or less
S is an inclusion such as MnS, which causes deterioration of impact resistance and cracks along the metal flow of the weld. Therefore, S should be as low as possible, but it should be 0.02% or less from the viewpoint of manufacturing cost.
[0034]
Al: 0.01-2.0%
Al has the effect of suppressing the recovery of yield point elongation due to solute N by fixing N in the steel. This effect is not exerted at less than 0.01%. In addition, it is a ferrite-forming element and has the function of adjusting the hardness of martensite and promoting the formation of retained austenite because it promotes the concentration of C in austenite and suppresses the formation of carbides. And may be added in large amounts to TRIP steel. However, excessive addition causes embrittlement of the ferrite and deteriorates the strength-ductility balance of the material. Therefore, the addition amount is limited to 2.0% or less.
[0035]
N: 0.007% or less
N is an element that causes the most deterioration in the aging resistance of steel. The smaller the amount, the better. If it exceeds 0.007%, the deterioration of the aging resistance becomes remarkable. Therefore, the N content is 0.007% or less.
[0036]
The steel plate of the present invention may contain a trace amount of component that does not impair the properties of the steel plate in addition to the chemical components described above, and such a steel plate is also included in the technical scope of the invention.
[0037]
Next, the inclusions in the steel sheet of the present invention will be described. Inclusions in the steel sheet differ in the melting state during welding with a diameter of 1.0 μm as a boundary, and have different effects on flash properties. Here, the size of the inclusion is expressed by a diameter, and this diameter is expressed by a diameter when the shape of the inclusion is converted into a circle, that is, an equivalent circle diameter. The number of inclusions can be easily measured with an optical microscope for inclusions with a diameter of more than 1.0 μm, and with a scanning electron microscope for inclusions with a diameter of 0.1 to 1.0 μm.
[0038]
Inclusions with a diameter exceeding 1.0 μm: [3.9- ( Si (mass % ) + Al (mass % ) )] × 100 / mm 2 or less Relatively large inclusions with a diameter exceeding 1.0 μm are completely dissolved during welding Therefore, it tends to remain at the melt interface, and some cases grow large. The allowable amount of inclusions varies depending on the total amount of Si (mass % ) + Al (mass % ) forming the oxide, and the empirical formula described below: [3.9- ( Si (mass % ) + Al (mass % ) ) )] When exceeding 100 pieces / mm 2 , cracks become prominent. Therefore, inclusions with a diameter of more than 1.0 μm are set to [3.9- ( Si (mass % ) + Al (mass % ) )] × 100 / mm 2 or less.
[0039]
Inclusions with a diameter of 0.1 to 1.0 μm: 2000 pieces / mm 2 or less Inclusions with a diameter of 1.0 μm or less dissolve almost completely at the time of welding, but finely regenerate at the melting interface at the end of welding to form a flat spot. Sometimes. For this reason, the strength of the weld interface is lowered, and the flash weldability is deteriorated. This becomes remarkable when the number of inclusions having a diameter of 1.0 μm or less exceeds 2000 / mm 2 . Therefore, the number of inclusions having a diameter of 1.0 μm or less is 2000 pieces / mm 2 or less.
[0040]
In addition, when observing as inclusions having a diameter of 1.0 μm or less, the lower limit is set to 0.1 μm. However, the amount (mass) of inclusions having a diameter of less than 0.1 μm is smaller than inclusions having a diameter of 0.1 to 1.0 μm. It can be ignored. Inclusions having a diameter of less than 0.1 μm have a diameter smaller than 10 −3 times because the diameter is 1/10 or less of inclusions having a diameter of 0.1 to 1.0 μm. Therefore, even if there are many, the amount can be ignored.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a hot-rolled steel sheet of the present invention adjusts both the chemical composition and the number of inclusions having a diameter of more than 1.0 μm and the number of inclusions having a diameter of 0.1 to 1.0 μm within a predetermined range. Any form is acceptable. For example, molten steel melted in a specified component range in a vacuum melting furnace, converter or electric furnace is subjected to degassing treatment, casted by ingot casting, continuous casting or strip caster, and directly fed in the hot strip state Or hot-working is performed after a steel piece reheating, and a hot-rolled steel plate is manufactured.
[0042]
At that time, the control of inclusions with a diameter of more than 1.0 μm, which is mainly the primary deoxidation product, is to increase the degassing time of the molten steel or prevent reoxidation from the slag by adjusting the slag composition, etc. To do. Furthermore, inclusions with a diameter of 0.1 to 1.0 μm, mainly secondary deoxidation products, are controlled by solidification and cooling of molten steel, including casting speed, heating during casting, auxiliary heating, heat retention, slab thickness, and cooling conditions. This can be done by adjusting the speed.
[0043]
It is desirable to remove S by hot metal, ladle refining, etc., or by refining S using raw materials and auxiliary materials.
[0044]
Hot working is part rolling, rough rolling, and finishing hot rolling. Finishing hot rolling is essential, but part rolling and rough rolling are the thickness dimensions of steel ingot, steel slab, cast plate, etc. after casting. , And can be appropriately selected depending on ridging suppression or the like.
[0045]
The hot-rolled steel sheet produced in this way is excellent in flash weldability and upset weldability. Therefore, after hot-rolled steel sheet or further subjected to treatment such as descaling such as pickling, flash welding or It can be widely used for hot-rolled steel sheets for upset welding.
[0046]
In addition, the hot-rolled steel sheet can be welded even if it is processed by passing through each production line such as a pickling line or a cold rolling line after connecting the preceding steel sheet and the succeeding steel sheet by flash welding or the like. Since it does not break, it can be used as a raw material for various steel sheets to be cold-rolled. Further, various steel plates manufactured using hot-rolled steel plates as raw materials also have excellent flash weldability and upset weldability.
[0047]
Here, flash weldability is evaluated based on the plate-passability in the cold rolling line, but this evaluation result shows not only the line-passability of the line but also the presence or absence of cracks when the weld is subjected to processing. This is easy to guess.
[0048]
Hereinafter, the relationship between Si, Al and inclusions will be described in detail.
[0049]
First, a hot-rolled steel sheet having a thickness of 2.8 to 3.0 mm and a width of 1200 mm having the composition shown in Table 1 was butted and flash welding was performed. In addition, the balance which does not display the component composition of the steel plate of Table 1 is Fe and an unavoidable impurity. The welding conditions are a flash time of 8.5 seconds, a flash length of 12 mm, and an upset cost of 3.5 mm. The flash metal discharged from the welded portion was ground with a bite until it was flush with the base metal surface.
[0050]
[Table 1]
Figure 0003767487
[0051]
For flash weldability, 10 specimens with a width of 1200 mm were taken out from a welded material with a sheet width of 1200 mm, and rolled with a laboratory cold rolling mill, with or without fracture, or cracks were observed on the surface. In some cases, the crack length was measured. The crack length is the ratio of the crack length on both sides to the entire welded length (100mm × 2) on both sides, crack length ratio (%, total crack length mm / total length of welded mm × 100) and evaluated by this value.
[0052]
In cold rolling, the roll gap is reduced from 2.6mm to 0.2mm, and is repeated until it reaches 1.2mm, then the gap is adjusted to 0.2-0.05mm and the final thickness is 1.2mm. It was. In a normal pickling line or cold rolling line, if the crack length ratio is 10% or less, the welded portion does not break in the line and stable plate passing is possible. In addition, when the crack which penetrated up and down occurred in the middle of repeated rolling, it judged that it was a fracture | rupture at that time and stopped rolling.
[0053]
As shown in Table 1, there is a tendency for the crack length ratio to increase with an increase in Si as a whole, but there is considerable variation in the crack length ratio even with steel sheets having substantially the same composition. Therefore, it was found that the quality of flash weldability cannot be judged only by the steel plate component composition, so that the flash weldability cannot be improved only by limiting the steel plate component composition.
[0054]
Further examination was conducted, and the following was found from the observation results of the inclusions in the steel sheet before and after welding and the survey results of weldability.
[0055]
(1) During flash welding of inclusions with a diameter of more than 1.0 μm, these inclusions are mostly melted in the molten metal, but are not melted in the vicinity of the melt interface, and conversely grow due to temperature rise. . The growth of such inclusions becomes more prominent the closer to the melt interface. The molten metal itself can be discharged relatively easily if the upsetting process is performed properly. However, inclusions grown in the vicinity of the melt interface are unlikely to be discharged during upsetting, and remain on the weld interface to become a crack initiation point.
[0056]
(2) During the flash welding of inclusions having a diameter of 0.1 to 1.0 μm, these inclusions are almost completely melted in the molten metal. In the vicinity of the melting interface, there are some that agglomerate and become large, but most of them melt due to the temperature rise during welding. The molten metal itself can be discharged relatively easily if the upsetting process is performed properly. However, inclusions melted in the vicinity of the melt interface are finely regenerated at the weld interface during quenching after the end of welding, forming a flat spot. If this flat spot is widely present at the weld interface, the interface strength decreases. In particular, when a crack occurs, it facilitates its propagation.
[0057]
Based on the above results, by defining the size and amount of these inclusions, it is possible to weld parts within the production line without applying grease, etc., or alternating plates with materials that do not contain a large amount of oxidizing component elements. It was thought that a steel sheet having a more stable flash weldability capable of obtaining a weld strength that does not cause breakage could be obtained.
[0058]
Based on these findings, we continued to investigate the relationship between the amount and size of inclusions and flash weldability. Regarding the observation of inclusions, the observation of inclusions with a diameter of more than 1.0 μm was performed with an optical microscope, and the observation of inclusions with a diameter of 0.1 to 1.0 μm was performed with a scanning electron microscope.
[0059]
FIG. 1 is a graph showing the relationship between the sum of the contents of Si and Al, the number of inclusions having a diameter of more than 1.0 μm, and flash weldability. In the figure, the number of inclusions having a diameter of 0.1 to 1.0 μm in the steel plate was 700-1500 pieces / mm 2 and was almost constant. The inclusions were measured with an optical microscope for inclusions with a diameter of more than 1.0 μm, and with a scanning electron microscope for inclusions with a diameter of 0.1 to 1.0 μm.
[0060]
As is clear from the figure, there is a clear correlation between the upper limit of the number of inclusions with a diameter exceeding 1.0 μm, where the crack length ratio is 10% or less, and the sum of the contents of Si and Al. When the straight line in the figure is expressed by an equation, the vertical axis = 390-100 ( Si (mass % ) + Al (mass % ) ). Therefore, if the number of inclusions with a diameter of more than 1.0 μm is [3.9- ( Si (mass % ) + Al (mass % ) )] × 100 / mm 2 or less, the crack length ratio is It can be seen that it becomes 10% or less within the allowable range.
[0061]
Next, the influence of inclusions having a diameter of 0.1 to 1.0 μm was investigated. Therefore, steel plates A and B having the composition shown in Table 2 were produced as follows. In addition, the balance which does not display the component composition of the steel plate of Table 2 is Fe and an unavoidable impurity. The number of inclusions with a diameter exceeding 1.0 μm was set to [3.9- ( Si (mass % ) + Al (mass % ) )] × 100 / mm 2 or less within the scope of the present invention.
[0062]
[Table 2]
Figure 0003767487
[0063]
Inclusions present in the steel sheet are divided into a primary deoxidation product produced in the melting stage of molten steel and a secondary deoxidation product that crystallizes due to a decrease in solubility during solidification cooling. Therefore, steel melted to the composition shown in Table 2 was adjusted using a vacuum melting furnace, adjusting the basicity and composition of the slag, adjusting the degassing time, and adjusting the cooling rate during solidification of the molten steel, A slab was produced in which the size and number of inclusions were adjusted. These slabs were hot-rolled to produce samples with a plate thickness of 2.0 mm and a plate width of 100 mm.
[0064]
Observation of inclusions and flash welding were performed on this sample, and after the welding, laboratory cold rolling was performed from 2.6 mm to 1.2 mm in the gap between rolls in the same manner as described above, and the crack length ratio was determined according to the evaluation method described above. The quality of the welded part was evaluated. Regarding the inclusion observation, as described above, the observation of inclusions with a diameter of more than 1.0 μm was performed with an optical microscope, and the observation of inclusions with a diameter of 0.1 to 1.0 μm was performed with a scanning electron microscope.
[0065]
The above results are shown in FIGS. 2 to 4 (corresponding to steels A to C in Table 2). These figures show the relationship between the number of inclusions having a diameter of 0.1 to 1.0 μm and the crack length ratio. In any of the figures, it can be seen that the crack length ratio is 10% or less when the number of inclusions having a diameter of 0.1 to 1.0 μm is 2000 / mm 2 or less.
[0066]
【Example】
Steels having chemical components shown in Table 3 and Table 4 were melted, and slabs were produced under various refining-casting conditions. That is, the size and number of inclusions were adjusted by changing the basicity by adjusting the slag composition, changing the degree of vacuum and degassing, or changing the solidification cooling rate of the molten steel during casting. . In addition, the remainder which does not display the chemical component of Tables 3-4 is Fe and an unavoidable impurity.
[0067]
[Table 3]
Figure 0003767487
[0068]
[Table 4]
Figure 0003767487
[0069]
The slab thus obtained was heated to 1200 ° C., then hot rolled into a hot rolled steel plate having a plate thickness of 3.0 mm and a plate width of 1200 mm, and was welded with a flash welder. The welding conditions are a flash time of 8.5 seconds, a flash length of 12 mm, and an upset cost of 3.5 mm. The flash metal discharged from the welded portion was ground with a bite until it was flush with the base metal surface.
[0070]
For flash weldability, 10 specimens with a width of 100 mm were taken out from a welding material with a sheet width of 1200 mm, the inclusions were observed in the same manner as described above, and the crack length ratio was measured by laboratory cold rolling. It was. The above measurement results are also shown in Table 3.
[0071]
According to Table 3, the steel of the example of the present invention has a total crack length ratio of 10% or less, and the flash weldability is very good.
[0072]
【The invention's effect】
As described above in detail, the hot-rolled steel sheet of the present invention has good flash weldability and upset weldability without performing application of grease or the like, or alternate plate with a material not containing a large amount of oxidizing component elements. Show. Therefore, it can be widely used for hot-rolled steel sheets for flash welding and upset welding. In addition, when this hot-rolled steel sheet is connected by flash welding or upset welding and passed through each production line such as a cold rolling line, there is no welded part breakage in each production line. It is possible to prevent an increase in manufacturing cost due to equipment damage such as reduction or damage to a rolling roll.
[0073]
In addition, the effects and characteristics described above can be obtained also for cold-rolled steel sheets manufactured using this hot-rolled steel sheet as a raw material.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of Si + Al, the number of inclusions (over 1.0 μm) and flash weldability.
FIG. 2 is a diagram showing the relationship between the number of inclusions (0.1 to 1.0 μm) and the crack length ratio (Table 2 Steel A).
FIG. 3 is a diagram showing the relationship between the number of inclusions (0.1 to 1.0 μm) and the crack length ratio (Table 2 Steel B).
FIG. 4 is a diagram showing the relationship between the number of inclusions (0.1 to 1.0 μm) and the crack length ratio (Table 2 Steel C).

Claims (2)

質量%で、C:0.05〜0.2%、Si : 2.0%以下、Mn:0.5〜3.5%、P:0.1%以下、S:0.02%以下、Al:0.01〜2.0%以下、N:0.007%以下、残部がFeおよび不可避不純物からなる鋼板であって、鋼板中に含まれる直径0.1〜1.0μmの介在物が2000個/mm2以下、直径1.0μm超の介在物が[3.9-(Si (質量 % +Al (質量 % )]×100個/mm2以下であることを特徴とする溶接性に優れた熱延鋼板。In mass%, C: 0.05 to 0.2%, Si: 2.0% or less, Mn: 0.5 to 3.5%, P: 0.1% or less, S: 0.02% or less, Al: 0.01 to 2.0% or less, N: 0.007% or less, The balance is a steel plate made of Fe and unavoidable impurities. The inclusions in the steel plate with a diameter of 0.1 to 1.0 μm are 2000 pieces / mm 2 or less, and inclusions with a diameter of more than 1.0 μm are [3.9- ( Si (mass % ) + Al (mass % ) )] × 100 pieces / mm 2 or less Hot-rolled steel sheet with excellent weldability. 請求項1記載の熱延鋼板をフラッシュ溶接またはアプセット溶接した後、冷間圧延を施して製造した冷延鋼板。A cold-rolled steel sheet produced by subjecting the hot-rolled steel sheet according to claim 1 to flash welding or upset welding, followed by cold rolling.
JP2002025234A 2002-02-01 2002-02-01 Hot and cold rolled steel sheets with excellent weldability Expired - Fee Related JP3767487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002025234A JP3767487B2 (en) 2002-02-01 2002-02-01 Hot and cold rolled steel sheets with excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002025234A JP3767487B2 (en) 2002-02-01 2002-02-01 Hot and cold rolled steel sheets with excellent weldability

Publications (2)

Publication Number Publication Date
JP2003226936A JP2003226936A (en) 2003-08-15
JP3767487B2 true JP3767487B2 (en) 2006-04-19

Family

ID=27747452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002025234A Expired - Fee Related JP3767487B2 (en) 2002-02-01 2002-02-01 Hot and cold rolled steel sheets with excellent weldability

Country Status (1)

Country Link
JP (1) JP3767487B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4399018B1 (en) * 2008-07-15 2010-01-13 新日本製鐵株式会社 Steel sheet with excellent toughness of weld heat affected zone
JP5783014B2 (en) * 2011-11-29 2015-09-24 新日鐵住金株式会社 Steel bar for bearing
JP5783056B2 (en) * 2012-01-18 2015-09-24 新日鐵住金株式会社 Carburized bearing steel
JP5825157B2 (en) * 2012-03-12 2015-12-02 新日鐵住金株式会社 Induction hardening steel

Also Published As

Publication number Publication date
JP2003226936A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
US8383034B2 (en) Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
JP6728455B1 (en) Highly corrosion resistant Ni-Cr-Mo steel excellent in weldability and surface properties and method for producing the same
JP5264235B2 (en) High yield ratio type Zn-Al-Mg plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP5264234B2 (en) Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP3767487B2 (en) Hot and cold rolled steel sheets with excellent weldability
JP6665658B2 (en) High strength steel plate
JP5516380B2 (en) Cold-rolled steel sheet for resistance welding and method for producing the same
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
JPH09194998A (en) Welded steel tube and its production
JP2003225792A (en) Wire for carbon dioxide gas shielded arc welding
JP5070866B2 (en) Hot-rolled steel sheet and spot welded member
JP7277834B2 (en) SOLID WIRE FOR WELDING ALUMINUM PLATED STEEL STEEL AND METHOD FOR MANUFACTURING WELD JOINT
JP3454020B2 (en) Hot rolled steel sheet with excellent flash weldability and upset weldability and non-oriented electrical steel sheet made from this hot rolled steel sheet
JPH08309428A (en) Production of welded steel tube
JP2002363650A (en) Method for producing ultrahigh strength cold rolled steel sheet having excellent seam weldability
JP3454019B2 (en) Hot rolled steel sheet with excellent flash weldability and upset weldability and non-oriented electrical steel sheet made from this hot rolled steel sheet
JP5935844B2 (en) Cold-rolled steel sheet with excellent delayed fracture resistance of laser welds and method for producing the same
JPH09194997A (en) Welded steel tube and its production
JPH0581658B2 (en)
JP2002275590A (en) Ferritic stainless steel for welding having excellent workability in weld zone
JP4197375B2 (en) Extremely low carbon steel with excellent endless rolling and formability
JP2003170274A (en) Flash butt welding method for stainless steel plate
JP2023087922A (en) Solid wire for welding aluminum plated steel sheet, and method for manufacturing weld joint
JP4254583B2 (en) Cr-containing alloy with excellent strain aging resistance of welds
JP2000345239A (en) Production of steel excellent in toughness of welding heat-affected zone

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees