JP3764816B2 - Flamingo optical probe, flamingo optical probe manufacturing method, and scanning probe microscope - Google Patents

Flamingo optical probe, flamingo optical probe manufacturing method, and scanning probe microscope Download PDF

Info

Publication number
JP3764816B2
JP3764816B2 JP07466498A JP7466498A JP3764816B2 JP 3764816 B2 JP3764816 B2 JP 3764816B2 JP 07466498 A JP07466498 A JP 07466498A JP 7466498 A JP7466498 A JP 7466498A JP 3764816 B2 JP3764816 B2 JP 3764816B2
Authority
JP
Japan
Prior art keywords
probe
tip
shape
sample
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07466498A
Other languages
Japanese (ja)
Other versions
JPH11271338A (en
Inventor
典孝 山本
徳男 千葉
宏 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP07466498A priority Critical patent/JP3764816B2/en
Publication of JPH11271338A publication Critical patent/JPH11271338A/en
Application granted granted Critical
Publication of JP3764816B2 publication Critical patent/JP3764816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は被測定表面のナノメートル領域における形状観察を行うことを目的とする原子間力顕微鏡(AFM)や被測定物表面を光照射もしくは光励起することにより、光物性測定や加工を行うことを目的とする近接場効果顕微鏡に使用する光プローブと光プローブ製造法と走査型プローブ顕微鏡に関する。
【0002】
【従来の技術】
ガラスキャピラリおよび光ファイバーを尖鋭化して作製するアパチャータイプの光プローブが報告されており、マイクロ加工技術の発達に伴い先端部が非常に尖ったプローブを作製することができ、従来の光学顕微鏡の分解能を上まわる光学像が走査型プローブ顕微鏡により実現できるようになった。また化学エッチングの手法により光プローブ外径を細く加工することで光プローブのバネ弾性を小さくし、軟らかい試料に対して損傷を与えることなく、またAFMで使われるコンタクトモードでの動作を可能とした光プローブが利用されている。
【0003】
【発明が解決しようとする課題】
しかし、上記のバネ弾性を小さくするため細く加工した光プローブにおいてはプローブの極細化に伴い、光プローブと対象試料間の距離制御に使用する光てこのための反射ミラーの大きさが小さくなってしまうことや、プローブのバネ定数が小さいがためにミラーを作製できないという問題があった。
【0004】
【課題を解決するための手段】
本発明は、上記の課題を解決するため光プローブの作製工程において、まず光ファイバーを鉤型に曲げ、続いて極細化することにより、形状による湿式の化学エッチングレートの差を利用し曲げ部分をフラミンゴ型に相対的に太く保ちながら弾性要素部として機能する部分を極細化することを可能とした。
【0005】
【発明の実施の形態】
以下に本発明の実施例について図面を参照して説明する。
図1(A),は本発明の第一実施例であるフラミンゴ型光プローブを横から見た断面図である。光ファイバー1は、光を伝搬するコア部2と屈折率の異なるクラッド部3からなる。光プローブはその弾性要素として機能する部分の先端部4が鉤型に曲げられ、かつ支持部5に対してステップ状に相対的に細く加工されている。外側は開口8以外が金属膜7で覆われている。金属膜7としては金、白金、アルミニウム、クロム、ニッケル等の光を反射する材料が用いられる。
【0006】
図1(B)は光プローブを上から見た図である。細く加工されている弾性要素部の先端部4のうちちょうど曲げられている部分が相対的に太くなっている。曲げられた部分の背面には機械的な研磨により平らなミラー面9が作製されている。
図2は本発明の第二実施例であるフラミンゴ型光プローブの製作工程の一部を示した図である。光ファイバー1の末端の1cmから10cm程度、合成樹脂の被覆を取り除き、表面を清浄にする。図2(A)はCO2レーザーなどの局所加熱手段により、先端部4を鉤型に加工する工程を表している。熱せられたファイバーは内側と外側で応力の差を生じ熱源の方向に曲げられる。
【0007】
図2(B)は光プローブのエッチング工程を示したものであり、ファイバーをエッチング液に浸した状態を表している。光ファイバー1の末端から0.5mmから50mmの先端部4をエッチング液の第1の溶液層10に挿入する。エッチング液は、フッ化水素酸を主成分とする第1の溶液層11と、第1の溶液層より比重が小さく、第1の溶液層と互いに反応かつ混合しない第2の溶液層10の2層で構成されている。第2の溶液層10としては、ヘキサン、ヘプタン、オクタンなどの有機溶媒や、鉱物油、植物油、化学合成油などの油脂類が用いられるが、第1の溶液層11より比重が小さく、第1の溶液層11またはと互いに反応かつ混合しない他の溶液も使用可能である。
【0008】
支持部5を垂直にエッチング液中に浸し所望の細さになるまでこの状態を保つ。光プローブ外径を細くすることにより光プローブのバネ弾性を小さくすることができ、軟らかい試料表面の観測に適したフラミンゴ型光プローブとなる。先端部4のうち曲げられている部分は、この形状の効果でイオン拡散における濃度勾配が生じ、エッチング速度が均一でなくなるために、曲げに対してその内側から側面部分のエッチング速度が遅くなった状態、つまり太く残されエッチングされる。このことにより光てこのためのミラー面を作製する部分が大きくでき、弾性機能部を極細化した光プローブにおいてもミラー面が作製できなくなることを防ぐことができる。
【0009】
図2(C)はフラミンゴ型光プローブ先端を先鋭化する工程を示している。先端部4の曲げから前方部分が垂直になるようエッチング液に浸し、先端がちょうど2層エッチング液の液界面のメニスカス部分となるようにする。メニスカス部分でエッチングされることによりテーパー形状が作製され先端は尖鋭化される。この尖鋭化の工程は、Dennis R.Turnerら(US 4,469,554)によって開示されている。フッ酸溶液は揮発性が高いために濃度が徐々に変化してしまうことと人体や環境に対する影響が大きいという問題がある。フッ化水素酸溶液と有機溶液層の2層構造にすることで揮発を防ぐと共に、大気に放出されるフッ酸を押さえる効果もある。
【0010】
図2では、化学エッチングによる尖鋭化の工程を示したが、先端部の尖鋭化は加熱引き伸ばし方法によっても実施可能である。
図3は本発明の第3実施例である本光プローブを熱引き法でフラミンゴ型プローブを作製する工程を示している。図3(A)に示すように、光ファイバー1の両端を引っ張りながらフラミンゴ型光プローブの先端となる部分を加熱する。光ファイバー1はテーパー状に引き延ばされ最後に破断する。加熱の手段としては、CO2レーザー光を集光して当てる方法や、コイル状に巻いた白金線の中央に光ファイバーを通し、白金線に電流を流して加熱する方法を用いることができる。
【0011】
以下は図2で示した工程を使い光プローブ外形を作製する。熱引き法によりテーパーを作製することでコア部も先細りに破断されているところが構造的に異なるが、以下の工程は図2に示したものと変わるところはない。
図4は、本発明の第4実施例である本光プローブに金属被覆を行う工程を示している。前工程で成形した光ファイバーの、開口8を除く部分に金属膜7を堆積する工程を表した断面図である。金属膜7の堆積方法としては真空蒸着、スパッタなど異方性を有する薄膜堆積法が用いられ、膜厚は20nmから1000nmの範囲で選択される。堆積方向は図6中に矢印で示したとおり、先端の後方であり、角度Aが、20度から90度の範囲で選択される。
【0012】
図5は本発明の第5実施例である本光プローブを搭載した光プローブ顕微鏡の例を示している。図1Bの第2実施例に示した鈎状のフラミンゴ型光プローブ12を、支持部5で振動手段であるバイモルフ13に設置し、フラミンゴ型光プローブ12の先端を試料14に対して垂直に振動させ、フラミンゴ型光プローブ12の先端と試料14の表面の間に作用する原子間力あるいはその他の相互作用に関わる力をフラミンゴ型光プローブ12の振動特性の変化として変位検出手段15で検出し、フラミンゴ型光プローブ12の先端と試料14の表面の間隔を一定に保つように制御手段16で制御しながら、XYZ移動機構17により試料を走査して表面形状を測定する構成である。同時に、光学特性測定用光源18の光をフラミンゴ型光プローブ12に導入し、フラミンゴ型光プローブ12の開口8から試料14に光を照射し、光学特性測定光検出手段19で検出することによって微小領域の光学特性の測定を行う。
【0013】
図5は試料14の裏面で測定光を検出する透過型の構成を示したが、試料表面で測定光を検出する反射型の構成や、フラミンゴ型光プローブ12で光を検出する構成も可能である。
また、図5はフラミンゴ型光プローブ12を振動させる装置構成を示したが、バイモルフ13を振動させないか、バイモルフ13を使用しない装置構成とし、コンタクトモードのAFMとして測定を行うことも可能である。
【0014】
さらに、これらの装置にプローブと試料が液体中に保持されるように液だめの覆いを設けることで液中における測定を行うことができる。
以上では、フラミンゴ型光プローブ12について説明を行ってきたが、このプローブはAFM専用のプローブとして用いることができる。この場合は、金属膜7は不要であり、先端はより尖鋭な形状にすることができる。プローブ材料としては、光ファイバー、その他、ガラスファイバー、金属細線等を用いることができる。 AFMプローブとして用いた場合の特徴としては、特に液中においてプローブを振動させて原子間力を検出するモードでは、従来AFMプローブが板構造であるため液体の粘性の影響や液体を伝わる外乱振動の影響を受けるのに対し、きわめて安定な共振特性を示し、安定に測定することができる。
【0015】
【発明の効果】
以上説明したように、本発明によるフラミンゴ型光プローブとフラミンゴ型光プローブの製造法によれば、従来のスリムタイプ光プローブより弾性機能部のバネ定数を小さくすることができ、かつ曲げ部分が相対的に太いということから、光てこに必要なミラーが小さくなり操作性が悪くなることや、バネ定数が小さいことによりミラーが作製すらできないといったことを回避できる。
【図面の簡単な説明】
【図1】本発明のフラミンゴ型光プローブの構成を表した図である。
【図2】本発明のフラミンゴ型光プローブのエッチング工程を示した図である。
【図3】本発明のフラミンゴ型光プローブの熱引き工程を示した図である。
【図4】本発明のフラミンゴ型光プローブに金属膜を被覆する工程を示した図である。
【図5】本発明のフラミンゴ型光プローブを走査型プローブ顕微鏡に搭載した例を示した図である。
【符号の説明】
1・・・光ファイバー
2・・・コア部
3・・・クラッド部
4・・・先端部
5・・・支持部
6・・・テーパー部
7・・・金属膜
8・・・開口
9・・・ミラー面
10・・・第1の溶液層
11・・・第2の溶液層
12・・・フラミンゴ型光プローブ
13・・・バイモルフ
14・・・試料
15・・・変位検出手段
16・・・制御手段
17・・・ XYZ移動機構
18・・・光学特性測定用光源
19・・・光学特性測定光検出手段
[0001]
BACKGROUND OF THE INVENTION
The present invention performs an optical physical property measurement or processing by irradiating or exciting a surface of an object to be measured with an atomic force microscope (AFM) for the purpose of observing the shape of the surface to be measured in the nanometer region. The present invention relates to an optical probe used in a target near-field effect microscope, an optical probe manufacturing method, and a scanning probe microscope.
[0002]
[Prior art]
Aperture-type optical probes that are made by sharpening glass capillaries and optical fibers have been reported, and with the development of micromachining technology, probes with extremely sharp tips can be produced, which reduces the resolution of conventional optical microscopes. An optical image over it can be realized with a scanning probe microscope. In addition, by reducing the outer diameter of the optical probe by the chemical etching method, the spring elasticity of the optical probe is reduced, enabling operation in the contact mode used in AFM without damaging soft samples. An optical probe is used.
[0003]
[Problems to be solved by the invention]
However, in the optical probe that has been thinned to reduce the spring elasticity, the size of the reflecting mirror for the optical lever used to control the distance between the optical probe and the target sample has become smaller as the probe becomes thinner. And there is a problem that the mirror cannot be produced because the spring constant of the probe is small.
[0004]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a method of manufacturing an optical probe, in which an optical fiber is first bent into a saddle shape, and then made ultrafine, thereby making use of the difference in wet chemical etching rate depending on the shape to make the bent portion a flamingo. The part functioning as the elastic element part can be made extremely fine while keeping the mold relatively thick.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1A is a cross-sectional view of a flamingo type optical probe according to the first embodiment of the present invention as seen from the side. The optical fiber 1 includes a core part 2 that propagates light and a clad part 3 having a different refractive index. The tip portion 4 of the portion that functions as an elastic element of the optical probe is bent into a bowl shape, and is processed to be thin relative to the support portion 5 in a step shape. The outside is covered with a metal film 7 except for the opening 8. The metal film 7 is made of a material that reflects light, such as gold, platinum, aluminum, chromium, and nickel.
[0006]
FIG. 1B is a view of the optical probe as seen from above. Of the distal end portion 4 of the elastic element portion that is thinly processed, the portion that is just bent is relatively thick. A flat mirror surface 9 is formed on the back of the bent portion by mechanical polishing.
FIG. 2 is a diagram showing a part of the manufacturing process of the flamingo type optical probe according to the second embodiment of the present invention. The synthetic resin coating is removed about 1 cm to 10 cm at the end of the optical fiber 1 to clean the surface. FIG. 2A shows a process of processing the tip portion 4 into a bowl shape by a local heating means such as a CO2 laser. The heated fiber creates a difference in stress between the inside and outside and is bent in the direction of the heat source.
[0007]
FIG. 2B shows an optical probe etching process, and shows a state where the fiber is immersed in an etching solution. A tip portion 4 of 0.5 mm to 50 mm from the end of the optical fiber 1 is inserted into the first solution layer 10 of the etching solution. The etching solution includes a first solution layer 11 mainly composed of hydrofluoric acid and a second solution layer 10 having a specific gravity smaller than that of the first solution layer and not reacting with and mixing with the first solution layer 10. Consists of layers. As the second solution layer 10, an organic solvent such as hexane, heptane, and octane, and fats and oils such as mineral oil, vegetable oil, and chemically synthesized oil are used, but the specific gravity is smaller than that of the first solution layer 11. Other solutions that do not react and mix with each other in solution layer 11 can also be used.
[0008]
This state is maintained until the supporting portion 5 is immersed vertically in an etching solution and becomes a desired thinness. By reducing the outer diameter of the optical probe, the spring elasticity of the optical probe can be reduced, and a flamingo optical probe suitable for observing a soft sample surface is obtained. The bent portion of the tip 4 has a concentration gradient in ion diffusion due to the effect of this shape, and the etching rate is not uniform, so the etching rate of the side portion from the inside becomes slower than the bending. The state, that is, it remains thick and is etched. This makes it possible to enlarge the part for producing the mirror surface for the light lever, and it is possible to prevent the mirror surface from being produced even in the optical probe having the elastic function part made extremely thin.
[0009]
FIG. 2C shows a step of sharpening the tip of the flamingo type optical probe. The tip part 4 is immersed in the etching solution so that the front part is perpendicular to the bending of the tip part 4 so that the tip is just a meniscus part at the liquid interface of the two-layer etching solution. Etching at the meniscus portion creates a tapered shape and sharpens the tip. This sharpening process is described in Dennis R. et al. Turner et al. (US 4,469,554). Since the hydrofluoric acid solution is highly volatile, there are problems that the concentration gradually changes and that the influence on the human body and the environment is great. The two-layer structure of the hydrofluoric acid solution and the organic solution layer has an effect of preventing volatilization and suppressing hydrofluoric acid released to the atmosphere.
[0010]
In FIG. 2, the sharpening process by chemical etching is shown, but the sharpening of the tip can also be performed by a heating and stretching method.
FIG. 3 shows a process for producing a flamingo probe by subjecting the present optical probe according to the third embodiment of the present invention to a heat extraction method. As shown in FIG. 3A, the portion that becomes the tip of the flamingo type optical probe is heated while pulling both ends of the optical fiber 1. The optical fiber 1 is stretched in a taper shape and finally broken. As a heating means, a method of condensing and applying CO2 laser light or a method of passing an optical fiber through the center of a platinum wire wound in a coil shape and supplying a current to the platinum wire to heat can be used.
[0011]
In the following, the outer shape of the optical probe is produced using the process shown in FIG. Although the structure in which the core portion is tapered and cut by tapering by the heat-drawing method is structurally different, the following steps are not different from those shown in FIG.
FIG. 4 shows a step of performing metal coating on the optical probe according to the fourth embodiment of the present invention. It is sectional drawing showing the process of depositing the metal film 7 in the part except the opening 8 of the optical fiber shape | molded by the front process. As a method for depositing the metal film 7, an anisotropic thin film deposition method such as vacuum evaporation or sputtering is used, and the film thickness is selected in the range of 20 nm to 1000 nm. The deposition direction is behind the tip as shown by the arrow in FIG. 6, and the angle A is selected in the range of 20 degrees to 90 degrees.
[0012]
FIG. 5 shows an example of an optical probe microscope equipped with the optical probe according to the fifth embodiment of the present invention. The saddle-shaped flamingo type optical probe 12 shown in the second embodiment of FIG. 1B is installed on the bimorph 13 that is a vibrating means by the support unit 5, and the tip of the flamingo type optical probe 12 is vibrated perpendicularly to the sample 14. Then, the displacement detecting means 15 detects an atomic force acting between the tip of the flamingo type optical probe 12 and the surface of the sample 14 or a force related to other interaction as a change in vibration characteristics of the flamingo type optical probe 12, The configuration is such that the surface shape is measured by scanning the sample with the XYZ moving mechanism 17 while being controlled by the control means 16 so as to keep the distance between the tip of the flamingo type optical probe 12 and the surface of the sample 14 constant. At the same time, light from the optical property measurement light source 18 is introduced into the flamingo type optical probe 12, the sample 14 is irradiated with light from the opening 8 of the flamingo type optical probe 12, and detected by the optical property measurement light detection means 19. Measure the optical properties of the area.
[0013]
FIG. 5 shows a transmissive configuration for detecting the measurement light on the back surface of the sample 14, but a reflective configuration for detecting the measurement light on the sample surface and a configuration for detecting light with the flamingo optical probe 12 are also possible. is there.
Further, FIG. 5 shows an apparatus configuration that vibrates the flamingo type optical probe 12, but it is also possible to perform measurement as a contact mode AFM with an apparatus configuration that does not vibrate the bimorph 13 or does not use the bimorph 13.
[0014]
Furthermore, the measurement in the liquid can be performed by providing a cover for the reservoir so that the probe and the sample are held in the liquid.
The flamingo type optical probe 12 has been described above, but this probe can be used as a probe dedicated to AFM. In this case, the metal film 7 is unnecessary, and the tip can be made sharper. As the probe material, optical fiber, glass fiber, fine metal wire, or the like can be used. As a feature when used as an AFM probe, especially in a mode in which the atomic force is detected by vibrating the probe in the liquid, since the conventional AFM probe has a plate structure, the influence of the viscosity of the liquid and the disturbance vibration transmitted through the liquid Although it is affected, it exhibits extremely stable resonance characteristics and can be measured stably.
[0015]
【The invention's effect】
As described above, according to the flamingo type optical probe and the method of manufacturing the flamingo type optical probe according to the present invention, the spring constant of the elastic function part can be made smaller than that of the conventional slim type optical probe, and the bending part is relatively Therefore, it is possible to avoid that the mirror required for the optical lever is small and the operability is deteriorated, and that the mirror cannot be manufactured because the spring constant is small.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a flamingo type optical probe of the present invention.
FIG. 2 is a view showing an etching process of a flamingo type optical probe of the present invention.
FIG. 3 is a view showing a heat-drawing process of the flamingo type optical probe of the present invention.
FIG. 4 is a diagram showing a process of coating a flamingo type optical probe of the present invention with a metal film.
FIG. 5 is a diagram showing an example in which the flamingo optical probe of the present invention is mounted on a scanning probe microscope.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Optical fiber 2 ... Core part 3 ... Cladding part 4 ... Tip part 5 ... Support part 6 ... Tapered part 7 ... Metal film 8 ... Opening 9 ... Mirror surface 10 ... first solution layer 11 ... second solution layer 12 ... flamingo type optical probe 13 ... bimorph 14 ... sample 15 ... displacement detecting means 16 ... control Means 17 ... XYZ moving mechanism 18 ... Optical characteristic measuring light source 19 ... Optical characteristic measuring light detecting means

Claims (8)

先端部分がテーパー状に尖鋭化された光ファイバーからなり、弾性要素部の端部に光を透過する開口を有し、開口以外の部分は金属膜で被覆されるとともに、先端近傍の形状が鉤型をしている光プローブにおいて、鉤型の曲がり部分の径が弾性要素部の径に対して相対的に太くなっていることを特徴とするフラミンゴ型光プローブ。The tip consists of an optical fiber with a tapered tip, and has an opening that transmits light at the end of the elastic element. The other part is covered with a metal film, and the shape near the tip is saddle-shaped. A flamingo optical probe characterized in that the diameter of the saddle-shaped bent portion is relatively larger than the diameter of the elastic element portion. 前記光プローブ弾性要素部の外径が基材に対してステップ状に細く加工してあることを特徴とする特徴とする請求項1記載のフラミンゴ型光プローブ。2. The flamingo optical probe according to claim 1, wherein the outer diameter of the optical probe elastic element is processed to be thin in a step shape with respect to the substrate. 前記光プローブはファイバーの先端近傍の形状を鉤型に加工する工程と外径を細く加工する工程と先端部分をテーパー状に尖鋭化する工程から成ることを特徴とするフラミンゴ型光プローブ製造方法。The method of manufacturing a flamingo optical probe, characterized in that the optical probe comprises a step of processing the shape near the tip of the fiber into a saddle shape, a step of processing the outer diameter thinly, and a step of sharpening the tip portion in a tapered shape. 前記光プローブは加熱し、熱引き破断する工程と、ファイバーの先端近傍の形状を鉤型に加工する工程と外径を細く加工する工程から成ることを特徴とするフラミンゴ型光プローブ製造方法。A method of manufacturing a flamingo type optical probe, comprising: a step of heating and heat-breaking the optical probe; a step of processing the shape near the tip of the fiber into a saddle shape; and a step of processing the outer diameter of the optical probe. 前記プローブの先端部と測定すべき試料あるいは媒体表面との間隔を、前記プローブ先端部と前記表面との間に原子間力あるいはその他の相互作用に関わる力が作用する動作距離内に近づけた状態で、2次元的な走査手段によって前記試料表面を走査するとともに、制御手段によって前記表面の形状に沿って前記プローブを制御し、試料形状を測定する走査型プローブ顕微鏡において前記プローブの先端と前記表面を相対的に垂直方向に振動させる振動手段と、前記プローブの変位を検出する変位検出手段と、前記検出手段が出力する検出信号に基づいて前記プローブの先端部と前記表面の間隔を一定に保つための制御手段を有するとともに、少なくとも請求項1および2記載のプローブを有することを特徴とする走査型プローブ顕微鏡。A state in which the distance between the probe tip and the sample or medium surface to be measured is close to an operating distance in which an atomic force or other interaction force acts between the probe tip and the surface. In the scanning probe microscope that scans the sample surface by a two-dimensional scanning unit and controls the probe along the shape of the surface by a control unit to measure the sample shape, the tip of the probe and the surface Vibration means for relatively vibrating the probe, displacement detection means for detecting the displacement of the probe, and the distance between the probe tip and the surface is kept constant based on a detection signal output from the detection means. A scanning probe microscope characterized by having a control means for controlling and at least the probe according to claim 1. 前記プローブの先端部と測定すべき試料あるいは媒体表面との間隔を、前記プローブ先端部と前記表面との間に原子間力あるいはその他の相互作用に関わる力が作用する動作距離内に近づけた状態で、2次元的な走査手段によって前記試料表面を走査するとともに、制御手段によって前記表面の形状に沿って前記プローブを制御し、前記表面の微小領域に対して、光照射あるいは光検出を行い、試料形状と2次元光学情報を同時に測定する走査型プローブ顕微鏡において、前記プローブの先端と前記表面を相対的に垂直方向に振動させる振動手段と、前記プローブの変位を検出する変位検出手段と、前記検出手段が出力する検出信号に基づいて前記プローブの先端部と前記表面の間隔を一定に保つための制御手段を有するとともに、少なくとも請求項1および2記載のプローブを有することを特徴とする走査型プローブ顕微鏡。A state in which the distance between the probe tip and the sample or medium surface to be measured is close to an operating distance in which an atomic force or other interaction force acts between the probe tip and the surface. Then, the sample surface is scanned by a two-dimensional scanning means, the probe is controlled along the shape of the surface by a control means, and light irradiation or light detection is performed on a minute region of the surface, In a scanning probe microscope for simultaneously measuring a sample shape and two-dimensional optical information, vibration means for vibrating the probe tip and the surface in a relatively vertical direction, displacement detection means for detecting displacement of the probe, and Based on the detection signal output by the detection means, the control means for keeping the distance between the tip of the probe and the surface constant, and at least Scanning probe microscope characterized by having a probe according to claim 1 and 2 wherein. 前記プローブの先端部と測定すべき試料あるいは媒体表面との間隔を、前記プローブ先端部と前記表面との間に原子間力あるいはその他の相互作用に関わる力が作用する動作距離内に近づけた状態で、2次元的な走査手段によって前記試料表面を走査するとともに、制御手段によって前記表面の形状に沿って前記プローブを制御し、試料形状を測定する走査型プローブ顕微鏡おいて、前記プローブの変位を検出する変位検出手段と、前記検出手段が出力する検出信号に基づいて前記プローブの先端部と前記表面の間隔を一定に保つための制御手段を有するとともに、少なくとも請求項1および2記載のプローブを有することを特徴とする走査型プローブ顕微鏡。A state in which the distance between the probe tip and the sample or medium surface to be measured is close to an operating distance in which an atomic force or other interaction force acts between the probe tip and the surface. In the scanning probe microscope that scans the sample surface by a two-dimensional scanning unit, controls the probe along the shape of the surface by a control unit, and measures the sample shape, the displacement of the probe is measured. 3. A displacement detecting means for detecting, and a control means for keeping the distance between the tip of the probe and the surface constant based on a detection signal output from the detecting means, and at least the probe according to claim 1 and 2. A scanning probe microscope characterized by comprising: 前記プローブの先端部と測定すべき試料あるいは媒体表面との間隔を、前記プローブ先端部と前記表面との間に原子間力あるいはその他の相互作用に関わる力が作用する動作距離内に近づけた状態で、2次元的な走査手段によって前記試料表面を走査するとともに、制御手段によって前記表面の形状に沿って前記プローブを制御し、前記表面の微小領域に対して、光照射あるいは光検出を行い、試料形状と2次元光学情報を同時に測定する走査型プローブ顕微鏡において、前記プローブの変位を検出する変位検出手段と、前記検出手段が出力する検出信号に基づいて前記プローブの先端部と前記表面の間隔を一定に保つための制御手段と、前記プローブのねじれを検出するねじれ検出手段を有するとともに、少なくとも請求項1および2記載のプローブを有することを特徴とする走査型プローブ顕微鏡。A state in which the distance between the probe tip and the sample or medium surface to be measured is close to an operating distance in which an atomic force or other interaction force acts between the probe tip and the surface. Then, the sample surface is scanned by a two-dimensional scanning means, the probe is controlled along the shape of the surface by a control means, and light irradiation or light detection is performed on a minute region of the surface, In a scanning probe microscope for simultaneously measuring a sample shape and two-dimensional optical information, a displacement detection means for detecting the displacement of the probe, and a distance between the probe tip and the surface based on a detection signal output from the detection means 3. Control means for keeping the constant and a twist detection means for detecting twist of the probe, and at least Scanning probe microscope characterized by having a probe.
JP07466498A 1998-03-23 1998-03-23 Flamingo optical probe, flamingo optical probe manufacturing method, and scanning probe microscope Expired - Fee Related JP3764816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07466498A JP3764816B2 (en) 1998-03-23 1998-03-23 Flamingo optical probe, flamingo optical probe manufacturing method, and scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07466498A JP3764816B2 (en) 1998-03-23 1998-03-23 Flamingo optical probe, flamingo optical probe manufacturing method, and scanning probe microscope

Publications (2)

Publication Number Publication Date
JPH11271338A JPH11271338A (en) 1999-10-08
JP3764816B2 true JP3764816B2 (en) 2006-04-12

Family

ID=13553739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07466498A Expired - Fee Related JP3764816B2 (en) 1998-03-23 1998-03-23 Flamingo optical probe, flamingo optical probe manufacturing method, and scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3764816B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4180885B2 (en) * 2002-11-11 2008-11-12 エスアイアイ・ナノテクノロジー株式会社 Manufacturing method of light propagating probe for near-field microscope

Also Published As

Publication number Publication date
JPH11271338A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
JP2903211B2 (en) Probe, probe manufacturing method, and scanning probe microscope
EP1705475B1 (en) Optical waveguide probe and its manufacturing method
JPH08313541A (en) Cantilever for scanning probe microscope and its manufacture
JP4472863B2 (en) Near-field optical probe and near-field optical device using the near-field optical probe
US6104030A (en) Optical probe having tapered wave guide and scanning near-field optical microscope utilizing optical probe
WO2006106818A1 (en) Cantilever for scanning probe microscope and scanning probe microscope equipped with it
JP2001208671A (en) Optical fiber probe, cantilever having microscopic opening and method of forming opening therein
WO2018089022A1 (en) Enhancing optical signals with probe tips optimized for chemical potential and optical characteristics
Drews et al. Nanostructured probes for scanning near-field optical microscopy
JP3764816B2 (en) Flamingo optical probe, flamingo optical probe manufacturing method, and scanning probe microscope
JP2000065713A (en) Optical probe, its manufacture, and scanning near-field optical microscope
JP3825568B2 (en) PROBE FOR NEAR FIELD LIGHT MICROSCOPE, ITS MANUFACTURING METHOD, AND SCANNER NEAR FIELD LIGHT MICROSCOPE
EP0712533B1 (en) Probe microscopy
JP4180885B2 (en) Manufacturing method of light propagating probe for near-field microscope
JP3949831B2 (en) Optical cantilever and manufacturing method thereof
JP3605967B2 (en) Method and apparatus for manufacturing optical fiber probe
JPH11271337A (en) Optical probe, its manufacture, and scanning-type probe microscope
JP2006514273A (en) Probe for near-field optical microscope and manufacturing method thereof
JPH10311843A (en) Cantilever and its manufacture
JP2005207957A (en) Probe aperture forming device, probe aperture forming method, and probe
Guo et al. Fabrication of optical fiber probes for scanning near-field optical microscopy
JP2002148174A (en) Near field probe and proximity field probe manufacturing method
Grütter Fabrication of optical fiber probes for scanning near-field optical microscopy
JP2000046717A (en) Optical waveguide probe, its manufacture, and scanning near-field atomic force microscope using same optical waveguide probe

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees