JP3763463B2 - Manufacturing method and manufacturing apparatus of pipe-shaped composite material - Google Patents

Manufacturing method and manufacturing apparatus of pipe-shaped composite material Download PDF

Info

Publication number
JP3763463B2
JP3763463B2 JP2001359277A JP2001359277A JP3763463B2 JP 3763463 B2 JP3763463 B2 JP 3763463B2 JP 2001359277 A JP2001359277 A JP 2001359277A JP 2001359277 A JP2001359277 A JP 2001359277A JP 3763463 B2 JP3763463 B2 JP 3763463B2
Authority
JP
Japan
Prior art keywords
molten metal
pipe
furnace
shaped composite
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001359277A
Other languages
Japanese (ja)
Other versions
JP2003154444A (en
Inventor
均 牛島
達也 加藤
信 勝亦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2001359277A priority Critical patent/JP3763463B2/en
Publication of JP2003154444A publication Critical patent/JP2003154444A/en
Application granted granted Critical
Publication of JP3763463B2 publication Critical patent/JP3763463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、溶融金属が充填される炉内に、多数本の線状材を心材として通過させることにより、パイプ状複合材を製造するパイプ状複合材の製造方法及び製造装置に関する。
【0002】
【従来の技術】
従来、特開平7−284907号公報には、図8に示すように、繊維強化複合線の製造装置30として、金属溶湯31が充填されるルツボ32内に、セラミック繊維束33を心材として通過させることにより、ワイヤー形状の繊維強化複合線34を製造する加圧含侵式の製造装置が記載されている。
【0003】
上記の製造装置30において、セラミック繊維束33は、送出ボビン35からピンチロール36に挟まれて繰り出され、ガイドプーリ37で偏向されてノズル38を通ってルツボ32内の金属溶湯31に浸漬され、さらにルツボ32内のガイドプーリ39で再び偏向されてダイス40で絞られた後、ガイドプーリ41を介して巻取ボビン42に巻き取られる。
【0004】
また、繊維強化材を利用する製造方法として上述した加圧含侵式以外に、例えば、パイプ状複合材を製造する場合に用いられるバッチ方式がある。このバッチ方式は、所定形状の型枠内に溶融金属を充填して製品を形成するもので、パイプ状複合材が型枠から外して1本1本製造される。
【0005】
【発明が解決しようとする課題】
処で、上述した従来の繊維強化複合線の製造装置30では、ノズル38から風を吹き付けて繊維束を開繊させることにより、溶融金属が内部にまで十分に浸透したワイヤー形状の繊維強化複合線34を連続的に製造することができる。しかしながら、例えば、線状材を心材としたパイプ状複合材をこの加圧含浸式によって製造しようとした場合、これまでは繊維等の線状材を型枠内の心材位置に配置した状態で溶融金属をパイプ状に成形する適切な手段が無かったため、特に、上記構造のパイプ状複合材を連続的に製造することが困難であった。
【0006】
一方、バッチ方式では、上記構造のパイプ状複合材を製造することはできる。しかし、型枠を用いて1本1本製造するため、生産性の低さに問題があった。また、管径や長さ寸法が異なる種々の形態のパイプ状複合材を生産する場合には、それぞれに対応した型を準備しなければならず、生産効率の低さと同時に、製造コストが高騰するという問題があった。
【0007】
本発明は、上記事情に鑑みなされたもので、任意の長さのパイプ状複合材を連続的、且つ、容易に製造することができ、しかも、生産効率を高めて製造コストの低減を図ることができるパイプ状複合材の製造方法及び製造装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するための本発明に係るパイプ状複合材の製造方法は、溶融金属が充填される溶融金属炉内に、線状材を心材として通過させることにより、パイプ状複合材を製造する製造方法において、
前記線状材を所定の管状位置に対応して配置させ、前記金属炉内に導入させる線状材導入過程と、
前記金属炉内を連続移動される前記線状材に対し、溶融金属を前記金属炉内に間欠的に供給することにより、溶融金属を含侵させると共に、線状材の長手方向に沿う所定間隔毎に心材露出部を形成する金属含侵過程と、
前記金属炉内において溶融金属が含侵された線状材を、パイプ状に成形して前記金属炉より引き抜く成形過程とを備えたことを特徴とする。
【0009】
そして、管状位置に対応して配置された線状材に対し、溶融金属を金属炉内で間欠的に供給して金属炉内より外部へ引き抜くと、溶融金属の含浸された部位と溶融金属の含侵されない心材露出部とを線状材の長手方向に沿って所定間隔毎に形成したパイプ状複合材を連続して製造できる。
【0010】
また、上記目的を達成するための本発明に係るパイプ状複合材の製造装置は、少なくとも溶融金属が充填される溶融金属炉と、
該金属炉の入口側に配置され、外部より導入され線状材をそれぞれ通過させて管状に配置する第1オリフィスと、
前記金属炉の出口側に配置され、溶融金属が含侵された線状材を通過させてパイプ状に成形する第2オリフィスと、
前記金属炉に所定量の溶融金属を間欠的に供給する溶融金属供給手段とを備えたことを特徴とするパイプ状複合材の製造装置により達成される。
【0011】
多数本の線状材は、第1オリフィスを通過して管状に配置された状態で溶融金属炉内に導入される。そして、線状材は、溶融金属炉内において溶融金属供給手段から溶融金属が間欠的に供給されて、溶融金属が含侵されるとともに溶融金属が含侵されない状態で第2オリフィスを通過して溶融金属炉内より外部へ引き抜かれる。これにより、線状材は所定間隔毎に心材露出部を設けた長尺のパイプ状複合材に成形される。
【0012】
【発明の実施の形態】
以下、本発明に係るパイプ状複合材の製造方法及び製造装置の好適な実施の形態を図面に基づいて詳細に説明する。
図1乃至図4は本発明のパイプ状複合材の製造装置の一実施の形態を示し、図1はパイプ状複合材の製造装置を示す構成図、図2は図1の溶融金属炉を拡大して示す要部断面図、図3は図2の溶融金属炉の第1及び第2オリフィスの平面図で、(a)は第1オリフィスを、(b)は第2オリフィスをそれぞれ示し、図4は図2の溶融金属炉の第1及び第2オリフィスの断面図で、(a)は第1オリフィスを、(b)は第2オリフィスをそれぞれ示し、図5は図1のパイプ状複合材の製造装置による製造方法を説明する図で、(a)は線状材に溶融金属が含浸される状態を、(b)は線状材に溶融金属が含浸されない状態を示し、図6はパイプ状複合材の各個体への切断前の状態を示す要部斜視図であり、図7はパイプ状複合材の切断後の個体を示す斜視図である。
【0013】
図1において、本実施の形態によるパイプ状複合材の製造装置10は、溶融金属20が充填される溶融金属炉11内に、例えば炭素繊維等の無機質繊維、又はアルミナ繊維等の金属繊維よりなる多数本の線状材21を心材として、この心材21を、例えば5〜35m/分の所定の速度で連続的に通過させることにより、長尺のパイプ状複合材22を製造することができる。
【0014】
溶融金属炉11は電気炉であり、炉内には、後述する溶融金属受け炉12から溶融金属20が充填されるとともに、炉上部に設けられた通路14及びバルブ15を介して加圧ガスが供給可能に設けられている。
【0015】
溶融金属炉11の入口側(図1の下方側)には、第1オリフィス16が装備されている。
この第1オリフィス16は、図3(a)及び図4(a)に示すように、多数の導入口16a(本例では8個)が所定の管状に対応した円周上の位置に等間隔に開口して、外部より金属炉内に導入される多数の線状材21を、この導入口16aに通過させることで管状に配置する。
【0016】
溶融金属炉11の出口側(図1の上方側)には、第2オリフィス17が装備されている。
この第2オリフィス17は、図3(b)及び図4(b)に示すように、導出口17aが所定の管状に対応した円環状に開口して、溶融金属20が含侵された線状材21を、この導出口17aを通過させることでパイプ状に成形する。
【0017】
第1オリフィス16の導入口16a及び第2オリフィス17の導出口17aは、通過させる線状材21の太さ及び製造するパイプ状複合材22の肉厚に応じて口径及び穴径が適宜選択される。
【0018】
溶融金属炉11には、同じく電気炉からなる溶融金属受け炉12が、通路18及びバルブ19を介して連設されている。
溶融金属受け炉12は、内部にピストン13を備えており、バルブ19開放下でのピストン13の上昇により、所定量の溶融金属20を通路18を介して溶融金属炉11内に供給すると共に、バルブ19開放下でのピストン13の下降により、所定量の溶融金属20を通路18を介して溶融金属炉11から戻して、一時的に貯留できる。つまり、溶融金属受け炉12は、バルブ19の開閉操作に同期するピストン13の昇降動作の繰り返しによって、溶融金属20を溶融金属炉11内に間欠的に流入又は溶融金属炉11内より流出させることができる。
なお、溶融金属受け炉12、ピストン13、通路18及びバルブ19が、本発明でいう溶融金属供給手段を構成している。
【0019】
次に、図5により本実施の形態のパイプ状複合材の製造装置の作用について説明する。
パイプ状複合材の製造装置10において、最初に、連続走行して外部より溶融金属炉11内に案内される多数本の線状材21は、第1オリフィス16の導入口16aによって所定の管状位置に対応して配置されつつ、溶融金属炉11内に導入される(線状材導入過程)。
【0020】
次に、溶融金属炉11内を移動する線状材21に対して、溶融金属炉11内に充填した溶融金属20が含侵される(金属含侵過程)。この際、図5(a)に示すように、溶融金属炉11内で充満状態に供給された溶融金属20は、図5(b)に示すように、バルブ19開放下でのピストン13の下降により、一定量が溶融金属受け炉12に移動した後、再びピストン13が上昇することにより、図5(a)に示すように、溶融金属炉11内に戻される。これにより、金属炉内を移動して溶融金属20が含侵される線状材21には、溶融金属20が間欠的に供給されることとなって、溶融金属20を含侵させない部位が所定間隔毎に形成される。
【0021】
その後、溶融金属20を含侵させた部位及び溶融金属20を含浸させない部位(後述の心材露出部23に対応)を有した線状材21は、第2オリフィス17の導出口17aを通過して溶融金属20を含侵させた部位をパイプ状に成形した状態で、溶融金属炉11内から外方へ引き抜きされる。この結果、図6に示すように、パイプ状複合材22は、心材となる線状材21が露出した心材露出部23を一定間隔毎に長手方向に有した長尺状に製造される(成形過程)。そして、パイプ状複合材22は、心材露出部23の上下端部で切り離されることにより、図7に示すように、製品として所要の長さ寸法Lを有する1本のパイプ状複合材22(図7参照)とされる。
なお、上記の製造装置において適用される溶融金属の具体例としては、アルミニウム合金、マグネシウム合金等を挙げることができる。また、溶融金属炉内における溶融温度は、例えば500〜700℃である。
【0022】
以上のように、上記実施形態によれば、製造装置10の溶融金属炉11には、線状材21を管状位置に配置する第1オリフィス16、及びパイプ状に成形する第2オリフィス17がそれぞれ装備されている。製造装置10は、溶融金属炉11内に溶融金属20及び加圧ガスを充填した状態で、多数本の線状材21を第1オリフィス16を介して溶融金属炉11内に導入して金属炉内を通過させた後、第2オリフィス17を介して溶融金属炉11より外方へ送出する。
【0023】
したがって、この製造装置10は、パイプ状複合材22を加圧含侵式により連続的、且つ、容易に製造できる。しかも、長さ寸法の異なる複数種の型枠を準備することなく、溶融金属炉への溶融金属の供給を調整することにより、1本1本の長さ寸法Lを自在に変更させたパイプ状複合材22を製造することができる。また、管径が異なるパイプ状複合材の製造についても、装置の大幅な変更を要しない単なるオリフィスの交換だけで対応することができる。この結果、任意長さ寸法Lや異なる管径のパイプ状複合材を、高い生産効率で連続的に製造することができ、大掛かりな設備投資等も不要にして、低コスト化を図ることができる。
【0024】
また、上記の実施の形態によれば、溶融金属受け炉12は、ピストン13の上昇及び下降を所要間隔毎に繰り返すことで、溶融金属20を溶融金属炉11内に間欠的に流入又は流出させて、線状材21に溶融金属20を含侵させない心材露出部23を所定間隔毎に形成しているので、製品化するための1本1本のパイプ状複合材22を、この心材露出部23において簡単、且つ、容易に切断して製造することができる。
【0025】
【発明の効果】
以上述べたように、本発明は、心材となる多数本の線状材を所定の管状位置に対応して配置させ、溶融金属炉内に導入する線状材導入過程と、溶融金属炉内を連続的に移動する線状材に対して、溶融金属を間欠的に供給することにより、線状材に溶融金属を含侵させるとともに、線状材を露出させる心材露出部を所定間隔毎に形成する金属含侵過程と、溶融金属の含侵した線状材をパイプ状に成形する成形過程とから構成されるので、長尺のパイプ状複合材を製造できるとともに、心材露出部で切断して任意長さのパイプ状複合材を連続的、且つ、容易に製造することができる。また、心材露出部の形成間隔を変更することにより、あるいは、第1、第2オリフィスを所定のものに変更することにより、多種類のパイプ状複合材を容易に製造することができて、生産効率を高めることができると同時に、低コスト化を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態によるパイプ状複合材の製造装置の構成図である。
【図2】図1の溶融金属炉を拡大して示す要部断面図である。
【図3】図2の溶融金属炉の第1及び第2オリフィスの平面図で、(a)は第1オリフィス、(b)は第2オリフィスをそれぞれ示す。
【図4】図2の溶融金属炉の第1及び第2オリフィスの断面図で、(a)は第1オリフィス、(b)は第2オリフィスをそれぞれ示す。
【図5】図1のパイプ状複合材の製造装置による製造方法を説明する図で、(a)は線状材に溶融金属が含浸される状態を示し、(b)は線状材に溶融金属が含浸されない状態を示す。
【図6】パイプ状複合材の各個体への切断前の状態を示す要部斜視図である。
【図7】パイプ状複合材の切断後の個体を示す斜視図である。
【図8】従来の繊維強化複合線の製造装置を示す概略断面図である。
【符号の説明】
10 パイプ状複合材の製造装置
11 溶融金属炉
12 溶融金属受け炉
13 ピストン
16 第1オリフィス
16a 導入口
17 第2オリフィス
17a 導出口
20 溶融金属
21 線状材
22 パイプ状複合材
23 心材露出部
L パイプ状複合材の長さ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method and a manufacturing apparatus for a pipe-shaped composite material for manufacturing a pipe-shaped composite material by passing a large number of linear materials as a core material in a furnace filled with molten metal.
[0002]
[Prior art]
Conventionally, in Japanese Patent Laid-Open No. 7-284907, as shown in FIG. 8, as a fiber reinforced composite wire manufacturing apparatus 30, a ceramic fiber bundle 33 is passed as a core material in a crucible 32 filled with a molten metal 31. Thus, a pressure impregnation type manufacturing apparatus for manufacturing a wire-shaped fiber reinforced composite wire 34 is described.
[0003]
In the manufacturing apparatus 30 described above, the ceramic fiber bundle 33 is drawn out from the delivery bobbin 35 by being pinched by the pinch roll 36, deflected by the guide pulley 37, passed through the nozzle 38 and immersed in the molten metal 31 in the crucible 32, Further, after being deflected again by the guide pulley 39 in the crucible 32 and squeezed by the die 40, it is wound around the winding bobbin 42 via the guide pulley 41.
[0004]
In addition to the pressure impregnation method described above as a manufacturing method using a fiber reinforcement, for example, there is a batch method used when manufacturing a pipe-shaped composite material. In this batch method, a molten metal is filled into a mold having a predetermined shape to form a product, and pipe-shaped composite materials are removed from the mold and manufactured one by one.
[0005]
[Problems to be solved by the invention]
By the way, in the manufacturing apparatus 30 of the conventional fiber reinforced composite wire mentioned above, the wire-shaped fiber reinforced composite wire which the molten metal permeate | transmitted fully to the inside by blowing a wind from the nozzle 38 and opening a fiber bundle into the inside. 34 can be manufactured continuously. However, for example, when trying to manufacture a pipe-shaped composite material using a linear material as a core material by this pressure impregnation method, the fiber material and the like have been melted in a state where the linear material such as fibers is arranged at the core material position in the mold. Since there was no appropriate means for forming metal into a pipe shape, it was particularly difficult to continuously produce a pipe-shaped composite material having the above structure.
[0006]
On the other hand, in the batch method, the pipe-shaped composite material having the above structure can be manufactured. However, since each one is manufactured using a mold, there is a problem in low productivity. Moreover, when producing pipe-shaped composite materials of various forms with different pipe diameters and length dimensions, it is necessary to prepare molds corresponding to each of them, resulting in low production efficiency and high manufacturing costs. There was a problem.
[0007]
The present invention has been made in view of the above circumstances, and can continuously and easily manufacture a pipe-shaped composite material having an arbitrary length, and further increase production efficiency and reduce manufacturing costs. It aims at providing the manufacturing method and manufacturing apparatus of a pipe-shaped composite material which can be manufactured.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a pipe-shaped composite material according to the present invention produces a pipe-shaped composite material by passing a linear material as a core material in a molten metal furnace filled with molten metal. In the manufacturing method,
Arranging the linear material corresponding to a predetermined tubular position, and introducing the linear material into the metal furnace;
The molten metal is impregnated by intermittently supplying the molten metal into the metal furnace with respect to the linear material continuously moved in the metal furnace, and at a predetermined interval along the longitudinal direction of the linear material. A metal impregnation process that forms a core exposed portion every time,
It is characterized by comprising a molding process in which a linear material impregnated with molten metal in the metal furnace is formed into a pipe shape and drawn from the metal furnace.
[0009]
Then, when the molten metal is intermittently supplied in the metal furnace to the linear material arranged corresponding to the tubular position and pulled out from the metal furnace, the portion of the molten metal impregnated with the molten metal A pipe-shaped composite material in which the core material exposed portion not impregnated is formed at predetermined intervals along the longitudinal direction of the linear material can be continuously manufactured.
[0010]
Moreover, the manufacturing apparatus of the pipe-shaped composite material according to the present invention for achieving the above object includes a molten metal furnace filled with at least a molten metal,
A first orifice arranged on the inlet side of the metal furnace and arranged in a tubular shape through each of the linear materials introduced from the outside;
A second orifice disposed on the outlet side of the metal furnace and passing through a linear material impregnated with molten metal to form a pipe,
This is achieved by a pipe-shaped composite material manufacturing apparatus comprising a molten metal supply means for intermittently supplying a predetermined amount of molten metal to the metal furnace.
[0011]
A large number of linear materials are introduced into the molten metal furnace in a state of being disposed in a tubular shape through the first orifice. The linear material is melted by passing through the second orifice in a state where the molten metal is intermittently supplied from the molten metal supply means in the molten metal furnace, impregnated with the molten metal and not impregnated with the molten metal. Pulled out of the metal furnace. Thus, the linear material is formed into a long pipe-shaped composite material provided with a core material exposed portion at every predetermined interval.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a method and apparatus for producing a pipe-shaped composite material according to the present invention will be described in detail with reference to the drawings.
1 to 4 show an embodiment of a pipe-shaped composite material manufacturing apparatus according to the present invention, FIG. 1 is a block diagram showing the pipe-shaped composite material manufacturing apparatus, and FIG. 2 is an enlarged view of the molten metal furnace of FIG. FIG. 3 is a plan view of the first and second orifices of the molten metal furnace shown in FIG. 2, (a) shows the first orifice, (b) shows the second orifice, and FIG. 4 is a sectional view of the first and second orifices of the molten metal furnace of FIG. 2, (a) shows the first orifice, (b) shows the second orifice, and FIG. 5 shows the pipe-shaped composite material of FIG. FIGS. 6A and 6B are diagrams illustrating a manufacturing method using the manufacturing apparatus of FIG. 6A, in which FIG. 6A shows a state in which the linear material is impregnated with molten metal, FIG. 6B shows a state in which the linear material is not impregnated with molten metal, It is a principal part perspective view which shows the state before the cutting | disconnection to each individual | organism | solid of a pipe-shaped composite material, FIG. 7 is the individual | organism | solid after a pipe-shaped composite material is cut | disconnected. It is a perspective view showing.
[0013]
In FIG. 1, a pipe-shaped composite material manufacturing apparatus 10 according to the present embodiment is made of, for example, an inorganic fiber such as carbon fiber or a metal fiber such as alumina fiber in a molten metal furnace 11 filled with a molten metal 20. The long pipe-shaped composite material 22 can be manufactured by passing the core material 21 continuously at a predetermined speed of, for example, 5 to 35 m / min.
[0014]
The molten metal furnace 11 is an electric furnace. The furnace is filled with a molten metal 20 from a molten metal receiving furnace 12 described later, and pressurized gas is supplied through a passage 14 and a valve 15 provided in the upper part of the furnace. It is provided so that it can be supplied.
[0015]
A first orifice 16 is provided on the inlet side (the lower side in FIG. 1) of the molten metal furnace 11.
As shown in FIGS. 3 (a) and 4 (a), the first orifices 16 have a large number of introduction ports 16a (eight in this example) at equal intervals on the circumference corresponding to a predetermined tube shape. A large number of linear members 21 introduced into the metal furnace from the outside are arranged in a tubular shape by passing through the inlet 16a.
[0016]
A second orifice 17 is provided on the outlet side of the molten metal furnace 11 (upper side in FIG. 1).
As shown in FIGS. 3 (b) and 4 (b), the second orifice 17 has a linear shape in which the outlet 17a is opened in an annular shape corresponding to a predetermined tubular shape and the molten metal 20 is impregnated. The material 21 is formed into a pipe shape by passing through the outlet 17a.
[0017]
The inlet port 16a of the first orifice 16 and the outlet port 17a of the second orifice 17 are appropriately selected in diameter and hole diameter according to the thickness of the linear material 21 to be passed and the thickness of the pipe-shaped composite material 22 to be manufactured. The
[0018]
A molten metal receiving furnace 12, which is also an electric furnace, is connected to the molten metal furnace 11 through a passage 18 and a valve 19.
The molten metal receiving furnace 12 includes a piston 13 inside, and when the piston 13 rises with the valve 19 opened, a predetermined amount of molten metal 20 is supplied into the molten metal furnace 11 through the passage 18. A predetermined amount of molten metal 20 is returned from the molten metal furnace 11 through the passage 18 by the lowering of the piston 13 with the valve 19 opened, and can be temporarily stored. That is, the molten metal receiving furnace 12 causes the molten metal 20 to intermittently flow into or out of the molten metal furnace 11 by repeating the lifting and lowering operation of the piston 13 synchronized with the opening / closing operation of the valve 19. Can do.
The molten metal receiving furnace 12, the piston 13, the passage 18 and the valve 19 constitute the molten metal supply means in the present invention.
[0019]
Next, the operation of the pipe-shaped composite material manufacturing apparatus of the present embodiment will be described with reference to FIG.
In the pipe-shaped composite material manufacturing apparatus 10, first, a large number of linear materials 21 that run continuously and are guided from the outside into the molten metal furnace 11 are in a predetermined tubular position by the introduction port 16 a of the first orifice 16. Are introduced into the molten metal furnace 11 (wire material introduction process).
[0020]
Next, the molten metal 20 filled in the molten metal furnace 11 is impregnated into the linear material 21 moving in the molten metal furnace 11 (metal impregnation process). At this time, as shown in FIG. 5 (a), the molten metal 20 supplied in a full state in the molten metal furnace 11 moves down the piston 13 with the valve 19 opened as shown in FIG. 5 (b). Thus, after a certain amount moves to the molten metal receiving furnace 12, the piston 13 rises again, so that it is returned to the molten metal furnace 11 as shown in FIG. Thereby, the molten metal 20 is intermittently supplied to the linear material 21 in which the molten metal 20 is impregnated by moving in the metal furnace, and the portions that do not impregnate the molten metal 20 are set at predetermined intervals. It is formed every time.
[0021]
Thereafter, the linear member 21 having a portion impregnated with the molten metal 20 and a portion not impregnated with the molten metal 20 (corresponding to a core material exposed portion 23 described later) passes through the outlet 17a of the second orifice 17. In a state where the part impregnated with the molten metal 20 is formed into a pipe shape, the molten metal 20 is drawn out from the inside of the molten metal furnace 11. As a result, as shown in FIG. 6, the pipe-shaped composite material 22 is manufactured in a long shape having a core material exposed portion 23 in which the linear material 21 serving as a core material is exposed in the longitudinal direction at regular intervals (molding). process). Then, the pipe-shaped composite material 22 is cut off at the upper and lower end portions of the core material exposed portion 23, so that a single pipe-shaped composite material 22 (see FIG. 7) having a required length dimension L as a product is obtained. 7).
In addition, as a specific example of the molten metal applied in said manufacturing apparatus, an aluminum alloy, a magnesium alloy, etc. can be mentioned. Moreover, the melting temperature in a molten metal furnace is 500-700 degreeC, for example.
[0022]
As described above, according to the above-described embodiment, the molten metal furnace 11 of the manufacturing apparatus 10 includes the first orifice 16 that arranges the linear material 21 at the tubular position and the second orifice 17 that forms the pipe. Equipped. The manufacturing apparatus 10 introduces a large number of linear materials 21 into the molten metal furnace 11 through the first orifice 16 in a state where the molten metal furnace 11 is filled with the molten metal 20 and the pressurized gas. After passing through the inside, it is sent out from the molten metal furnace 11 through the second orifice 17.
[0023]
Therefore, this manufacturing apparatus 10 can manufacture the pipe-shaped composite material 22 continuously and easily by the pressure impregnation method. Moreover, by adjusting the supply of molten metal to the molten metal furnace without preparing a plurality of types of molds having different length dimensions, each pipe has a length L that is freely changed The composite material 22 can be manufactured. Also, the manufacture of pipe-shaped composite materials having different tube diameters can be handled simply by replacing the orifice without requiring a significant change in the apparatus. As a result, pipe-shaped composite materials having arbitrary length L and different pipe diameters can be manufactured continuously with high production efficiency, and no large-scale capital investment is required, thereby reducing costs. .
[0024]
Further, according to the above-described embodiment, the molten metal receiving furnace 12 causes the molten metal 20 to intermittently flow into or out of the molten metal furnace 11 by repeating the raising and lowering of the piston 13 at every required interval. Since the core material exposed portions 23 that do not impregnate the molten metal 20 in the linear material 21 are formed at predetermined intervals, each of the pipe-shaped composite materials 22 for commercialization is converted into the core material exposed portions. 23 can be cut easily and easily.
[0025]
【The invention's effect】
As described above, the present invention includes a linear material introduction process in which a large number of linear materials as core materials are arranged corresponding to predetermined tubular positions and introduced into the molten metal furnace, and the inside of the molten metal furnace. By supplying molten metal intermittently to a continuously moving linear material, the molten metal is impregnated into the linear material, and a core exposed portion that exposes the linear material is formed at predetermined intervals. This process consists of a metal impregnation process and a molding process in which a molten metal-impregnated linear material is formed into a pipe shape. A pipe-shaped composite material having an arbitrary length can be manufactured continuously and easily. In addition, by changing the formation interval of the core material exposed part, or by changing the first and second orifices to predetermined ones, various types of pipe-shaped composite materials can be easily manufactured and produced. The efficiency can be increased, and at the same time, the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a pipe-shaped composite material manufacturing apparatus according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view showing a main part of the molten metal furnace shown in FIG. 1;
3 is a plan view of first and second orifices of the molten metal furnace of FIG. 2, wherein (a) shows the first orifice and (b) shows the second orifice, respectively.
4 is a cross-sectional view of the first and second orifices of the molten metal furnace of FIG. 2, wherein (a) shows the first orifice and (b) shows the second orifice, respectively.
FIGS. 5A and 5B are diagrams for explaining a manufacturing method using the pipe-shaped composite material manufacturing apparatus of FIG. 1, in which FIG. 5A shows a state in which the linear material is impregnated with molten metal, and FIG. The state which is not impregnated with a metal is shown.
FIG. 6 is a perspective view of a main part showing a state before the pipe-shaped composite material is cut into individual pieces.
FIG. 7 is a perspective view showing an individual after cutting a pipe-shaped composite material.
FIG. 8 is a schematic cross-sectional view showing a conventional fiber reinforced composite wire manufacturing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Manufacturing apparatus 11 of pipe-shaped composite material Molten metal furnace 12 Molten metal receiving furnace 13 Piston 16 1st orifice 16a Inlet 17 Second orifice 17a Outlet 20 Molten metal 21 Linear material 22 Pipe-shaped composite material 23 Core material exposed part L Pipe-shaped composite length

Claims (2)

溶融金属が充填される溶融金属炉内に、線状材を心材として通過させることにより、パイプ状複合材を製造する製造方法において、
前記線状材を所定の管状位置に対応して配置させ、前記金属炉内に導入させる線状材導入過程と、
前記金属炉内を連続移動される前記線状材に対し、溶融金属を前記金属炉内に間欠的に供給することにより、溶融金属を含侵させると共に、線状材の長手方向に沿う所定間隔毎に心材露出部を形成する金属含侵過程と、
前記金属炉内において溶融金属が含侵された線状材を、パイプ状に成形して前記金属炉より引き抜く成形過程とを備えたことを特徴とするパイプ状複合材の製造方法。
In a manufacturing method for manufacturing a pipe-shaped composite material by passing a linear material as a core material in a molten metal furnace filled with molten metal,
Arranging the linear material corresponding to a predetermined tubular position, and introducing the linear material into the metal furnace;
The molten metal is impregnated by intermittently supplying the molten metal into the metal furnace with respect to the linear material continuously moved in the metal furnace, and at a predetermined interval along the longitudinal direction of the linear material. A metal impregnation process to form a core exposed portion every time,
A method of manufacturing a pipe-shaped composite material, comprising: forming a linear material impregnated with molten metal in the metal furnace into a pipe shape and drawing it from the metal furnace.
少なくとも溶融金属が充填される溶融金属炉と、
該金属炉の入口側に配置され、外部より導入される線状材をそれぞれ通過させて管状に配置する第1オリフィスと、
前記金属炉の出口側に配置され、溶融金属が含侵された線状材を通過させてパイプ状に成形する第2オリフィスと、
前記金属炉に所定量の溶融金属を間欠的に供給する溶融金属供給手段とを備えたことを特徴とするパイプ状複合材の製造装置。
A molten metal furnace filled with at least a molten metal;
A first orifice arranged on the inlet side of the metal furnace and arranged in a tubular shape through each of the linear materials introduced from the outside;
A second orifice that is disposed on the outlet side of the metal furnace and passes through a linear material impregnated with molten metal to form a pipe,
An apparatus for producing a pipe-shaped composite material, comprising: molten metal supply means for intermittently supplying a predetermined amount of molten metal to the metal furnace.
JP2001359277A 2001-11-26 2001-11-26 Manufacturing method and manufacturing apparatus of pipe-shaped composite material Expired - Fee Related JP3763463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001359277A JP3763463B2 (en) 2001-11-26 2001-11-26 Manufacturing method and manufacturing apparatus of pipe-shaped composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001359277A JP3763463B2 (en) 2001-11-26 2001-11-26 Manufacturing method and manufacturing apparatus of pipe-shaped composite material

Publications (2)

Publication Number Publication Date
JP2003154444A JP2003154444A (en) 2003-05-27
JP3763463B2 true JP3763463B2 (en) 2006-04-05

Family

ID=19170316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001359277A Expired - Fee Related JP3763463B2 (en) 2001-11-26 2001-11-26 Manufacturing method and manufacturing apparatus of pipe-shaped composite material

Country Status (1)

Country Link
JP (1) JP3763463B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2437267B (en) * 2006-03-23 2008-07-16 Rolls Royce Plc Methods of forming metal matrix composites and metal matrix composites formed thereby

Also Published As

Publication number Publication date
JP2003154444A (en) 2003-05-27

Similar Documents

Publication Publication Date Title
US3421873A (en) Method and apparatus for producing an intermittently hollow glass filament
US3510393A (en) Hollow glass article
EP0196194B1 (en) Glass fiber strand and method of producing the same
US4457771A (en) Forming laminated articles from a composite encapsulated charge of molten glass
US4671336A (en) Method for manufacturing a fiber reinforcement body for a metal matrix composite
JP2000304990A (en) Self-standing type fiber cable, and device and method for manufacture thereof
US5328493A (en) Apparatus for manufacturing a glass and organic composite strand, including a blowing device
DE19716133A1 (en) Optical fiber manufacturing apparatus and method therefor
JP3763463B2 (en) Manufacturing method and manufacturing apparatus of pipe-shaped composite material
JPH0880577A (en) Apparatus and method for producing long fiber reinforced resin structure
CN114466739A (en) Extrusion device for curved profiles
ITMI972129A1 (en) PROCEDURE FOR PRODUCING A SPOOL IN A VASE THREADING MACHINE
US4496507A (en) Production of string-like polytetrafluoroethylene
JPH10101360A (en) Method for cooling optical fiber and device therefor
BG62357B1 (en) Method for the production of sections of hollow fibres from tubular modules and sections produced by the method
EP1144288B1 (en) Method for dispensing reinforcement fibers
CN202369499U (en) Split glass fiber drawing machine
JPH0723230B2 (en) Hollow glass filament manufacturing apparatus and manufacturing method
CN214491562U (en) Air column air dispersing structure applied to bidirectional stretching hollow blow molding mold
JPH08176701A (en) Production of fiber reinforced composite wire
JP4646108B2 (en) Method and apparatus for producing long fiber reinforced resin molding material
CN1176036C (en) Multihole double-crucible drawing system for drawing multicomponent glass optical fibre
CN216100525U (en) Production equipment for composite material round pipe
JPH07105761A (en) Manufacture of fiber-reinforced composite wire
US20030131577A1 (en) Method for twisting and covering interchanged spinning

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3763463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees