JP3765646B2 - Evaporative fuel emission prevention device for internal combustion engine - Google Patents

Evaporative fuel emission prevention device for internal combustion engine Download PDF

Info

Publication number
JP3765646B2
JP3765646B2 JP15616697A JP15616697A JP3765646B2 JP 3765646 B2 JP3765646 B2 JP 3765646B2 JP 15616697 A JP15616697 A JP 15616697A JP 15616697 A JP15616697 A JP 15616697A JP 3765646 B2 JP3765646 B2 JP 3765646B2
Authority
JP
Japan
Prior art keywords
combustion engine
internal combustion
fuel
pressure
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15616697A
Other languages
Japanese (ja)
Other versions
JPH10331726A (en
Inventor
肇 宇土
寿章 市谷
芳雄 縫谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP15616697A priority Critical patent/JP3765646B2/en
Priority to US09/085,884 priority patent/US6041761A/en
Publication of JPH10331726A publication Critical patent/JPH10331726A/en
Application granted granted Critical
Publication of JP3765646B2 publication Critical patent/JP3765646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の蒸発燃料放出防止装置、特に内燃機関の作動時及び停車時において燃料タンクの内圧が負圧になるように制御して燃料タンクから蒸発燃料が外気に放出するのを防止する内燃機関の蒸発放出防止装置に関する。
【0002】
【従来の技術】
車両に搭載された燃料タンク内の蒸発燃料が外気中に放出するのを防止するために燃料タンクをキャニスタを介して内燃機関の吸気管に接続し、燃料タンク内の蒸発燃料を、内燃機関の停止時はキャニスタにより処理すると共に、内燃機関の作動時は内燃機関で燃焼させる技術が知られている。
【0003】
また、上記技術の改良として、内燃機関の作動時に燃料タンク内を負圧化して、内燃機関の作動時はもとより内燃機関の停止後も燃料タンクの内圧を負圧に保持することにより、給油のためにフィラーキャップを開けても、燃料タンク内の蒸発燃料が外気に放出されることを防止するようにした内燃機関の蒸発燃料放出防止装置も既に提案されている(例えば、特願平9−39740号)。
【0004】
この装置では、燃料タンク内の燃料の温度を検出する温度センサと、前記燃料タンクの内圧を検出するタンク内圧センサとを設け、燃料タンク内の燃料の温度に応じて予測される燃料タンク内の内圧の上昇分を見込んだ過度に負圧化された目標圧力値を決定する。そして、内燃機関の作動中の吸気管内の負圧を利用して、燃料タンクの内圧が上記目標圧力値となるように、上記タンク内圧センサの検出値によりフィードバックしつつ制御弁の開度を制御する。これにより、通常は燃料タンクの内圧を上記目標圧力値に維持することができる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来技術において、上記燃料タンクの目標圧力値への負圧化は内燃機関の作動時の吸気管内の負圧を利用するために車両の走行中に行われ、燃料タンクの負圧化を実行すべく制御弁を開弁すると、燃料タンク内の蒸発燃料が吸気管に吸引され、吸気管内の混合気の空燃比が急激に変化してショックが生じ運転性が悪化すると共に、排気エミッション特性が悪化するという問題がある。
【0006】
本発明は上記従来技術の問題点を解決するためになされたものであり、その目的は、吸気管内の負圧による燃料タンクの負圧化を実行する際に、吸気管内の混合気の空燃比が急激に変化して運転性及び排気エミッション特性の悪化を防止することができる内燃機関の蒸発燃料放出防止装置を提供することにある。
【0007】
【問題を解決するための手段】
前述の目的を達成するために、請求項1に記載の内燃機関の蒸発燃料放出防止装置は、燃料タンクと内燃機関の吸気系とを接続する蒸発燃料通路と、該蒸発燃料通路の途中に設けられ、該蒸発燃料通路を開閉する制御弁と、前記内燃機関のアイドリング時以外を含む作動時及び停止時において前記燃料タンクの内圧が負圧になるように前記制御弁の開度を制御する制御手段とを有する内燃機関の蒸発燃料放出防止装置において、前記内燃機関の運転状態を検出する運転状態検出手段を含み、前記制御手段は前記制御弁の開度を前記内燃機関の運転状態に応じて設定することを特徴とする。
【0008】
この構成により、制御弁の開度が内燃機関の運転状態に応じて設定されるので、制御手段が内燃機関のアイドリング時以外を含む作動時及び停止時において燃料タンクの内圧が負圧になるように前記制御弁の開度を制御する際に、前記制御弁の開度が内燃機関の運転状態に応じて設定され、その結果、吸気系内に燃料タンク内の蒸発燃料が急激に吸入されショックが生じて運転性が悪化するのを防止すると共に、吸気系内の混合気の空燃比が急激に変化して排気エミッション特性が悪化するのを防止することができる。
【0009】
請求項2に記載の内燃機関の蒸発燃料放出防止装置は、請求項1に記載の内燃機関の蒸発燃料放出防止装置において、前記運転状態検出手段は、前記内燃機関の回転数を検出する回転数センサと、前記吸気系内の圧力を検出する圧力センサとを含み、前記制御手段は、前記制御弁の開度を前記内燃機関の回転数が大きいほど、又は前記吸気系内の圧力が高いほど大きく設定することを特徴とする。
【0010】
この構成により、制御手段は前記制御弁の開度を前記内燃機関の回転数が大きいほど、又は前記吸気系内の圧力が高いほど大きく設定するので、吸気系内に燃料タンク内の蒸発燃料が急激に吸入されるのを確実に防止することができる。
【0011】
請求項3に記載の内燃機関の蒸発燃料放出防止装置は、請求項1又は2に記載の内燃機関の蒸発燃料放出防止装置において、前記制御手段は前記燃料タンクの内圧の負圧化を開始する際に前記制御弁の開度を前記設定された開度になるまで徐々に増加させることを特徴とする。
【0012】
この構成により、前記制御弁の開度が漸増されるので、吸気系内に燃料タンク内の蒸発燃料が急激に吸入されるのをより確実に防止することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0014】
図1は本発明の実施の形態に係る内燃機関の蒸発燃料放出防止装置の構成を示す全体構成図である。同図において、1は例えば4気筒を有する内燃機関(以下単に「エンジン」という)であり、エンジン1の吸気管2の途中にはスロットル弁3が配されている。また、スロットル弁3にはスロットル弁開度(θTH)センサ4が連結されており、当該スロットル弁3の開度に応じた電気信号を出力して電子コントロールユニット(以下「ECU」という)5に供給する。
【0015】
燃料噴射弁6が、吸気管2の途中であってエンジン1とスロットル弁3との間の図示しない吸気弁の少し上流側に各気筒毎に設けられている。また、各燃料噴射弁6は燃料供給管7を介して燃料タンク9に接続されており、燃料供給管7の途中には燃料ポンプ8が設けられている。燃料タンク9は給油のための給油口10を有しており、給油口10にはフィラーキャップ11が取付けられている。
【0016】
燃料噴射弁6はECU5に電気的に接続され、該ECU5からの信号により燃料噴射の開弁時間が制御される。
【0017】
吸気管2の前記スロットル弁3の下流側には吸気系内の圧力を検出する圧力センサとしての吸気管内絶対圧PBAを検出する吸気管内絶対圧(PBA)センサ13、及び外気温としての吸気温TAを検出する吸気温(TA)センサ14が装着されている。また、燃料タンク9には、燃料タンク9のタンク内圧(絶対圧)Pt(mmHg)を検出するタンク内圧(Pt)センサ15と、燃料タンク9内の燃料の温度Tgを検出する燃料温度(Tg)センサ16とがそれぞれ設けられている。
【0018】
エンジン回転数を検出する回転数(NE)センサ17がエンジン1の図示しないカム軸周囲又はクランク軸周囲に取付けられている。NEセンサ17はエンジン1のクランク軸の180度回転毎に所定のクランク角度位置でパルス(TDC信号パルス)を出力する。上記センサ13〜17の検出信号はECU5に供給される。
【0019】
次に燃料タンク9、蒸発燃料通路20等から構成される蒸発燃料放出抑止系31について説明する。
【0020】
燃料タンク9は蒸発燃料通路20を介して吸気管2のスロットル弁3の下流側に接続されており、蒸発燃料通路20の途中には燃料タンク9の内圧を制御すべく蒸発燃料通路20を開閉する制御弁30が設けられている。制御弁30は、その制御信号のデューティ比を変更することにより燃料タンク9内で発生する蒸発燃料の流量を制御するように構成されたデューティ制御タイプの電磁弁であり、制御弁30の作動はECU5により制御される。なお、制御弁30はその開度をリニアに変更可能なリニア制御タイプの電磁弁を使用してもよい。制御弁30がデューティ制御タイプの場合は上記デューティ比が、リニア制御タイプの場合はその駆動電流が特許請求の範囲の「制御弁の開度」に対応する。
【0021】
ECU5は各種センサ等からの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理回路(以下「CPU」という)、CPUで実行される演算プログラム及び演算結果等を記憶する記憶手段、燃料噴射弁6や制御弁30に駆動信号を供給する出力回路等から構成される。
【0022】
ECU5のCPUは、θTHセンサ4、PBAセンサ13等の各種センサの出力信号に応じてエンジン1に供給する燃料量制御等を行う。燃料量制御は本発明の主題ではないので説明を省略する。
【0023】
ECU5のCPUは、上述のPBAセンサ13、NEセンサ17等の出力信号に応じて図2の処理に基づいて制御弁30のデューティ比を決定する。図2は、本発明の実施の形態に係る蒸発燃料放出防止装置における蒸発燃料放出防止の制御処理を行うプログラムを示す。図2の処理は、所定時間(例えば10msec)毎に実行される。
【0024】
まず、ステップS1で、エンジン1のクランキングを検知する等によりエンジン1が作動中であるか否かを判別すると共に、ステップS2で、エンジン1が燃料カット中か否かを判別する。ステップS1及びS2の各判別で、エンジン1が停止中であり、又は燃料カット中であるときは、ECU5のCPUは後述する目標圧力値Poに制御された燃料タンク9内の負圧を保持するために制御弁30を閉弁し(ステップS3)、次いでカウント値Nを0にセットして(ステップS4)、本処理を終了する。
【0025】
ステップS1及びS2の各判別で、エンジン1が作動中であり、かつ燃料カット中でなければ、Tgセンサ16により検出された燃料タンク9内の燃料温度Tgを取り込み(ステップS5)、次いでPtセンサ15により検出された燃料タンク9のタンク内圧Ptを取り込む(ステップS6)。さらに、PBAセンサ13により検出された吸気管内絶対圧PBAを取り込むと共に(ステップS7)、NEセンサ17により検出されたエンジン回転数NEを取り込む(ステップS8)。
【0026】
さらに、燃料タンク9内の目標圧力値(絶対圧)Po(mmHg)を所定の設定方法(例えば、特願平9−39740号)により算出する(ステップS9)。この目標圧力値Poは、エンジン1の停止後も燃料タンク9内の負圧が保持できるように、予測される燃料タンク9内のタンク圧力上昇分を見込んだ過度に負圧化された値である。上記予測され得る燃料タンク9内のタンク内圧上昇の要因としては、燃料タンク9内の燃料のその温度における保有熱量により燃料に含まれる成分のうち燃料温度よりも低い温度で蒸発する成分が蒸発することと、外気温の上昇による燃料タンク9内の燃料の温度上昇により上記と同様に燃料の一部が蒸発することが挙げられる。
【0027】
次に、燃料タンク9のタンク内圧Ptが目標圧力値Poより大きいか否かを判別し(ステップS10)、Pt≦Poのときは、燃料タンク9のタンク内圧Ptをさらに負圧化する必要がないので、ステップS3及びS4を実行して、本処理を終了する。
【0028】
ステップS10でPt>Poのときは、ステップS11に進み、吸気管内絶対圧PBAがタンク内圧Ptより小さいか否かを判別し、PBA≧Ptであれば、吸気管内絶対圧PBAによりタンク内圧Ptをさらに負圧化することはできないと判断し、ステップS3及びS4を実行して、本処理を終了する。
【0029】
ステップS11でPBA<Ptのときは、エンジン回転数NE及び吸気管内絶対圧PBAに応じて図3に示すように設定された制御弁30の目標デューティ比DRO(%)を検索する(ステップS12)。図3においては、エンジン回転数NE及び吸気管内絶対圧PBAの少なくとも一方が大きくなるほど制御弁30の目標デューティ比DRO(%)が大きくなるように設定されている。この目標デューティ比DROは、燃料タンク9内のタンク内圧Ptが目標圧力値(絶対圧)P(mmHg)以下となるような値を執る。
【0030】
続くステップS13では、カウント値Nを1だけインクリメントし、次いで、ステップS14でカウント値Nが所定値N1(例えば、100)になったか否かを判別する。最初は所定値N1になっていないので、ステップS15からS17をスキップする。ステップS14でN=N1のときは、ステップS15に進み、制御弁30のデューティ比DRに所定値Δd(例えば5%)を加算する。
【0031】
次に、ステップS16では、ステップS15で算出されたデューティ比DRに基づいて制御弁30を開弁して(ステップS16)、カウント値Nを0にセットする(ステップS17)。
【0032】
さらに、制御弁30のデューティ比DRがステップS12で検索された目標デューティ比DROより大きいか否かを判別し(ステップS18)、大きければ、制御弁30のデューティ比DRが目標デューティ比DROになったとして、ステップS3及びS4を実行して、本処理を終了する。一方、ステップS18でDR<DROのときは、上記ステップS13〜S17を繰り返し実行する。
【0033】
図2の処理によれば、制御弁30のデューティ比DRは、ステップS12で検索された目標デューティDROになるまで所定時間間隔毎に所定値Δdづつ漸増され、吸気管2内に燃料タンク9内の蒸発燃料が急激に吸入されるのを確実に防止し、燃料タンク9の負圧化開始時のショックを回避することができる。このときの制御弁30の開度変化を図4に示す。
【0034】
特許請求の範囲の制御手段としての機能は図2のフローチャートに示すように本実施の形態ではECU5がソフトウェアとして備えている。
【0035】
以上の構成により、エンジン1の作動中において、制御弁30のデューティ比DRを目標デューティ比DROに制御することにより吸気管2内の負圧を燃料タンク9内に作用させて、燃料タンク9内を前記所定の目標圧力値Poに保持する。その結果、エンジン1の作動中はもとより停止後も燃料タンク9内は負圧に保持され、給油のためフィラーキャップ11を開けても燃料タンク9内の蒸発燃料が外気に放出するのを防止することができる。さらに、制御弁30のデューティ比DRは、ステップS12で検索された目標デューティDROになるまで所定時間間隔毎に所定値Δdづつ漸増されて、吸気管2内に燃料タンク9内の蒸発燃料が急激に吸入されショックが生じて運転性の悪化を防止し、吸気管2内の混合気の空燃比が急激に変化して排気エミッション特性が悪化するのを防止することができる。
【0036】
【発明の効果】
以上、詳細に説明したように、請求項1に記載の内燃機関の蒸発燃料放出防止装置によれば、制御弁の開度が内燃機関の運転状態に応じて設定されるので、制御手段が内燃機関のアイドリング時以外を含む作動時及び停止時において燃料タンクの内圧が負圧になるように前記制御弁の開度を制御する際に、前記制御弁の開度が内燃機関の運転状態に応じて設定され、その結果、吸気系内に燃料タンク内の蒸発燃料が急激に吸入されショックが生じて運転性が悪化するのを防止すると共に、吸気系内の混合気の空燃比が急激に変化して排気エミッション特性が悪化するのを防止することができる。
【0037】
請求項2に記載の内燃機関の蒸発燃料放出防止装置によれば、制御手段は前記制御弁の開度を前記内燃機関の回転数が大きいほど、又は前記吸気系内の圧力が高いほど大きく設定するので、吸気系内に燃料タンク内の蒸発燃料が急激に吸入されるのを確実に防止することができる。
【0038】
請求項3に記載の内燃機関の蒸発燃料放出防止装置によれば、前記制御弁の開度が漸増されるので、吸気系内に燃料タンク内の蒸発燃料が急激に吸入されるのをより確実に防止することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る内燃機関の蒸発燃料放出防止装置の構成を示す全体構成図である
【図2】本発明の実施の形態に係る蒸発燃料放出防止装置における蒸発燃料放出防止の制御処理を行うプログラムのフローチャートである。
【図3】制御弁30の目標デューティ比DROの設定方法を説明するエンジン回転数−吸気管内絶対圧グラフである。
【図4】制御弁30の開度変化を示す時間−制御弁デューティ比グラフである。
【符号の説明】
1 内燃エンジン
2 吸気管
3 スロットル
5 ECU(制御手段)
9 燃料タンク
10 給油口
11 フィラーキャップ
13 吸気管内絶対圧センサ(圧力センサ)
15 タンク内圧センサ
16 燃料温度センサ
17 回転数センサ
20 蒸発燃料通路
30 制御弁
31 蒸発燃料放出抑止系
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for preventing evaporative fuel emission of an internal combustion engine, and in particular, prevents the evaporative fuel from being discharged from the fuel tank to the outside air by controlling the internal pressure of the fuel tank to be negative when the internal combustion engine is operated and stopped. The present invention relates to an evaporative emission preventing device for an internal combustion engine.
[0002]
[Prior art]
In order to prevent the evaporated fuel in the fuel tank mounted on the vehicle from being released into the outside air, the fuel tank is connected to the intake pipe of the internal combustion engine via the canister, and the evaporated fuel in the fuel tank is connected to the internal combustion engine. A technique is known in which processing is performed by a canister when the engine is stopped, and combustion is performed by the internal combustion engine when the internal combustion engine is operated.
[0003]
Further, as an improvement of the above technique, the internal pressure of the fuel tank is reduced to a negative pressure when the internal combustion engine is operated, and the internal pressure of the fuel tank is maintained at a negative pressure not only during the operation of the internal combustion engine but also after the internal combustion engine is stopped. For this reason, there has already been proposed an evaporative fuel emission preventing device for an internal combustion engine which prevents the evaporative fuel in the fuel tank from being released into the outside air even when the filler cap is opened (for example, Japanese Patent Application No. 9-9 39740).
[0004]
In this apparatus, a temperature sensor for detecting the temperature of the fuel in the fuel tank and a tank internal pressure sensor for detecting the internal pressure of the fuel tank are provided, and the fuel tank is predicted according to the temperature of the fuel in the fuel tank. A target pressure value that is excessively negative in consideration of an increase in internal pressure is determined. Then, by utilizing the negative pressure in the intake pipe during operation of the internal combustion engine, so that the internal pressure of the fuel tank becomes the target pressure value, the detection value of the tank pressure sensor feedback quality Tsu system valve opening To control. Thereby, normally, the internal pressure of the fuel tank can be maintained at the target pressure value.
[0005]
[Problems to be solved by the invention]
However, in the above prior art, the negative pressure to the target pressure value of the fuel tank is performed during traveling of the vehicle in order to use the negative pressure in the intake pipe when the internal combustion engine is operated, and the negative pressure of the fuel tank is reduced. When the control valve is opened to perform the control, the evaporated fuel in the fuel tank is sucked into the intake pipe, the air-fuel ratio of the air-fuel mixture in the intake pipe changes suddenly, a shock occurs, and the drivability deteriorates. There is a problem that the characteristics deteriorate.
[0006]
The present invention has been made to solve the above-described problems of the prior art, and its object is to perform the air-fuel ratio of the air-fuel mixture in the intake pipe when the negative pressure in the fuel tank is reduced by the negative pressure in the intake pipe. It is an object of the present invention to provide an evaporative fuel emission preventing device for an internal combustion engine that can prevent the deterioration of drivability and exhaust emission characteristics due to abrupt changes.
[0007]
[Means for solving problems]
In order to achieve the above-described object, an evaporated fuel discharge prevention device for an internal combustion engine according to claim 1 is provided in the middle of the evaporated fuel passage, an evaporated fuel passage connecting a fuel tank and an intake system of the internal combustion engine. A control valve that opens and closes the evaporated fuel passage, and a control that controls the opening of the control valve so that the internal pressure of the fuel tank becomes negative when the internal combustion engine is operated and stopped other than when idling An evaporative fuel emission preventing device for an internal combustion engine, comprising: an operating state detecting means for detecting an operating state of the internal combustion engine, wherein the control means determines the opening of the control valve in accordance with the operating state of the internal combustion engine. It is characterized by setting.
[0008]
With this configuration, the opening of the control valve is set in accordance with the operating state of the internal combustion engine, so that the internal pressure of the fuel tank becomes negative when the control means is operating and stopped including when the internal combustion engine is not idling. When controlling the opening degree of the control valve, the opening degree of the control valve is set according to the operating state of the internal combustion engine. As a result, the evaporated fuel in the fuel tank is suddenly drawn into the intake system and shock is applied. As a result, it is possible to prevent the operability from deteriorating and to prevent the exhaust emission characteristics from deteriorating due to a sudden change in the air-fuel ratio of the air-fuel mixture in the intake system.
[0009]
The evaporative fuel emission preventing apparatus for an internal combustion engine according to claim 2 is the evaporative fuel emission preventing apparatus for the internal combustion engine according to claim 1, wherein the operating state detecting means detects a rotation speed of the internal combustion engine. A sensor and a pressure sensor for detecting the pressure in the intake system, wherein the control means sets the degree of opening of the control valve as the rotational speed of the internal combustion engine increases or as the pressure in the intake system increases. It is characterized by a large setting.
[0010]
With this configuration, the control means sets the opening degree of the control valve to be larger as the rotational speed of the internal combustion engine is larger or as the pressure in the intake system is higher, so that the evaporated fuel in the fuel tank is in the intake system. A sudden inhalation can be reliably prevented.
[0011]
The evaporative fuel emission preventing apparatus for an internal combustion engine according to claim 3 is the evaporative fuel emission preventing apparatus for the internal combustion engine according to claim 1 or 2, wherein the control means starts to reduce the internal pressure of the fuel tank. In this case, the opening degree of the control valve is gradually increased until the set opening degree is reached.
[0012]
With this configuration, since the opening degree of the control valve is gradually increased, it is possible to more reliably prevent the evaporated fuel in the fuel tank from being rapidly sucked into the intake system.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
FIG. 1 is an overall configuration diagram showing the configuration of a fuel vapor release prevention device for an internal combustion engine according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an internal combustion engine (hereinafter simply referred to as “engine”) having, for example, four cylinders, and a throttle valve 3 is arranged in the middle of an intake pipe 2 of the engine 1. A throttle valve opening (θTH) sensor 4 is connected to the throttle valve 3, and an electric signal corresponding to the opening of the throttle valve 3 is output to an electronic control unit (hereinafter referred to as “ECU”) 5. Supply.
[0015]
A fuel injection valve 6 is provided for each cylinder in the middle of the intake pipe 2 and slightly upstream of an intake valve (not shown) between the engine 1 and the throttle valve 3. Each fuel injection valve 6 is connected to a fuel tank 9 via a fuel supply pipe 7, and a fuel pump 8 is provided in the middle of the fuel supply pipe 7. The fuel tank 9 has an oil supply port 10 for refueling, and a filler cap 11 is attached to the fuel supply port 10.
[0016]
The fuel injection valve 6 is electrically connected to the ECU 5, and the valve opening time of the fuel injection is controlled by a signal from the ECU 5.
[0017]
An intake pipe absolute pressure (PBA) sensor 13 for detecting an intake pipe absolute pressure PBA as a pressure sensor for detecting the pressure in the intake system and an intake air temperature as an outside air temperature are provided downstream of the throttle valve 3 in the intake pipe 2. An intake air temperature (TA) sensor 14 for detecting TA is attached. The fuel tank 9 includes a tank internal pressure (Pt) sensor 15 that detects a tank internal pressure (absolute pressure) Pt (mmHg) of the fuel tank 9 and a fuel temperature (Tg) that detects a temperature Tg of the fuel in the fuel tank 9. ) Sensor 16 is provided.
[0018]
A rotational speed (NE) sensor 17 for detecting the engine rotational speed is mounted around a cam shaft or a crankshaft (not shown) of the engine 1. The NE sensor 17 outputs a pulse (TDC signal pulse) at a predetermined crank angle position every 180 ° rotation of the crankshaft of the engine 1. Detection signals of the sensors 13 to 17 are supplied to the ECU 5.
[0019]
Next, the evaporative fuel release inhibiting system 31 composed of the fuel tank 9, the evaporative fuel passage 20 and the like will be described.
[0020]
The fuel tank 9 is connected to the downstream side of the throttle valve 3 of the intake pipe 2 via the evaporated fuel passage 20. The evaporated fuel passage 20 is opened and closed in the middle of the evaporated fuel passage 20 to control the internal pressure of the fuel tank 9. A control valve 30 is provided. The control valve 30 is a duty control type electromagnetic valve configured to control the flow rate of the evaporated fuel generated in the fuel tank 9 by changing the duty ratio of the control signal, and the operation of the control valve 30 is as follows. It is controlled by the ECU 5. The control valve 30 may be a linear control type electromagnetic valve whose opening degree can be changed linearly. When the control valve 30 is a duty control type, the duty ratio corresponds to the “opening degree of the control valve” in the claims.
[0021]
The ECU 5 shapes input signal waveforms from various sensors, corrects the voltage level to a predetermined level, and converts an analog signal value into a digital signal value, a central processing circuit (hereinafter referred to as “CPU”). A storage means for storing a calculation program executed by the CPU, a calculation result, and the like, an output circuit for supplying a drive signal to the fuel injection valve 6 and the control valve 30, and the like.
[0022]
The CPU of the ECU 5 controls the amount of fuel supplied to the engine 1 according to the output signals of various sensors such as the θTH sensor 4 and the PBA sensor 13. Since the fuel amount control is not the subject of the present invention, the description thereof is omitted.
[0023]
The CPU of the ECU 5 determines the duty ratio of the control valve 30 based on the processing of FIG. 2 according to the output signals of the PBA sensor 13 and the NE sensor 17 described above. FIG. 2 shows a program for performing control processing for preventing evaporative fuel release in the evaporative fuel release preventing apparatus according to the embodiment of the present invention. The processing in FIG. 2 is executed every predetermined time (for example, 10 msec).
[0024]
First, in step S1, it is determined whether or not the engine 1 is in operation by detecting cranking of the engine 1, and in step S2, it is determined whether or not the engine 1 is in a fuel cut. When the engine 1 is stopped or the fuel is being cut in each determination of steps S1 and S2, the CPU of the ECU 5 holds the negative pressure in the fuel tank 9 controlled to a target pressure value Po described later. Therefore, the control valve 30 is closed (step S3), then the count value N is set to 0 (step S4), and this process is terminated.
[0025]
If it is determined in steps S1 and S2 that the engine 1 is not operating and the fuel is not cut, the fuel temperature Tg in the fuel tank 9 detected by the Tg sensor 16 is taken in (step S5), and then the Pt sensor. The internal pressure Pt of the fuel tank 9 detected by 15 is taken in (step S6). Further, the intake pipe absolute pressure PBA detected by the PBA sensor 13 is taken in (step S7), and the engine speed NE detected by the NE sensor 17 is taken in (step S8).
[0026]
Further, a target pressure value (absolute pressure) Po (mmHg) in the fuel tank 9 is calculated by a predetermined setting method (for example, Japanese Patent Application No. 9-39740) (step S9). This target pressure value Po is an excessively negative pressure value that anticipates the tank pressure increase in the fuel tank 9 so that the negative pressure in the fuel tank 9 can be maintained even after the engine 1 is stopped. is there. As a factor of the increase in the internal pressure of the fuel tank 9 that can be predicted, the component that evaporates at a temperature lower than the fuel temperature among the components contained in the fuel evaporates due to the amount of heat stored in the fuel tank 9 at that temperature. In addition, due to a rise in the temperature of the fuel in the fuel tank 9 due to a rise in the outside air temperature, a part of the fuel evaporates as described above.
[0027]
Next, it is determined whether or not the tank internal pressure Pt of the fuel tank 9 is larger than the target pressure value Po (step S10). When Pt ≦ Po, it is necessary to further reduce the tank internal pressure Pt of the fuel tank 9 to a negative pressure. Since there is not, step S3 and S4 are performed and this processing is ended.
[0028]
When Pt> Po in step S10, the process proceeds to step S11 to determine whether or not the intake pipe absolute pressure PBA is smaller than the tank internal pressure Pt. If PBA ≧ Pt, the tank internal pressure Pt is set by the intake pipe absolute pressure PBA. Further, it is determined that the pressure cannot be reduced, and steps S3 and S4 are executed, and this process is terminated.
[0029]
When PBA <Pt in step S11, the target duty ratio DRO (%) of the control valve 30 set as shown in FIG. 3 according to the engine speed NE and the intake pipe absolute pressure PBA is searched (step S12). . In FIG. 3, the target duty ratio DRO (%) of the control valve 30 is set to increase as at least one of the engine speed NE and the intake pipe absolute pressure PBA increases. The target duty ratio DRO takes such a value that the tank internal pressure Pt in the fuel tank 9 is equal to or less than the target pressure value (absolute pressure) P o (mmHg).
[0030]
In subsequent step S13, the count value N is incremented by 1, and then in step S14, it is determined whether or not the count value N has reached a predetermined value N1 (for example, 100). Since the predetermined value N1 is not initially set, steps S15 to S17 are skipped. When N = N1 in step S14, the process proceeds to step S15, and a predetermined value Δd (for example, 5%) is added to the duty ratio DR of the control valve 30.
[0031]
Next, in step S16, the control valve 30 is opened based on the duty ratio DR calculated in step S15 (step S16), and the count value N is set to 0 (step S17).
[0032]
Further, it is determined whether or not the duty ratio DR of the control valve 30 is larger than the target duty ratio DRO searched in step S12 (step S18). If it is larger, the duty ratio DR of the control valve 30 becomes the target duty ratio DRO. As a result, steps S3 and S4 are executed, and this process is terminated. On the other hand, when DR <DRO in step S18, the above steps S13 to S17 are repeatedly executed.
[0033]
According to the processing of FIG. 2, the duty ratio DR of the control valve 30 is gradually increased by a predetermined value Δd at predetermined time intervals until reaching the target duty DRO searched in step S12, and the fuel tank 9 is placed in the intake pipe 2. It is possible to reliably prevent the fuel vapor 9 from being aspirated suddenly and to avoid a shock at the start of the negative pressure of the fuel tank 9. FIG. 4 shows changes in the opening degree of the control valve 30 at this time.
[0034]
In the present embodiment, the function as the control means in the claims is provided as software in the ECU 5 as shown in the flowchart of FIG.
[0035]
With the above configuration, during the operation of the engine 1, the negative pressure in the intake pipe 2 is applied to the fuel tank 9 by controlling the duty ratio DR of the control valve 30 to the target duty ratio DRO. Is maintained at the predetermined target pressure value Po. As a result, the inside of the fuel tank 9 is maintained at a negative pressure not only during the operation of the engine 1 but also after the engine is stopped, and even if the filler cap 11 is opened for refueling, the evaporated fuel in the fuel tank 9 is prevented from being released to the outside air. be able to. Further, the duty ratio DR of the control valve 30 is gradually increased by a predetermined value Δd at predetermined time intervals until the target duty ratio DRO searched in step S12 is reached, and the evaporated fuel in the fuel tank 9 is placed in the intake pipe 2. It is possible to prevent a sudden shock due to a sudden intake and a deterioration in drivability, and a deterioration in exhaust emission characteristics due to a sudden change in the air-fuel ratio of the air-fuel mixture in the intake pipe 2.
[0036]
【The invention's effect】
As described above in detail, according to the evaporated fuel release prevention device for the internal combustion engine according to claim 1, the opening degree of the control valve is set according to the operating state of the internal combustion engine, so that the control means is the internal combustion engine. When the opening degree of the control valve is controlled so that the internal pressure of the fuel tank becomes negative during operation including when the engine is not idling and when it is stopped, the opening degree of the control valve depends on the operating state of the internal combustion engine. As a result, the evaporative fuel in the fuel tank is aspirated suddenly into the intake system and a shock occurs, preventing the deterioration of operability and the air-fuel ratio of the air-fuel mixture in the intake system changes abruptly. Thus, the exhaust emission characteristics can be prevented from deteriorating.
[0037]
According to the evaporated fuel release prevention device for an internal combustion engine according to claim 2, the control means sets the opening of the control valve to be larger as the rotational speed of the internal combustion engine is larger or the pressure in the intake system is higher. Therefore, it is possible to reliably prevent the evaporated fuel in the fuel tank from being rapidly sucked into the intake system.
[0038]
According to the evaporated fuel release preventing device for an internal combustion engine according to claim 3, since the opening degree of the control valve is gradually increased, it is more reliable that the evaporated fuel in the fuel tank is rapidly sucked into the intake system. Can be prevented.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing a configuration of an evaporative fuel emission preventing apparatus for an internal combustion engine according to an embodiment of the present invention. FIG. 2 is an evaporative fuel emission in the evaporative fuel emission preventing apparatus according to an embodiment of the present invention. It is a flowchart of the program which performs control processing of prevention.
FIG. 3 is an engine speed-intake pipe absolute pressure graph for explaining a method of setting a target duty ratio DRO of the control valve 30;
FIG. 4 is a time-control valve duty ratio graph showing a change in the opening degree of the control valve 30;
[Explanation of symbols]
1 Internal combustion engine 2 Intake pipe 3 Throttle 5 ECU (control means)
9 Fuel tank 10 Refueling port 11 Filler cap 13 Intake pipe absolute pressure sensor (pressure sensor)
15 Tank internal pressure sensor 16 Fuel temperature sensor 17 Rotational speed sensor 20 Evaporated fuel passage 30 Control valve 31 Evaporated fuel release suppression system

Claims (3)

燃料タンクと内燃機関の吸気系とを接続する蒸発燃料通路と、該蒸発燃料通路の途中に設けられ、該蒸発燃料通路を開閉する制御弁と、前記内燃機関のアイドリング時以外を含む作動時及び停止時において前記燃料タンクの内圧が負圧になるように前記制御弁の開度を制御する制御手段とを有する内燃機関の蒸発燃料放出防止装置において、前記内燃機関の運転状態を検出する運転状態検出手段を含み、前記制御手段は前記制御弁の開度を前記内燃機関の運転状態に応じて設定することを特徴とする内燃機関の蒸発燃料放出防止装置。A fuel vapor passage which connects the intake system of the fuel tank and the internal combustion engine, provided in the middle of the evaporation fuel passage, and a control valve for opening and closing the evaporation fuel passage, during operation contain other than idling of the internal combustion engine and An operating state for detecting an operating state of the internal combustion engine in an evaporative fuel discharge prevention device for an internal combustion engine, comprising: a control means for controlling the opening of the control valve so that the internal pressure of the fuel tank becomes a negative pressure when stopped An evaporative fuel emission prevention device for an internal combustion engine, comprising: a detection means, wherein the control means sets an opening of the control valve in accordance with an operating state of the internal combustion engine. 前記運転状態検出手段は、前記内燃機関の回転数を検出する回転数センサと、前記吸気系内の圧力を検出する圧力センサとを含み、前記制御手段は、前記制御弁の開度を前記内燃機関の回転数が大きいほど、又は前記吸気系内の圧力が高いほど大きく設定することを特徴とする請求項1記載の内燃機関の蒸発燃料放出装置。  The operating state detection means includes a rotation speed sensor that detects the rotation speed of the internal combustion engine, and a pressure sensor that detects a pressure in the intake system, and the control means determines an opening degree of the control valve. 2. The evaporative fuel discharge device for an internal combustion engine according to claim 1, wherein the larger the number of revolutions of the engine or the higher the pressure in the intake system, the larger the setting. 前記制御手段は前記燃料タンクの内圧の負圧化を開始する際に前記制御弁の開度を前記設定された開度になるまで徐々に増加させることを特徴とする請求項1又は2記載の内燃機関の蒸発燃料放出装置。  3. The control unit according to claim 1, wherein the control unit gradually increases the opening degree of the control valve until the set opening degree is reached when starting to reduce the internal pressure of the fuel tank. 4. An evaporative fuel discharge device for an internal combustion engine.
JP15616697A 1997-05-30 1997-05-30 Evaporative fuel emission prevention device for internal combustion engine Expired - Fee Related JP3765646B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15616697A JP3765646B2 (en) 1997-05-30 1997-05-30 Evaporative fuel emission prevention device for internal combustion engine
US09/085,884 US6041761A (en) 1997-05-30 1998-05-27 Evaporative emission control system for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15616697A JP3765646B2 (en) 1997-05-30 1997-05-30 Evaporative fuel emission prevention device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10331726A JPH10331726A (en) 1998-12-15
JP3765646B2 true JP3765646B2 (en) 2006-04-12

Family

ID=15621801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15616697A Expired - Fee Related JP3765646B2 (en) 1997-05-30 1997-05-30 Evaporative fuel emission prevention device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3765646B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167177A (en) * 2012-02-14 2013-08-29 Toyota Motor Corp Fuel tank system
CN115199387B (en) * 2022-07-14 2023-06-30 东风柳州汽车有限公司 Vehicle carbon tank model generation method, device, equipment and storage medium

Also Published As

Publication number Publication date
JPH10331726A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
JPS6220669A (en) Evaporated fuel gas discharge suppressing apparatus
JP4161819B2 (en) Evaporative fuel processing equipment
JP2003113743A (en) Failure diagnosing device for vaporized fuel processing device
US5609142A (en) Fuel-vapor treatment method and apparatus for internal combustion engine
US6041761A (en) Evaporative emission control system for internal combustion engines
JP3243413B2 (en) Evaporative fuel processor for internal combustion engines
WO2019058705A1 (en) Engine system
JP3333365B2 (en) Idle speed learning control device for internal combustion engine
US5575267A (en) Fault diagnosis apparatus for a fuel evaporative emission suppressing system
JP3765646B2 (en) Evaporative fuel emission prevention device for internal combustion engine
JP3763502B2 (en) Evaporative fuel emission prevention device for internal combustion engine
JP3763496B2 (en) Evaporative fuel emission prevention device for internal combustion engine
JP3620210B2 (en) Control device for internal combustion engine
JPH0953490A (en) Starting fuel injection quantity control device of internal combustion engine
JP4104848B2 (en) Intake system failure diagnosis device and fail-safe device for internal combustion engine
JPH1150919A (en) Evaporative fuel emission preventing device for internal combustion engine
JP2004052613A (en) Control device for engine
JP3478175B2 (en) Engine speed control device for internal combustion engine
JP2000291467A (en) Controller for internal combustion engine
US6273063B1 (en) Apparatus and method for controlling idle rotation speed of an internal combustion engine
JP3134650B2 (en) Evaporative fuel treatment system for internal combustion engine
JPH06307270A (en) Starting fuel injection controller for internal combustion engine
JP2002349366A (en) Vaporized fuel controller for internal combustion engine
US20030079722A1 (en) Starting control apparatus for internal combustion engine
JP2750644B2 (en) Failure diagnosis device for evaporative fuel suppression device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees