JP3765116B2 - Proton conducting polymer solid electrolyte - Google Patents
Proton conducting polymer solid electrolyte Download PDFInfo
- Publication number
- JP3765116B2 JP3765116B2 JP26806595A JP26806595A JP3765116B2 JP 3765116 B2 JP3765116 B2 JP 3765116B2 JP 26806595 A JP26806595 A JP 26806595A JP 26806595 A JP26806595 A JP 26806595A JP 3765116 B2 JP3765116 B2 JP 3765116B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- acid
- polymers
- group
- solid electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、一次電池用電解質、二次電池用電解質、燃料電池用電解質、表示素子、各種センサー、信号伝達媒体、固体コンデンサー、イオン交換膜などに利用可能なプロトン伝導性高分子固体電解質に関する。
【0002】
【従来の技術】
電解質は、通常、(水)溶液で用いられることが多い。しかし、近年、これを固体系で代用しようとする機運が高まってきている。その第1の理由としては、例えば上記電気・電子材料に応用する場合のプロセシングの容易さであり、第2の理由としては、短薄軽少・大電力化への移行である。
従来、プロトン伝導性材料としては、無機物からなるもの、有機物からなるものの両方が知られている。無機物の例としては、例えば水和化合物であるリン酸ウラニルが挙げられるが、これら無機化合物は界面での接触が充分でなく、導電膜を基板あるいは電極上に形成するには問題が多い。
【0003】
一方、有機化合物の例としては、いわゆる陽イオン交換樹脂に属するポリマー、例えばポリスチレンスルホン酸、ポリビニルスルホン酸、パーフルオロスルホン酸ポリマー、パーフルオロカルボン酸ポリマー、耐熱性高分子にスルホン酸基を導入したポリマー〔Polymer preprints,Japan Vol.42,No.7,p2490〜2492(1993)、Polymer preprints,Japan Vol.43,No.3,p735〜p736(1994)、Polymer preprints,Japan Vol.42,No.3,p730(1993)〕などの有機系ポリマーが挙げられる。
【0004】
これら有機系ポリマーは、溶媒に可溶であるため、これらポリマー溶液をキャスティングすることにより、基板あるいは電極上に容易にフィルムを形成できる。しかしながら、これら有機系ポリマーは、プロトン伝導性がまだ充分でないことに加え、高温(100℃付近)でプロトン伝導性が低下してしまうこと、あるいは基板もしくは電極との密着性が充分満足のいくものではない。
また、Polymer preprints,Japan Vol.44,No.3,p495(1995)には、耐熱性高分子と硫酸の複合体がプロトン伝導性高分子固体電解質に使用できるとの報告があるが、この複合も、基板、電極などの密着性が充分でないなど、上記電気・電子材料などに応用するには種々問題がある。
【0005】
【発明が解決しようとする課題】
本発明は、従来の技術的課題を背景になされたもので、広範囲の温度領域にわたって高いプロトン伝導性を有し、基板、電極に対して密着性に優れるプロトン伝導性高分子固体電解質を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、(A)ポリオキサジアゾール類、ポリベンゾオキサゾール類、ポリベンゾチアゾール類、ポリベンザゾール類、ポリキナゾロン、ポリキノキサリン類、ポリインドフェナジン類、ポリベンズイミダゾール類、ポリアミドベンゾイミダゾール類、ピリジン環を有する下記(化1)〜(化2)に示される重合体、および(化3)に示される重合体の群から選ばれた少なくとも1種の分子内に含窒素環構造を有し、かつ耐熱温度が250℃以上である重合体、(B)(イ)ポリエチレンオキシド、エチレンオキシド/プロピレンオキシド共重合体、ポリエチレンイミン、ポリビニルアルコール、およびパーフルオロスルホン酸ポリマーの群から選ばれた少なくとも1種の相対湿度50%において10-5(s/cm)以上のプロトン伝導性を示す重合体、(ロ)ポリプロピレンオキシド、ポリテトラメチレングリコール、プロピレンオキシド/ブチレンオキシド共重合体およびポリオキシアルキレンモノ(メタ)アクリレート(共)重合体から選ばれたポリエーテル系重合体、スチレンスルホン酸系(共)重合体およびビニルスルホン酸系(共)重合体から選ばれたスルホン酸含有ポリマー、アクリル酸系(共)重合体およびメタクリル酸系(共)重合体から選ばれたカルボン酸含有ポリマー、(メタ)アクリルアミド(共)重合体およびアルキル(メタ)アクリルアミド(共)重合体から選ばれたアミド系ポリマー、ポリアリルアミンからなるアミノ基含有ポリマー、および脂肪族ポリアミドの群から選ばれた少なくとも1種の1%以上の吸水率を示す重合体、および(ハ)シリコンゴムからなるシロキサン結合を有する重合体、ブチルアクリレートおよびエトキシエチルアクリレートから選ばれたアクリルモノマーを(共)重合したポリアクリル樹脂、ポリブタジエン、ポリイソプレン、ポリイソブチレン、およびポリテトラフルオロエチレンの群から選ばれた少なくとも1種の0℃以下のガラス転移温度を示す重合体の群から選ばれた少なくとも1種の重合体、ならびに(C)無機酸および/または有機酸を主成分とするプロトン伝導性高分子固体電解質を提供するものである。
【0007】
【化4】
【化5】
【化6】
【0008】
【発明の実施の形態】
本発明のプロトン伝導性高分子固体電解質を構成する成分のうち、(A)成分の重合体は、分子内に含窒素環構造を有し、かつ耐熱温度が250℃以上である重合体である。ここでいう耐熱温度とは、TG−DTA法により測定したTG曲線の第1重量減少温度(熱重量損失開始温度)のことである。この耐熱温度が250℃未満では、例えば燃料電池など比較的高温で使用する用途に応用する場合に、ポリマーの熱劣化などにより、長期信頼性に問題が生ずる恐れがあり好ましくない。
【0009】
(A)成分として使用できる重合体としては、例えばポリオキサジアゾール類、ポリベンゾオキサゾール類、ポリベンゾチアゾール類、ポリベンザゾール類、ポリキナゾロン、ポリキノキサリン類、ポリインドフェナジン類、ポリベンズイミダゾール類、ポリアミドベンゾイミダゾール類、ピリジン環を有する上記(化4)〜(化5)に示される重合体、および(化6)に示される重合体などが挙げられる。これらの中で、特に好ましくは上記(化4)〜(化6)に示される重合体である。
【0010】
(A)成分の重合体の重合度(xおよびy、またはn)は、10〜10,000であり、10未満では機械的強度が劣り問題となり、一方10,000を超えると溶剤への溶解性が悪くなるため、キャスティングなどの成形性に問題が生じる場合がある。
【0011】
次に、本発明の(B)成分のうち、(イ)相対湿度50%において10-5(S/cm)以上のプロトン伝導性を示す重合体としては、ポリエチレンオキシド、エチレンオキシド/プロピレンオキシド共重合体、ポリエチレンイミン、ポリビニルアルコール、パーフルオロスルホン酸ポリマーなどが挙げられる。この(イ)プロトン伝導性を示す重合体を用いると、キャリアー密度は低下するが、移動度が向上するため、得られる電解質は、高いプロトン伝導性を示すことができる。
【0012】
また、(B)成分のうち、(ロ)1%以上の吸水率を示す重合体とは、JIS−K6911に基づいて測定した値で、1%以上の吸水率を有するか、あるいは水に溶解する重合体を意味する。このような(ロ)重合体としては、例えばポリプロピレンオキシド、ポリテトラメチレングリコール、プロピレンオキシド/ブチレンオキシド共重合体、ポリオキシアルキレンモノ(メタ)アクリレート(共)重合体などのポリエーテル系重合体、スチレンスルホン酸系(共)重合体、ビニルスルホン酸系(共)重合体などのスルホン酸含有ポリマー、アクリル酸系(共)重合体、メタクリル酸系(共)重合体などのカルボン酸含有ポリマー、(メタ)アクリルアミド(共)重合体、アルキル(メタ)アクリルアミド(共)重合体などのアミド系ポリマー、ポリアリルアミンなどのアミノ基含有ポリマー、脂肪族ポリアミドなどが挙げられる。
この(ロ)重合体を用いると、プロトン伝導性高分子固体電解質中の水分量を適量含有することができ、そのためプロトン伝導性が向上する。
【0013】
さらに、(B)成分のうち、(ハ)0℃以下のガラス転移温度を示す重合体としては、シリコンゴムなどのシロキサン結合を有する重合体、ブチルアクリレート、エトキシエチルアクリレートなどのアクリルモノマーを(共)重合したポリアクリル樹脂、ポリブタジエン、ポリイソプレン、ポリイソブチレン、ポリテトラフルオロエチレンなどが挙げられる。
この(ハ)重合体を用いると、プロトン伝導性高分子固体電解質自体が柔らかくなるため、プロトンの動きやすさが増し、その結果としてプロトン伝導性が向上する。
【0014】
(B)成分としては、上記(イ)〜(ハ)から選ばれる少なくとも1種以上の重合体が使用される。好ましい(B)成分としては、ポリエチレンオキシド、ポリエチレンイミン、ポリビニルアルコールが挙げられる。
【0015】
次に、本発明の(C)成分としては、無機酸および/または有機酸が挙げられる。無機酸としては硫酸、リン酸などが挙げられ、また有機酸としてはメタンスルホン酸、エチルスルホン酸のようなアルキルスルホン酸、p−トルエンスルホン酸のような芳香族スルホン酸、ビニルスルホン酸のような重合性スルホン酸モノマー、酢酸、プロピオン酸のようなアルキルカルボン酸、フタル酸のような芳香族カルボン酸、アクリル酸、メタクリル酸、イタコン酸などの重合性カルボン酸モノマー、アルキルリン酸、芳香族リン酸、および上記(B)成分の(ロ)に挙げた酸タイプのポリマーなどが挙げられる。これらの中で、好ましくは硫酸、リン酸である。
【0016】
(A)成分と(B)成分の重量割合は、通常、95/5〜5/95、好ましくは90/10〜20/80、さらに好ましくは80/20〜30/70である。(A)成分の割合が95重量%を超えると、充分なプロトン伝導性が得られないとともに、基板、電極への密着性が悪くなる。一方、(A)成分の割合が5重量%未満では、充分なプロトン伝導性が得られない。
また、(C)成分の使用割合は、使用する(A)成分の重合体中に含まれる窒素原子1モルに対して、通常、0.1〜10モル、好ましくは0.2〜5モルである。0.1モル未満では、充分なプロトン伝導性を示さず、一方10モルを超えると、過剰な酸が系外に洩れ易くなることから、電子材料に応用した場合に機器の腐食の問題が生ずる可能性があり好ましくない。
【0017】
本発明のプロトン伝導性高分子固体電解質には、(A)成分、(B)成分、(C)成分以外に、適量の水などを併用してもよい。
【0018】
本発明のプロトン伝導性高分子固体電解質の調製法に特に制限はないが、例えば以下の方法が挙げられる。
(1)(A)成分、(B)成分、(C)成分を共通溶剤に溶解したのち、キャスティングによりフィルム状に成形する方法。
(2)(A)成分、(B)成分を共通溶剤に溶解後、キャスティングしてフィルムを調製したのち、(C)成分を溶解した水あるいはメタノール中にフィルムを浸漬し、次いで浸漬したフィルムを取り出し、水、メタノールなどにより過剰の酸を洗い出して調製する方法。
ここで、共通溶剤としては、ジメチルアセトアミド、ジメチルホルムアミドなどのアミド系溶剤、ジメチルスルホキシドなどが挙げられる。
【0019】
【実施例】
以下、実施例を挙げ本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中、%および部は、特に断らない限り重量基準である。また、プロトン伝導性高分子固体電解質フィルムの調製、および実施例中の各種の測定項目は、下記のようにして行った。
【0020】
プロトン伝導性高分子固体電解質フィルムの調製
(A)成分および(B)成分を所定量溶剤に混合し、キャスト法により白金上にフィルムを得、このフィルムを硫酸/メタノール(重量比=1:4)混合液に浸漬後、多量のメタノールで洗浄し、次いで洗浄したフィルムを真空乾燥で乾燥後、所定の湿度になるように水蒸気下で含水させた。
【0021】
プロトン伝導性の測定
含水率7%で直径13mmのフィルム状試料を白金電極に挟み、密閉セルに封入した。インピーダンスアナライザー(HYP4192A)を用いて、周波数5〜13MHz、印加電圧12mV、温度20℃、50℃、100℃にてセルのインピーダンスの絶対値と位相角を測定した。得られたデータは、コンピュータを用いて発振レベル12mVにて複素インピーダンス測定を行い、プロトン伝導率を算出した。
【0022】
密着性
100%相対湿度下に置かれた直径13mmのフィルム試料を白金電極に挟み、密閉セルに封入し、インピーダンスアナライザー(HYP4192A)を用いて、周波数5〜13MHz、印加電圧12mV、温度50℃で界面の接触抵抗をCole−Coleプロットにより求めた。界面の接触抵抗が小さいほど、電極との密着性が優れている。後述する(A)成分であるS−1ポリマーの界面接触抵抗を基準として(比較例1)、各プロトン伝導性高分子固体電解質の界面接触抵抗を測定し、基準値の1/5以下の場合を密着性が良好、1/2を超える場合を不良とした。
【0023】
実施例1〜5、比較例1〜4
表1に示す条件で(A)成分、(B)成分および(C)成分からなるプロトン伝導性高分子固体電解質フィルムを上記に従い調製した。表2および表3にプロトン伝導性高分子固体電解質の性能を示す。本発明のプロトン伝導性高分子固体電解質は、広い温度範囲にわたって高いプロトン伝導性を示し、なおかつ白金などの基板、電極に対して良好な密着性を有することが分かる。
【0024】
【表1】
【0025】
【表2】
【0026】
【表3】
【0027】
【発明の効果】
本発明のプロトン伝導性高分子固体電解質は、広い温度範囲にわたって高いプロントン伝導性を有し、かつ基板、電極に対する密着性、また脆くなく強度においても優れている。従って、本発明のプロトン伝導性高分子固体電解質は、一次電池用電解質、二次電池用電解質、燃料電池用電解質、表示素子、各種センサー、信号伝達媒体、固体コンデンサー、イオン交換膜などに利用可能であり、その工業的意義は極めて大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a proton conductive polymer solid electrolyte that can be used for an electrolyte for a primary battery, an electrolyte for a secondary battery, an electrolyte for a fuel cell, a display element, various sensors, a signal transmission medium, a solid capacitor, an ion exchange membrane, and the like.
[0002]
[Prior art]
The electrolyte is usually used in a (water) solution. However, in recent years, there has been an increase in the momentum to replace this with a solid system. The first reason is, for example, the ease of processing when applied to the above-mentioned electric / electronic materials, and the second reason is the shift to short, thin, light and high power.
Conventionally, both proton-conducting materials made of inorganic substances and organic substances are known. Examples of inorganic substances include, for example, uranyl phosphate, which is a hydrated compound, but these inorganic compounds do not have sufficient contact at the interface, and there are many problems in forming a conductive film on a substrate or electrode.
[0003]
On the other hand, as an example of the organic compound, a sulfonic acid group is introduced into a polymer belonging to a so-called cation exchange resin, for example, polystyrene sulfonic acid, polyvinyl sulfonic acid, perfluorosulfonic acid polymer, perfluorocarboxylic acid polymer, or heat-resistant polymer. Polymer [Polymer preprints, Japan Vol. 42, no. 7, p2490-2492 (1993), Polymer preprints, Japan Vol. 43, no. 3, p735-p736 (1994), Polymer preprints, Japan Vol. 42, no. 3, p730 (1993)] and the like.
[0004]
Since these organic polymers are soluble in a solvent, a film can be easily formed on a substrate or an electrode by casting these polymer solutions. However, these organic polymers do not have sufficient proton conductivity yet, and the proton conductivity decreases at high temperatures (around 100 ° C.), or the adhesion to the substrate or electrode is sufficiently satisfactory. is not.
In addition, Polymer preprints, Japan Vol. 44, no. 3, p495 (1995) reports that a complex of a heat-resistant polymer and sulfuric acid can be used for a proton conductive polymer solid electrolyte, but this complex also has insufficient adhesion to substrates, electrodes, etc. There are various problems in applying to the above electric / electronic materials.
[0005]
[Problems to be solved by the invention]
The present invention has been made against the background of conventional technical problems, and provides a proton conductive polymer solid electrolyte having high proton conductivity over a wide temperature range and excellent adhesion to a substrate and an electrode. There is.
[0006]
[Means for Solving the Problems]
The present invention provides (A) polyoxadiazoles, polybenzoxazoles, polybenzothiazoles, polybenzazoles, polyquinazolones, polyquinoxalines, polyindophenazines, polybenzimidazoles, polyamide benzimidazoles, pyridine Having a nitrogen-containing ring structure in at least one molecule selected from the group consisting of polymers represented by the following (Chemical Formula 1) to (Chemical Formula 2) having a ring and a polymer represented by (Chemical Formula 3) : And a polymer having a heat resistant temperature of 250 ° C. or higher, (B) (a) at least one selected from the group of polyethylene oxide, ethylene oxide / propylene oxide copolymer, polyethylene imine, polyvinyl alcohol, and perfluorosulfonic acid polymer in a relative humidity of 50% 10 -5 (s / cm ) or more proton-conducting (B) Polypropylene oxide, polytetramethylene glycol, a polyether polymer selected from propylene oxide / butylene oxide copolymer and polyoxyalkylene mono (meth) acrylate (co) polymer, styrene sulfone A sulfonic acid-containing polymer selected from acid-based (co) polymers and vinylsulfonic acid-based (co) polymers, a carboxylic acid-containing material selected from acrylic acid-based (co) polymers and methacrylic acid-based (co) polymers At least selected from the group of polymers, amide polymers selected from (meth) acrylamide (co) polymers and alkyl (meth) acrylamide (co) polymers, amino group-containing polymers composed of polyallylamine, and aliphatic polyamides polymer represents one of 1% or more of water absorption, and (c) System A polymer having a siloxane bond composed of rubber, selected from the group consisting of polyacrylic resin (poly) polymerized from acrylic monomers selected from butyl acrylate and ethoxyethyl acrylate, polybutadiene, polyisoprene, polyisobutylene, and polytetrafluoroethylene And at least one polymer selected from the group of polymers exhibiting a glass transition temperature of 0 ° C. or lower, and (C) a proton-conducting polymer mainly composed of an inorganic acid and / or an organic acid A solid electrolyte is provided.
[0007]
[Formula 4]
[Chemical formula 5]
[Chemical 6]
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Among the components constituting the proton-conductive polymer solid electrolyte of the present invention, the polymer of component (A) is a polymer having a nitrogen-containing ring structure in the molecule and a heat-resistant temperature of 250 ° C. or higher. . The heat-resistant temperature here is the first weight reduction temperature (thermogravimetric loss start temperature) of the TG curve measured by the TG-DTA method. When the heat-resistant temperature is less than 250 ° C., for example, in application to a use at a relatively high temperature such as a fuel cell, there is a possibility that a problem may occur in long-term reliability due to thermal degradation of the polymer.
[0009]
Examples of the polymer that can be used as the component (A) include polyoxadiazoles, polybenzoxazoles, polybenzothiazoles, polybenzazoles, polyquinazolones, polyquinoxalines, polyindophenazines, polybenzimidazoles, polyamides benzimidazoles, the (Formula 4) having a pyridine ring polymer represented by - (Formula 5), and (of 6) such as polymer represented in the cited et be. Among these, the polymers shown in the above (Chemical Formula 4) to (Chemical Formula 6) are particularly preferable.
[0010]
The degree of polymerization (x and y, or n) of the polymer of component (A) is 10 to 10,000. If it is less than 10, the mechanical strength is inferior, while if it exceeds 10,000, it is dissolved in a solvent. Since the properties deteriorate, there may be a problem in moldability such as casting.
[0011]
Next, among the components (B) of the present invention, (b) polymers exhibiting proton conductivity of 10 −5 (S / cm) or higher at 50% relative humidity include polyethylene oxide, ethylene oxide / propylene oxide copolymer Examples of the polymer include polyethyleneimine, polyvinyl alcohol, and perfluorosulfonic acid polymer. When (i) a polymer exhibiting proton conductivity is used, the carrier density is lowered, but the mobility is improved, so that the obtained electrolyte can exhibit high proton conductivity.
[0012]
In addition, among the components (B), (b) a polymer showing a water absorption rate of 1% or more is a value measured based on JIS-K6911 and has a water absorption rate of 1% or more or dissolved in water. Means a polymer. Examples of such (b) polymer include polyether polymers such as polypropylene oxide, polytetramethylene glycol, propylene oxide / butylene oxide copolymer, polyoxyalkylene mono (meth) acrylate (co) polymer, Sulphonic acid-containing polymers such as styrene sulfonic acid (co) polymers, vinyl sulfonic acid (co) polymers, carboxylic acid-containing polymers such as acrylic acid (co) polymers, methacrylic acid (co) polymers, Examples thereof include amide polymers such as (meth) acrylamide (co) polymers and alkyl (meth) acrylamide (co) polymers, amino group-containing polymers such as polyallylamine, and aliphatic polyamides.
When this (b) polymer is used, it is possible to contain an appropriate amount of water in the proton-conductive polymer solid electrolyte, so that proton conductivity is improved.
[0013]
Furthermore, among the components (B), (c) polymers exhibiting a glass transition temperature of 0 ° C. or lower include polymers having a siloxane bond such as silicone rubber, and acrylic monomers such as butyl acrylate and ethoxyethyl acrylate (both ) Polymerized polyacrylic resin, polybutadiene, polyisoprene, polyisobutylene, polytetrafluoroethylene and the like.
When this (c) polymer is used, the proton conductive polymer solid electrolyte itself becomes soft, so that the mobility of protons increases, and as a result, proton conductivity improves.
[0014]
As the component (B), at least one polymer selected from the above (a) to (c) is used. Preferable components (B) include polyethylene oxide, polyethyleneimine, and polyvinyl alcohol.
[0015]
Next, examples of the component (C) of the present invention include inorganic acids and / or organic acids. Examples of inorganic acids include sulfuric acid and phosphoric acid, and examples of organic acids include alkylsulfonic acids such as methanesulfonic acid and ethylsulfonic acid, aromatic sulfonic acids such as p-toluenesulfonic acid, and vinylsulfonic acid. Polymerizable sulfonic acid monomer, alkyl carboxylic acid such as acetic acid and propionic acid, aromatic carboxylic acid such as phthalic acid, polymerizable carboxylic acid monomer such as acrylic acid, methacrylic acid and itaconic acid, alkyl phosphoric acid and aromatic Examples thereof include phosphoric acid and acid type polymers listed in (B) of the component (B). Of these, sulfuric acid and phosphoric acid are preferred.
[0016]
The weight ratio of the component (A) and the component (B) is usually 95/5 to 5/95, preferably 90/10 to 20/80, and more preferably 80/20 to 30/70. When the proportion of the component (A) exceeds 95% by weight, sufficient proton conductivity cannot be obtained, and adhesion to the substrate and the electrode is deteriorated. On the other hand, when the proportion of the component (A) is less than 5% by weight, sufficient proton conductivity cannot be obtained.
Moreover, the usage-amount of (C) component is 0.1-10 mol normally with respect to 1 mol of nitrogen atoms contained in the polymer of the (A) component to be used, Preferably it is 0.2-5 mol. is there. If the amount is less than 0.1 mol, sufficient proton conductivity is not exhibited. On the other hand, if the amount exceeds 10 mol, excess acid is liable to leak out of the system. There is a possibility that it is not preferable.
[0017]
In addition to the component (A), the component (B), and the component (C), an appropriate amount of water may be used in combination with the proton conductive polymer solid electrolyte of the present invention.
[0018]
Although there is no restriction | limiting in particular in the preparation method of the proton conductive polymer solid electrolyte of this invention, For example, the following method is mentioned.
(1) A method in which the components (A), (B), and (C) are dissolved in a common solvent and then formed into a film by casting.
(2) After the components (A) and (B) are dissolved in a common solvent and cast to prepare a film, the film is immersed in water or methanol in which the component (C) is dissolved, and then the immersed film is A method of taking out and washing out excess acid with water, methanol or the like.
Here, examples of the common solvent include amide solvents such as dimethylacetamide and dimethylformamide, and dimethyl sulfoxide.
[0019]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples. In the examples,% and parts are based on weight unless otherwise specified. Moreover, preparation of the proton conductive polymer solid electrolyte film and various measurement items in the examples were performed as follows.
[0020]
Preparation of Proton Conductive Polymer Solid Electrolyte Film Components (A) and (B) are mixed with a predetermined amount of solvent, and a film is obtained on platinum by a casting method. This film is sulfuric acid / methanol (weight ratio = 1: 4). ) After being immersed in the mixed solution, it was washed with a large amount of methanol, and then the washed film was dried by vacuum drying and then water-containing under water vapor so as to have a predetermined humidity.
[0021]
Measurement of proton conductivity A film sample having a water content of 7% and a diameter of 13 mm was sandwiched between platinum electrodes and sealed in a closed cell. Using an impedance analyzer (HYP4192A), the absolute value and phase angle of the cell impedance were measured at a frequency of 5 to 13 MHz, an applied voltage of 12 mV, and temperatures of 20 ° C., 50 ° C., and 100 ° C. The obtained data was subjected to complex impedance measurement using a computer at an oscillation level of 12 mV, and proton conductivity was calculated.
[0022]
Film samples of diameter 13mm placed under adhesion 100% relative humidity was sandwiched platinum electrode, enclosed in a sealed cell, using an impedance analyzer (HYP4192A), frequency 5~13MHz, applied voltage 12 mV, at a temperature 50 ° C. The contact resistance of the interface was determined by Cole-Cole plot. The smaller the interface contact resistance, the better the adhesion to the electrode. When the interface contact resistance of each proton conductive polymer solid electrolyte is measured with reference to the interface contact resistance of the S-1 polymer which is the component (A) described later (Comparative Example 1), and is 1/5 or less of the reference value The case where the adhesiveness is good and exceeds 1/2 is regarded as defective.
[0023]
Examples 1-5, Comparative Examples 1-4
Under the conditions shown in Table 1, a proton conductive polymer solid electrolyte film composed of the component (A), the component (B) and the component (C) was prepared according to the above. Tables 2 and 3 show the performance of the proton conductive polymer solid electrolyte. It can be seen that the proton conductive solid polymer electrolyte of the present invention exhibits high proton conductivity over a wide temperature range, and also has good adhesion to a substrate such as platinum or an electrode.
[0024]
[Table 1]
[0025]
[Table 2]
[0026]
[Table 3]
[0027]
【The invention's effect】
The proton conductive polymer solid electrolyte of the present invention has high pronton conductivity over a wide temperature range, and is excellent in adhesion to a substrate and an electrode, and is not brittle and strong. Therefore, the proton conductive polymer solid electrolyte of the present invention can be used for electrolytes for primary batteries, electrolytes for secondary batteries, electrolytes for fuel cells, display elements, various sensors, signal transmission media, solid capacitors, ion exchange membranes, etc. Therefore, its industrial significance is extremely large.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26806595A JP3765116B2 (en) | 1995-09-22 | 1995-09-22 | Proton conducting polymer solid electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26806595A JP3765116B2 (en) | 1995-09-22 | 1995-09-22 | Proton conducting polymer solid electrolyte |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0987369A JPH0987369A (en) | 1997-03-31 |
JP3765116B2 true JP3765116B2 (en) | 2006-04-12 |
Family
ID=17453406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26806595A Expired - Fee Related JP3765116B2 (en) | 1995-09-22 | 1995-09-22 | Proton conducting polymer solid electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3765116B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3884340B2 (en) | 2002-07-10 | 2007-02-21 | 本田技研工業株式会社 | Proton conducting polymer solid electrolyte |
JP5008272B2 (en) * | 2004-04-30 | 2012-08-22 | 旭化成イーマテリアルズ株式会社 | Composite proton exchange membrane |
KR100995413B1 (en) | 2008-08-01 | 2010-11-18 | 삼성에스디아이 주식회사 | Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same |
-
1995
- 1995-09-22 JP JP26806595A patent/JP3765116B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0987369A (en) | 1997-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3521579B2 (en) | Phosphate group-containing polymer | |
Carretta et al. | Ionomeric membranes based on partially sulfonated poly (styrene): synthesis, proton conduction and methanol permeation | |
Miyatake et al. | Highly proton conductive polyimide electrolytes containing fluorenyl groups | |
JP5762748B2 (en) | Ion conductive polymer system crosslinkable at room temperature | |
Liu et al. | Novel sulfonated polyimide/polyvinyl alcohol blend membranes for vanadium redox flow battery applications | |
Mistri et al. | Naphthalene dianhydride based semifluorinated sulfonated copoly (ether imide) s: Synthesis, characterization and proton exchange properties | |
Boroglu et al. | The synthesis and characterization of anhydrous proton conducting membranes based on sulfonated poly (vinyl alcohol) and imidazole | |
Yang et al. | Formation and investigation of dual cross-linked high temperature proton exchange membranes based on vinylimidazolium-functionalized poly (2, 6-dimethyl-1, 4-phenylene oxide) and polystyrene | |
JP2012111950A (en) | Covalently and ionically crosslinked polymer and polymer membrane | |
Yang et al. | Sulfonated poly (phenylene oxide) membranes as promising materials for new proton exchange membranes | |
JP4144830B2 (en) | Solid polymer electrolyte membrane for fuel cells | |
EP1873789A1 (en) | Crosslinked polymer electrolyte and method for producing same | |
KR20090015161A (en) | Novel polymer electrolyte and electrochemical device | |
Fang | Polyimide proton exchange membranes | |
CN114929775A (en) | Novel polyfluorene-based ionomers, anion exchange membranes and methods for making the same | |
US20050069745A1 (en) | Polymer electrolyte membranes for use in fuel cells | |
Umsarika et al. | Proton exchange membrane based on sulfonated poly (aromatic imide-co-aliphatic imide) for direct methanol fuel cell | |
JP2004256797A (en) | Polymer electrolyte, proton conductive membrane and membrane-electrode assembly | |
JP3765116B2 (en) | Proton conducting polymer solid electrolyte | |
Yu et al. | Fabrication and Properties of Reinforced Membranes Based on Sulfonated Poly (arylene ether sulfone) Copolymers for Proton‐Exchange Membrane Fuel Cells | |
Yu et al. | Improved chemical stability and proton selectivity of semi‐interpenetrating polymer network amphoteric membrane for vanadium redox flow battery application | |
KR20220080669A (en) | Poly(isatin-phenylene) based polymer for electrolyte of fuel cell, polymer electrolyte for fuel cell, and fuel cell comprising the same | |
Nam et al. | Synthesis and properties of bonding layer containing flexible and fluorinated moieties for hydrocarbon-based membrane electrode assemblies | |
JP4754496B2 (en) | Sulfonated polymers and solid polymer electrolytes with nitrile-type hydrophobic blocks | |
JP3047973B1 (en) | Proton conductive polymer solid electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050705 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060117 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090203 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130203 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |