JP3766309B2 - Desalination plant using solar thermal energy - Google Patents

Desalination plant using solar thermal energy Download PDF

Info

Publication number
JP3766309B2
JP3766309B2 JP2001323845A JP2001323845A JP3766309B2 JP 3766309 B2 JP3766309 B2 JP 3766309B2 JP 2001323845 A JP2001323845 A JP 2001323845A JP 2001323845 A JP2001323845 A JP 2001323845A JP 3766309 B2 JP3766309 B2 JP 3766309B2
Authority
JP
Japan
Prior art keywords
seawater
water
tank
water tank
evaporating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001323845A
Other languages
Japanese (ja)
Other versions
JP2003126841A (en
Inventor
賢士 宍戸
Original Assignee
賢士 宍戸
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 賢士 宍戸 filed Critical 賢士 宍戸
Priority to JP2001323845A priority Critical patent/JP3766309B2/en
Publication of JP2003126841A publication Critical patent/JP2003126841A/en
Application granted granted Critical
Publication of JP3766309B2 publication Critical patent/JP3766309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/211Solar-powered water purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として、太陽熱エネルギーの豊富な乾燥地帯の海岸線に建設し、その太陽熱エネルギーを利用して海水を真水に浄化する太陽熱利用の海水淡水化プラントに関するものである。
【0002】
【従来の技術】
従来の海水の淡水化方式は、高圧による逆浸透膜方式と、高温ボイラー熱を利用した海水の蒸発による蒸留水方式とがある。
【0003】
上記従来の方式は、いずれも、簡易な小型プラントの構成が困難で、大型のプラントとなって大きな設置場所を必要とする。
【0004】
さらに、設備投資が高額であるだけでなく、造水に必要な逆浸透膜その他の消耗品がランニングコストアップの大きな要因となっている外、設備プラントの内容が複雑で、そのメンテナンス及び稼動に専門技術者が必要であり、保守・管理コストも高い。
【0005】
その上に、海水濃度・植物性プランクトン・動物性プランクトン・その他環境ホルモン物質・有機物・無機物・全窒素・全燐・農薬・化学肥料・石油物質等を逆浸透膜で完全除去するためには「膜の目詰まり」が発生して「膜交換コスト」が高くなって「経済的競争力」で劣る。
【0006】
さらに又、逆浸透膜方式の場合には、飲料水とするには、水質に問題があり、長期に継続して飲用すると健康に悪影響があるなどの幾多の欠点がある。
【0007】
【発明が解決しようとする課題】
そこで、本発明は、主として、無尽蔵の太陽熱エネルギーがさんさんと降り注ぐ熱帯や亜熱帯の乾燥地帯や砂漠地帯の海岸線に建設して、その太陽熱エネルギーを高率よく利用して海水を真水に浄化することによって飲料水として使用できる外、生活用水や植物成育用水などの多方面に使用できる淡水を安価大量に浄製できる太陽熱利用の海水淡水化プラントを得ようとするものである。
【0008】
【課題を解決するための手段】
本発明は上記の如き観点に鑑みてなされたものであって、海水を淡水化する海水淡水化プラントにおいて、前記海水を導入する底部に鉱石を積んだ陸地の井戸と、前記井戸から湧出する海水を濾過するために鉱石を配した海水貯水槽と、前記海水貯水槽に貯水された海水を水質改善する水質改善水槽と、前記水質改善水槽で処理を施された海水を濾過する一基以上の濾過機と、前記濾過機で濾過された浄化海水を蒸発室内に一槽以上設置された蒸発用水槽と、前記蒸発室内の蒸発用水槽の上方に設置された集光レンズと、前記蒸発室内の上方に取り付けられて該蒸発室内の水蒸気を露結し液体に復する除湿機とを少なくとも備え、前記水質改善水槽は、該槽内において入口空間部から出口空間部に沿って上下流動する流動空間と、前記流動空間に配置したマイナスの電極板とを有する海水淡水化プラント、及び、海水を淡水化する海水淡水化プラントにおいて、前記海水を導入する底部に鉱石を積んだ陸地の井戸と、前記井戸から湧出する海水を濾過するために鉱石を配した海水貯水槽と、前記海水貯水槽に貯水された海水を水質改善する水質改善水槽と、前記水質改善水槽で処理を施された海水を濾過する一基以上の濾過機と、前記濾過機で濾過された浄化海水を蒸発室内に一槽以上設置された蒸発用水槽と、前記蒸発室内の蒸発用水槽の上方に設置された集光レンズと、前記蒸発室内の上方に取り付けられて該蒸発室内の水蒸気を露結し液体に復する除湿機と、前記除湿機により液体に復した淡水を飲料水に浄水する浄水濾過機と、前記飲料水を貯蔵する飲料水槽とを少なくとも備え、前記水質改善水槽は、該槽内において入口空間部から出口空間部に沿って上下流動する流動空間と、前記流動空間に配置したマイナスの電極板とを有する太陽熱エネルギー利用の海水淡水化プラントを提供しようとするものである。
【0009】
【発明の実施の態様】
次に、本発明の一実施例を詳細に説明する。
図1はプラントの全体を摸式的に示すシステム図であり、太陽熱エネルギーの豊富な乾燥地帯や砂漠地帯の海岸から、海洋の水を水質安定の海水にするため、例えば、100メートル程度離れた所要の陸地において、海水層に到達する所要深さの井戸1を掘る。該井戸1の海水は、海洋のエネルギーから遮断されて陸地のエネルギーのルールに従って時間の経過と共に水質の変化が生じる。該井戸1の底に所要の鉱石を積んで水質の淡水化を開始し、そこから湧出する海水をポンプ2で所要の海水貯水槽3に送水されて貯水される。該貯水槽3には所要の鉱石を積んで「分子ふるい」「イオン交換」「吸着」等の自然の濾過がなされる。該貯水槽3に貯水された海水はポンプ4で所要の水質改善水槽5に送水される。
【0010】
図2は、前記水質改善水槽5の構成の一例を示す概略図であって、該槽5内には入口空間部501をおいて、底板51から垂直に植設されて上部窓52を空けた植立壁板53と、該植立壁板53から所要の間隔を置いて天板54から垂直に下設されて下部窓55を空けた下垂板56とで構成される流動空間57が出口方向に沿って槽内に順次構成されている。該各流動空間57にはそれぞれの植立壁板53及び下垂板56の所定位置に取り付けられたマイナスの電極板58が設けられている。そして、最後部の流動空間57に隣接して出口空間部502が設けられている。
【0011】
尚、この場合、前記各植立壁板53及び各下垂板56はマイナスの電極板とすることもできる。
【0012】
そこで、前記ポンプ4で送水された海水は、前記水質改善水槽5内の一端側の入口空間部501の上方から入り、最初の植立壁板53の上端を水面が越えると上部窓52から流動空間57に越流してから下垂板56の下端下の下部窓55を通って上方に流動する。海水はその上下の流動の過程でそれぞれ電極板に接触して海水中に含まれる不純物のプラスイオンが吸着される。その水質改善処理を施した改質海水はポンプ6で濾過機7に送水され、そこで濾過される。
【0013】
前記水質改善水槽5で安定した水質に改質された海水はポンプ6で濾過機7に送水され、そこで濾過される。
【0014】
前記濾過機7で、有機物・無機物・植物性プランクトン・動物性プランクトン・ヘキサン等の不純物が除去される。該濾過機7で濾過された濾過海水はポンプ8で所要の濾過海水貯水槽9に送水される。該濾過海水貯水槽9に貯水された濾過海水はポンプ10によって濾過機11に送水される。そこでさらに濾過されて「全窒素」「全燐」「農薬」その他が除去され、塩分濃度については、例えば、0.1%程度までに除塩される。
【0015】
前記濾過機11で濾過された浄化海水は、ポンプ12により、例えば、天井が強化ガラスであり、壁面はステンレス乱反射板で構成され、外壁は断熱塗料や断熱材等で熱放散を防ぐようにして日中は室内が格別の高温になる蒸発室21内に一槽以上設置された蒸発用水槽13に送水されて常態的に所要の水面位置まで貯水される。
【0016】
前記蒸発用水槽13は、図3に示すように、その槽内部の表面131を乱反射面に構成することによって該槽13内に入射した光線Lを乱反射させてそれぞれの光線の終息までの光路を長くすることにより光エネルギーの捕捉効率を高めることもできる。
【0017】
前記蒸発用水槽13の上方には、太陽熱(光)を集束する集光レンズ14が配置され、該蒸発室21内に入射する太陽光を収集して該水槽13内で焦点させ、それによって該水槽13内の浄化海水を加熱して加温を促進する。該集光レンズ14は、例えば、ガラス又はプラスチック等の透明な容器に水を入れて凸レンズ作用をなす水レンズであってもよい。
【0018】
前記蒸発用水槽13から蒸発して「海水の気化」から気液分離により塩分が析出除去された淡水の水蒸気が上昇する。前記蒸発室21内の上方所要位置には除湿機15が取り付けられている。その除湿作用により前記蒸発用水槽13から蒸発して該蒸発室21内に発散した水蒸気が凝集除去されることによって該蒸発用水槽13からの蒸発作用を増進させる。
【0019】
この場合、前記蒸発用水槽13の加熱に太陽光エネルギーを可能な限り無駄なく利用できる手段を適宜配置することもできる。
【0020】
前記除湿機15により水蒸気を露結し液体に復させた淡水を淡水貯水槽16に集めて貯水する。
【0021】
前記淡水貯水槽16に集水された淡水はポンプ17によって浄水濾過機18に送水し、そこで、不安定な水質の淡水を飲料水に浄水してからポンプ19により飲料水槽20に送水し貯蔵する。
【0022】
【発明の効果】
以上の説明により明らかなように、海水層に到達する井戸と、前記海水層から湧出する海水を水質改善する水質改善水槽と、前記水質改善水槽で水質改善処理を施された海水を濾過して有機物・無機物・植物性プランクトン・動物性プランクトン・ヘキサン等の不純物及び全窒素、全燐、農薬等を除去する1基以上の濾過機と、前記濾過機で濾過された浄化海水を蒸発室内に一槽以上設置された蒸発用水槽と、前記蒸発室内の蒸発用水槽の上方に設置された集光レンズと、前記蒸発室内の上方に取り付けられて該蒸発室内の水蒸気を露結し液体に復する除湿機と、前記除湿機により液体に復した淡水を飲料水に浄水する浄水濾過機と、前記飲料水を貯蔵する飲料水槽とを少なくとも含有するものであるから、以下のような諸効果が得られる。
1.熱帯や亜熱帯の乾燥地帯や砂漠地帯の沿岸陸地において、飲料水として使用できる外、生活用水や植物成育用水などの多方面に使用できる淡水を安価大量に浄製できる。
2.海水の淡水化に必要なエネルギーを無尽蔵の太陽熱に依存するので、エネルギーの経済的コストがゼロである。
3.熱帯や亜熱帯の乾燥地帯や砂漠地帯の海岸線に建設するものでるから、太陽熱で熱くなった土砂の上に配管される送水パイプが熱せられ、それによって配管内の海水の温度が高温になり、海水の予熱に利用できる。
4.蒸発室の昇温エネルギーは、集光レンズ利用によって促進できる。
5.蒸発用水槽の内面を乱反射面とすることにより光エネルギーの吸収効率を高めることができる。
【図面の簡単な説明】
【図1】本発明一実施例のプラントの全体を摸式的に示すシステム図である。
【図2】本発明一実施例に使用される水質改善水槽の構成の一例を示す概略図である。
【図3】本発明一実施例に使用される蒸発用水槽の内面の構成の一例を示す概略説明図である。
【符号の説明】
1 海水層に到達する井戸
5 水質改善水槽
7、11 濾過機
13 蒸発用水槽
131 蒸発用水槽13内部の表面
14 集光レンズ
15 除湿機
18 浄水濾過機
20 飲料水槽
21 蒸発室
501 入口空間部
502 出口空間部
57 流動空間
58 マイナスの電極板
[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a solar water desalination plant constructed on a coastline in a dry zone rich in solar thermal energy and purifying seawater into fresh water using the solar thermal energy.
[0002]
[Prior art]
Conventional seawater desalination systems include a reverse osmosis membrane system using high pressure and a distilled water system using seawater evaporation using high-temperature boiler heat.
[0003]
In any of the above conventional systems, it is difficult to configure a simple small plant, and the large system becomes a large plant and requires a large installation place.
[0004]
In addition to high capital investment, reverse osmosis membranes and other consumables necessary for water production are a major factor in increasing running costs. Specialized engineers are required, and maintenance and management costs are high.
[0005]
In addition, in order to completely remove seawater concentration, phytoplankton, zooplankton, other environmental hormone substances, organic substances, inorganic substances, total nitrogen, total phosphorus, pesticides, chemical fertilizers, petroleum substances, etc. with a reverse osmosis membrane, “Membrane clogging” occurs and “membrane replacement cost” increases, resulting in inferior “economic competitiveness”.
[0006]
Furthermore, in the case of the reverse osmosis membrane method, there are a number of drawbacks, such as the problem of water quality when used as drinking water, and the adverse effects on health when drunk continuously for a long time.
[0007]
[Problems to be solved by the invention]
Therefore, the present invention is mainly constructed on the coastline of tropical and subtropical dry areas and desert areas where inexhaustible solar thermal energy pours down and purifies seawater to fresh water with high efficiency using the solar thermal energy. In addition to being able to be used as drinking water, it is intended to obtain a solar thermal seawater desalination plant capable of purifying a large amount of fresh water that can be used in various fields such as water for domestic use and water for plant growth.
[0008]
[Means for Solving the Problems]
The present invention has been made in view of the above-described viewpoints, and in a seawater desalination plant for desalinating seawater, a land well loaded with ore at the bottom for introducing the seawater, and seawater springing from the well A seawater reservoir with ore disposed to filter the water, a water quality improvement tank for improving the quality of seawater stored in the seawater storage tank, and one or more water filters for treating seawater treated in the water quality improvement tank A filter, an evaporating water tank in which at least one purified seawater filtered by the filter is installed in an evaporation chamber, a condensing lens installed above the evaporating water tank in the evaporation chamber, A dehumidifier that is attached to the upper side and dehydrates the water vapor in the evaporation chamber to return it to a liquid, and the water quality improvement water tank is a flow space that flows up and down from the inlet space to the outlet space in the tank. And the flow empty A seawater desalination plant having a negative electrode plate and a seawater desalination plant for desalinating seawater, and a land well loaded with ore at the bottom where the seawater is introduced, and seawater springing from the well and sea water reservoir which arranged ore for filtering, and water quality improving water tank the sea water is water in the sea water reservoir for water quality improvement, more than one group that is filtering the are facilities to improve water quality aquarium treated seawater A filter, an evaporating water tank in which at least one purified seawater filtered by the filter is installed in an evaporation chamber, a condensing lens installed above the evaporating water tank in the evaporation chamber, A dehumidifier that is attached to the top to dew the water vapor in the evaporation chamber and restores the liquid, a water filter that purifies fresh water that has been reconstituted by the dehumidifier into drinking water, and a drinking water tank that stores the drinking water And at least The water quality improvement tank has a flow space that flows up and down from the inlet space along the outlet space in the tank, and a negative electrode plate disposed in the flow space, and uses a solar energy seawater desalination plant. Is to provide.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail.
FIG. 1 is a system diagram schematically showing the entire plant. In order to make ocean water into a stable water quality from the coast of a dry zone or desert zone rich in solar thermal energy, for example, about 100 meters away. On the required land, dig a well 1 with the required depth to reach the seawater layer. The seawater in the well 1 is cut off from the ocean energy and changes in water quality over time according to the rules of land energy. The required ore is loaded on the bottom of the well 1 to start desalination of the water quality, and the seawater discharged from the well is sent to the required seawater storage tank 3 by the pump 2 to be stored. The water storage tank 3 is loaded with a required ore and subjected to natural filtration such as “molecular sieve”, “ion exchange”, “adsorption” and the like. Seawater stored in the water storage tank 3 is sent to a required water quality improvement water tank 5 by a pump 4.
[0010]
FIG. 2 is a schematic view showing an example of the configuration of the water quality improvement water tank 5. An inlet space 501 is provided in the water tank 5, and the upper window 52 is opened vertically from the bottom plate 51. A flow space 57 composed of a planting wall plate 53 and a hanging plate 56 which is vertically provided from the top plate 54 with a required space from the planting wall plate 53 and has a lower window 55 is provided along the exit direction. It is constructed sequentially in the tank. Each flow space 57 is provided with a negative electrode plate 58 attached to a predetermined position of the planting wall plate 53 and the hanging plate 56. An exit space 502 is provided adjacent to the last flow space 57.
[0011]
In this case, each planting wall plate 53 and each hanging plate 56 can be negative electrode plates.
[0012]
Therefore, the seawater fed by the pump 4 enters from above the inlet space 501 on one end side in the water quality improvement tank 5 and flows from the upper window 52 when the water surface exceeds the upper end of the first planting wall plate 53. After flowing over 57, it flows upward through the lower window 55 below the lower end of the hanging plate 56. Seawater comes into contact with the electrode plates in the process of flowing up and down, and adsorbs the positive ions of impurities contained in the seawater. The modified seawater subjected to the water quality improvement treatment is sent to a filter 7 by a pump 6 and filtered there.
[0013]
Seawater modified to a stable water quality in the water quality improvement tank 5 is sent to a filter 7 by a pump 6 and filtered there.
[0014]
The filter 7 removes impurities such as organic matter, inorganic matter, phytoplankton, zooplankton and hexane. The filtered seawater filtered by the filter 7 is sent to a required filtered seawater storage tank 9 by a pump 8. The filtered seawater stored in the filtered seawater storage tank 9 is sent to the filter 11 by the pump 10. Then, it is further filtered to remove “total nitrogen”, “total phosphorus”, “pesticide”, etc., and the salt concentration is, for example, about 0.1%.
[0015]
The purified sea water filtered by the filter 11 is pumped by a pump 12, for example, the ceiling is tempered glass, the wall surface is made of a stainless diffuse reflection plate, and the outer wall is made of heat insulating paint or heat insulating material to prevent heat dissipation. During the day, water is sent to the evaporating water tank 13 installed in one or more tanks in the evaporating chamber 21 where the temperature of the room is exceptionally high, and is normally stored up to the required water surface position.
[0016]
As shown in FIG. 3, the evaporating water tank 13 comprises a surface 131 inside the tank as an irregular reflection surface so as to diffusely reflect the light beam L incident in the tank 13 and to provide an optical path to the end of each light beam. Increasing the length can also increase the efficiency of capturing light energy.
[0017]
Above the evaporating water tank 13, a condensing lens 14 for focusing solar heat (light) is arranged to collect the sunlight incident into the evaporating chamber 21 and focus it in the water tank 13, thereby The purified seawater in the water tank 13 is heated to promote heating. The condensing lens 14 may be, for example, a water lens that performs a convex lens action by putting water in a transparent container such as glass or plastic.
[0018]
The water vapor evaporates from the evaporating water tank 13 and the water vapor of the fresh water from which the salt content has been deposited and removed by gas-liquid separation from “sea vaporization” rises. A dehumidifier 15 is attached to an upper required position in the evaporation chamber 21. By the dehumidifying action, the water vapor evaporated from the evaporating water tank 13 and diffused into the evaporating chamber 21 is agglomerated and removed, thereby promoting the evaporating action from the evaporating water tank 13.
[0019]
In this case, means that can utilize solar energy as efficiently as possible for heating the evaporating water tank 13 can be appropriately disposed.
[0020]
Fresh water that has been dehydrated by the dehumidifier 15 and condensed into a liquid is collected in the fresh water storage tank 16 and stored.
[0021]
The fresh water collected in the fresh water storage tank 16 is sent to the water purification filter 18 by the pump 17, where the fresh water of unstable water quality is purified to drinking water and then sent to the drinking water tank 20 by the pump 19 for storage. .
[0022]
【The invention's effect】
As is clear from the above description, the well that reaches the seawater layer, the water quality improvement tank that improves the quality of the seawater that springs from the seawater layer, and the seawater that has been subjected to the water quality improvement treatment in the water quality improvement tank are filtered. One or more filters that remove impurities such as organic matter, inorganic matter, phytoplankton, zooplankton, hexane, etc. and total nitrogen, total phosphorus, pesticides, etc., and purified seawater filtered by the filter in the evaporation chamber An evaporating water tank installed above the evaporating tank, a condensing lens installed above the evaporating water tank in the evaporating chamber, and attached above the evaporating chamber to condense water vapor in the evaporating chamber and restore the liquid Since it contains at least a dehumidifier, a water purification filter that purifies fresh water reconstituted by the dehumidifier into drinking water, and a drinking water tank that stores the drinking water, the following effects are obtained. It is done.
1. In addition to being used as drinking water in tropical and subtropical dry and desert coastal land, fresh water that can be used in many areas, such as water for domestic use and plant growth, can be purified in large quantities at low cost.
2. Since the energy required for desalination of seawater depends on inexhaustible solar heat, the economic cost of energy is zero.
3. Since it is constructed on the coastline in tropical and subtropical dry zones and desert zones, the water pipes that are piped on the earth and sand heated by the solar heat are heated, which raises the temperature of the seawater in the pipes. Can be used for preheating.
4). The temperature rising energy in the evaporation chamber can be promoted by using a condenser lens.
5. By making the inner surface of the evaporating water tank an irregular reflection surface, the absorption efficiency of light energy can be increased.
[Brief description of the drawings]
FIG. 1 is a system diagram schematically showing an entire plant according to an embodiment of the present invention.
FIG. 2 is a schematic view showing an example of the configuration of a water quality improvement tank used in one embodiment of the present invention.
FIG. 3 is a schematic explanatory view showing an example of the configuration of the inner surface of the evaporation water tank used in one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Well which reaches a seawater layer 5 Water quality improvement tanks 7 and 11 Filter 13 Evaporation water tank 131 Surface 14 inside evaporation water tank 13 Condensing lens 15 Dehumidifier 18 Water purifier 20 Drinking water tank 21 Evaporating chamber 501 Entrance space 502 Outlet space 57 Flowing space 58 Negative electrode plate

Claims (3)

海水を淡水化する海水淡水化プラントにおいて、
前記海水を導入する海水層に到達する底部に鉱石を積んだ陸地の井戸1と、前記井戸1から湧出する海水を濾過するために鉱石を配した海水貯水槽3と、前記海水貯水槽3に貯水された海水を水質改善する水質改善水槽5と、前記水質改善水槽5で処理を施された海水を濾過する一基以上の濾過機7、11と、前記濾過機7、11で濾過された浄化海水を蒸発室21内に一槽以上設置された蒸発用水槽13と、前記蒸発室21内の蒸発用水槽13の上方に設置された集光レンズ14と、前記蒸発室21内の上方に取り付けられて該蒸発室21内の水蒸気を露結し液体に復する除湿機15とを少なくとも備え、
前記水質改善水槽5は、該槽5内において入口空間部501から出口空間部502に沿って上下流動する流動空間57と、前記流動空間57に配置したマイナスの電極板58とを有することを特徴とする海水淡水化プラント。
In a seawater desalination plant that desalinates seawater,
The land well 1 in which ore is loaded on the bottom reaching the seawater layer into which the seawater is introduced, the seawater water tank 3 in which the ore is arranged to filter the seawater that springs from the well 1, and the seawater water tank 3 The water quality improvement tank 5 for improving the quality of the stored seawater, the one or more filters 7 and 11 for filtering the seawater treated in the water quality improvement tank 5, and the filter 7 and 11. One or more evaporative water tanks 13 in the evaporating chamber 21, a condenser lens 14 installed above the evaporating water tank 13 in the evaporating chamber 21, and the evaporating chamber 21 above the evaporating chamber 21. A dehumidifier 15 that is attached and condenses the water vapor in the evaporation chamber 21 to restore the liquid ,
The water quality improvement water tank 5 includes a flow space 57 that flows up and down from the inlet space 501 along the outlet space 502 in the tank 5 and a negative electrode plate 58 disposed in the flow space 57. Seawater desalination plant.
海水を淡水化する海水淡水化プラントにおいて、
前記海水を導入する海水層に到達する底部に鉱石を積んだ陸地の井戸1と、前記井戸1から湧出する海水を濾過するために鉱石を配した海水貯水槽3と、前記海水貯水槽3に貯水された海水を水質改善する水質改善水槽5と、前記水質改善水槽5で処理を施された海水を濾過する一基以上の濾過機7、11と、前記濾過機7、11で濾過された浄化海水を蒸発室21内に一槽以上設置された蒸発用水槽13と、前記蒸発室21内の蒸発用水槽13の上方に設置された集光レンズ14と、前記蒸発室21内の上方に取り付けられて該蒸発室21内の水蒸気を露結し液体に復する除湿機15と、前記除湿機15により液体に復した淡水を飲料水に浄水する浄水濾過機18と、前記飲料水を貯蔵する飲料水槽20とを少なくとも備え、
前記水質改善水槽5は、該槽5内において入口空間部501から出口空間部502に沿って上下流動する流動空間57と、前記流動空間57に配置したマイナスの電極板58とを有することを特徴とする太陽熱エネルギー利用の海水淡水化プラント。
In a seawater desalination plant that desalinates seawater,
The land well 1 in which ore is loaded on the bottom reaching the seawater layer into which the seawater is introduced, the seawater water tank 3 in which the ore is arranged to filter the seawater that springs from the well 1, and the seawater water tank 3 the water seawater and improve water quality water tank 5 to improve water quality, and the quality improvement water tank 5 at a more than a group of filtering facilities seawater processing filter machine 7,11 and filtered by the filter machine 7,11 One or more evaporative water tanks 13 in the evaporating chamber 21, a condenser lens 14 installed above the evaporating water tank 13 in the evaporating chamber 21, and the evaporating chamber 21 above the evaporating chamber 21. A dehumidifier 15 that is attached to dew the water vapor in the evaporation chamber 21 and restores the liquid, a purified water filter 18 that purifies fresh water that has been reconstituted by the dehumidifier 15 into drinking water, and stores the drinking water And at least a drinking water tank 20,
The water quality improvement water tank 5 includes a flow space 57 that flows up and down from the inlet space 501 along the outlet space 502 in the tank 5 and a negative electrode plate 58 disposed in the flow space 57. A seawater desalination plant using solar thermal energy.
前記蒸発用水槽13は、その槽内部の表面131を乱反射面に構成した請求項1又は2記載の太陽熱エネルギー利用の海水淡水化プラント。The seawater desalination plant using solar thermal energy according to claim 1 or 2, wherein the evaporating water tank 13 has a surface 131 inside the tank as an irregular reflection surface.
JP2001323845A 2001-10-22 2001-10-22 Desalination plant using solar thermal energy Expired - Fee Related JP3766309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001323845A JP3766309B2 (en) 2001-10-22 2001-10-22 Desalination plant using solar thermal energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001323845A JP3766309B2 (en) 2001-10-22 2001-10-22 Desalination plant using solar thermal energy

Publications (2)

Publication Number Publication Date
JP2003126841A JP2003126841A (en) 2003-05-07
JP3766309B2 true JP3766309B2 (en) 2006-04-12

Family

ID=19140673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001323845A Expired - Fee Related JP3766309B2 (en) 2001-10-22 2001-10-22 Desalination plant using solar thermal energy

Country Status (1)

Country Link
JP (1) JP3766309B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103951007A (en) * 2014-04-02 2014-07-30 苏州市玄天环保科技有限公司 Solar energy water purifier

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131952B2 (en) * 2006-06-19 2013-01-30 村原 正隆 Ocean resource energy extraction and production offshore factory
US8080138B2 (en) 2007-07-16 2011-12-20 Arrowhead Center, Inc. Desalination using low-grade thermal energy
JP5990070B2 (en) * 2012-09-24 2016-09-07 シャープ株式会社 Seawater intake system and desalination plant
CN102976427B (en) * 2012-12-25 2014-05-28 中盈长江国际新能源投资有限公司 Seawater desalting plant continuously supplied with solar heat and method thereof
CN112902462B (en) * 2019-12-25 2022-02-18 山东大学 Device for collecting water from seawater by using solar energy
CN111895662B (en) * 2020-07-07 2021-05-04 山东大学 Solar heat collection device with automatic drainage control function
CN111879017B (en) * 2020-07-07 2021-05-07 山东大学 Multi-lens solar heat collection device
CN113023813B (en) * 2021-05-07 2022-07-01 北京理工大学 Self-irrigation marine floating type planting device based on solar distillation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103951007A (en) * 2014-04-02 2014-07-30 苏州市玄天环保科技有限公司 Solar energy water purifier

Also Published As

Publication number Publication date
JP2003126841A (en) 2003-05-07

Similar Documents

Publication Publication Date Title
Semiat Present and future
Alkhudhiri et al. Membrane distillation—Principles, applications, configurations, design, and implementation
Nair et al. Water desalination and challenges: The Middle East perspective: a review
Miller Review of water resources and desalination technologies
US7857945B2 (en) Double action solar distiller
EP2374761A2 (en) Zero liquid discharge water treatment system and method
CN100591628C (en) Sea water desalination and poor water purification device and method
US20160229706A1 (en) Water harvester and purification system
US20030150704A1 (en) Portable water purifier
KR101956293B1 (en) seawater desalinnation device and bay salt manufacturing method
US20140299529A1 (en) Systems, Apparatus, and Methods for Separating Salts from Water
AU2011214400A1 (en) Water treatment process
CN105384300A (en) Method for treating high-salt-content wastewater by using multi-stage electrically driven ion membrane
US20180362365A1 (en) Water harvester and purification system and method of making and using same
JP3766309B2 (en) Desalination plant using solar thermal energy
Sansaniwal Advances and challenges in solar-powered wastewater treatment technologies for sustainable development: a comprehensive review
JP2013537850A (en) Osmotic pressure driven membrane process and system, and extraction solute recovery method
JP6670919B2 (en) Float type membrane distillation equipment
WO2020095327A1 (en) An automated atmospheric water generator for producing high quality water for drinking and biomedical applications.
KR101895462B1 (en) seawater desalinnation device using solar and waste heat, and bay salt manufacturing device
CA2308805A1 (en) Desalination process/equipment
JP2001129538A (en) Solar pump and system equipped therewith
Madiraju et al. A Qualitative Examination of Applications and Treatment Technologies of Brackish Water
CN113105052B (en) High-salinity wastewater concentration and crystallization system and method
US11944922B1 (en) Water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees