JP3762905B2 - Drainage facility using horizontal pump - Google Patents

Drainage facility using horizontal pump Download PDF

Info

Publication number
JP3762905B2
JP3762905B2 JP2002298928A JP2002298928A JP3762905B2 JP 3762905 B2 JP3762905 B2 JP 3762905B2 JP 2002298928 A JP2002298928 A JP 2002298928A JP 2002298928 A JP2002298928 A JP 2002298928A JP 3762905 B2 JP3762905 B2 JP 3762905B2
Authority
JP
Japan
Prior art keywords
suction
suction port
limit position
pump
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002298928A
Other languages
Japanese (ja)
Other versions
JP2004132301A (en
Inventor
信廣 鈴木
正人 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002298928A priority Critical patent/JP3762905B2/en
Publication of JP2004132301A publication Critical patent/JP2004132301A/en
Application granted granted Critical
Publication of JP3762905B2 publication Critical patent/JP3762905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sewage (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、横軸ポンプを用いた排水設備に関する。
【0002】
【従来の技術】
従来、ポンプ全体が一本の真直な水路として設置され円筒形ポンプ(チューブラーポンプ)と称されている横軸ポンプを用いた排水設備として、図4に示すものがある。このような横軸ポンプ1を用いた排水設備は、洪水排水、下水道雨水排水、農地揚排水などに好適であり、図示されていない電動機や歯車減速機などの駆動部が横軸線Cを有する筒状ポンプケーシング2内に設置されている。そして、横軸ポンプ1の外形が一端部吸込口3から他端吐出口4まで横軸線C上にある一本の真直な円筒状をなしており、吸込口3は吸込水槽5に臨み、吐出口4は吐出水槽6に臨んでおり、前記駆動部によって駆動される軸流羽根車または斜流羽根車(図示省略)を備えている(たとえば、非特許文献1参照。)。
【0003】
この種の排水設備は、横軸ポンプ1全体が一本の真直な水路として設置されるので、据付面積が小さく、かつ地上建屋が不要で機場高さを低く抑えることができる。このため、土木建設費を節減することができ、大口径・多数台設置に有利であるとされている。また、一端部吸込口3から他端吐出口4までが真直な流水路となり、曲がりがないので流路損失が小さく抑えられて、高効率が得られるとともに、前記電動機や歯車減速機などの駆動部がポンプケーシング2の内部に設置されているので、騒音が外に出ないなどの利点を有している。
【0004】
今、図4の排水設備において、エルボ7と吸込みベルマウス8とを省略して、吸込口3の先端を吸込水槽5に開口した図5の排水設を考えてみると、空気の吸い込みが始まる最低吸水位LWL1は吸込口3の上限位置P2よりもΔh2分だけ高くなり、この水位以下では横軸ポンプ1を運転させることができない。ところが、図4のように、吸込口3の先端に下向きに曲がるエルボ7と吸込みベルマウス8を取付けた排水設備では、その吸込口の上限位置、つまり吸込みベルマウス8の開口上限位置P3を図5の吸込口3の上限位置P2よりもΔh相当分低下させて、最低吸水位LWL2を最低吸水位LWL1よりもΔh3相当分低下させることによって、最低吸水位LWL2から下側の残水量を少なくすることができる。すなわち、図5の排水設備における吸込水槽5の残水量よりも図4の排水設備における吸込水槽5の残水量を少なくできる。
【0005】
【非特許文献1】
社団法人 日本機械学会著「機械図集 ポンプ」
明善印刷株式会社出版、昭和55年2月20日、P.64 図1
【0006】
【発明が解決しようとする課題】
ところが、図4の吸込口3の先端に下向きに曲がるエルボ7と吸込みベルマウス8が取付けられている排水設備では、吸込口3の下限位置よりもさらに深さHに相当して吸込水槽5を深く掘下げなければならず、それだけ土木施工費が高くなる問題点を有している。また、図4の排水設備では、ベルマウス8の入口で水の通過断面積が急激に縮小されるので、水の流れに乱れが生じて空気吸込渦が発生し易くなる。このため、吸込水槽5の形状または吸込水槽5と吸込みベルマウス8との相対関係などによっては、前記最低吸水位LWL2よりも若干上位のレベルで空気吸込渦が発生する場合がある。したがって、最低吸水位LWL2よりも上位に実際の最低吸水位を設定しなければならず、それだけ吸込水槽5の残水量が多くなる。
【0007】
本発明は、このような事情を考慮してなされたものであって、前記吸込水槽に相当する吸込水路の掘削深さを浅く抑えることで、土木施工費を削減できるにもかかわらず、空気の吸込が始まる最低吸水位を下げて吸込水路の残水量を少なくすることができる横軸ポンプを用いた排水設備を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記目的を達成するために、請求項1に記載の発明に係る横軸ポンプを用いた排水設備は、両端部を開口した筒状ポンプケーシングを備えている横軸ポンプを用いた排水設備であって、前記横軸ポンプの一端部吸込口が吸込水路に臨んでおり、この吸込水路の天井に下限位置を前記一端部吸込口の上限位置よりも低位置に設定した下向きの張出し部が設けられ、前記吸込口の直上流位置で、前記吸込水路の天井面を下向きの張出し部の下限位置から吸込口の上限位置にかけて上向きに傾斜させるとともに、吸込水路の幅寸法を漸次狭めることにより、水路断面積が、前記吸込口の直上流位置で上流側から前記一端部吸込口かけて漸次縮小されていることを特徴としている。
【0009】
また、請求項2に記載の発明のように、前記吸込水路の底面レベルを、前記吸込口の下限位置と面一もしくは略面一に設定することが好ましい。
【0010】
請求項1に記載の発明によれば、吸込水路の掘削深さを浅く抑えることができるばかりか、横軸ポンプの空気の吸い込みが始まる最低吸水位を該横軸ポンプの一端部吸込口の上限位置よりも低いレベルに設定することができるとともに、吸込水路における吸込側の水路断面積が急激に縮小されることなく、吸込口までなだらかに縮小されるので、水を乱れることなくスムーズに流下させることができる。これにより、空気吸込渦が発生し難くなって、最低吸水位をより一層低いレベルに設定し得るようになる。
【0011】
請求項2に記載の発明によれば、前記吸込水路の底面レベルを、前記吸込口の下限位置と面一もしくは略面一に設定して段差をなくしてあるので、前記吸込水路の底面にヘドロなどの異物が堆積しなくなる。
【0012】
【発明の実施の形態】
以下、本発明の好適な実施の形態を図面に基づいて説明する。図1は、本発明の一実施の形態を示す縦断側面図、図2は、図1の平面断面図、図3は、図1のA−A線に沿う拡大断面図である。なお、図4,図5と同一部分には、同一符号を付して説明する。
図1,図2において、横軸ポンプ1は、円筒形ポンプ(チューブラーポンプ)によってなり、図示されていない電動機や歯車減速機などの駆動部が水平軸線(横軸線)Cを有する筒状ポンプケーシング2内に設置されている。なお、前記減速機を省略して電動機のみを設置した構造の横軸ポンプ1もある。ポンプケーシング2の外形は、一端部吸込口3から他端吐出口4まで水平線C上にある一本の真直な円筒状をなしている。
【0013】
横軸ポンプ1の一端部吸込口3は閉断面構造(クローズ形)の吸込水路9に臨み、他端吐出口4は吐出水路9Aに臨んでんでいる。前記吸込水路9は、たとえばコンクリートの構築物によってなり、図3に示すように、底面10と、幅方向両側の立面11,11および天井12によって水密に囲まれた閉断面構造のもので、横軸ポンプ1の上流域から横軸ポンプ1の一端部吸込口3にかけて略水平にのびて設けてある。
【0014】
一方、吸込水路9の天井12には、横軸ポンプ1における一端部吸込口3の付近において、下限位置P1を吸込口3の上限位置P2よりもΔh4相当分下側に設定した下向きの張出し部(図1の斜線域)13を設けてある。この下向きの張出し部13は、天井12から下限位置P1にかけて下向きに傾斜する上流側の斜面13Aと、下限位置P1から天井12および吸込口3の上限位置P2にかけて上向きに傾斜する下流側の斜面13Bとを備えており、コンクリートの構築物によってなる吸込水路9の天井12に連続してコンクリートによって形成されている。また、底面10のレベルを吸込口3の下限位置と面一もしくは略面一に設定して段差をなくしてある。
【0015】
他方、吸込水路9における幅方向両側の立面11,11には、横軸ポンプ1における一端部吸込口3の直上流位置において、上流側から一端部吸込口3にかけて吸込水路9の幅寸法を漸次狭めて、吸込水路9の水路断面積を漸次縮小させる斜面(図2の斜線域)14,14を設けてある。すなわち、吸込水路9における吸込側の水路断面積が急激に縮小されることなく、横軸ポンプ1の吸込口3までなだらかに縮小させることにより、水を乱れることなくスムーズに流下させるようにしてある。前記斜面14,14は、コンクリートの構築物によってなる吸込水路9の立面11,11に連続してコンクリートによって形成されている。
【0016】
このような構成であれば、吸込口3の下限位置よりもさらに吸込水路9を深く掘下げる必要はないので、吸込水路9の掘削深さを浅く抑えて、土木施工費を削減することができる。また、横軸ポンプ1の空気の吸い込みが始まる最低吸水位LWL3を吸込口3の上限位置P2よりもΔh5相当分低下させることによって、最低吸水位LWL3から下側の残水量を少なくすることができる。さらに、底面10のレベルを吸込口3の下限位置と面一もしくは略面一に設定して段差をなくしてあるので、底面10上にヘドロなどの異物が堆積するのを避けるように作用する。
【0017】
また、斜面14,14を設けて、吸込水路9における吸込側の水路断面積が急激に縮小されることなく、横軸ポンプ1の吸込口3までなだらかに縮小させることにより、水を乱れることなくスムーズに流下させるようにしてあるので、空気吸込渦が発生し難くなって、前記最低吸水位LWL3をより一層低いレベルに設定し得るように作用する。つまり、吸込水路9の水路断面積を漸次縮小させる斜面14,14は、最低吸水位LWL3をより一層低いレベルに設定するのに寄与する。
【0018】
なお、前記実施の形態では、閉断面構造(クローズ形)の吸込水路9で説明しているが、吸込水路9は開断面構造(オープン形)であってもよい。また、2台の横軸ポンプ1を並列して設置した構造で説明しているが、設置される横軸ポンプ1の台数は2台のみに限定されるものではなく、1台でもあるいは三台以上を並列して設置した構造であってもよい。さらに、下向きの張出し部13を吸込水路9の天井12に連続するコンクリートによって形成した構造で説明しているが、コンクリート製の天井12に鋼板溶接構造または鋳造構造の張出し部13一体に設けた構造であってもよい。また、吸込水路9の幅寸法を縮小するように張り出す斜面14,14を吸込水路9の立面11,11に連続するコンクリートによって形成した構造で説明しているが、コンクリート製の立面11,11に鋼板溶接構造の斜面14,14を設けた構造であってもよい。
【0019】
【発明の効果】
以上説明したように、本発明に係る横軸ポンプを用いた排水設備は構成されているので、以下のような格別の効果を奏する。
【0020】
請求項1に記載の発明によれば、吸込水路の掘削深さを浅く抑えて、土木施工費を削減することができるばかりか、横軸ポンプの空気の吸い込みが始まる最低吸水位を該横軸ポンプの一端部吸込口の上限位置よりも低いレベルに設定して、該最低吸水位から下側の残水量を少なくすることができるとともに、吸込水路における吸込側の水路断面積が急激に縮小されることなく、吸込口までなだらかに縮小されることで、水を乱れることなくスムーズに流下させることができるので、空気吸込渦が発生し難くなって、最低吸水位をより一層低いレベルに設定し得る効果が得られる。
【0021】
請求項2に記載の発明によれば、前記吸込水路の底面レベルを、前記吸込口の下限位置と面一もしくは略面一に設定して段差をなくしてあるので、前記吸込水路の底面にヘドロなどの異物が堆積しなくなる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態を示す縦断側面図である。
【図2】 図1の平面断面図である。
【図3】 図1のA−A線に沿う拡大断面図である。
【図4】 従来例の縦断面図である。
【図5】 従来例との比較例を示す縦断面図である。
【符号の説明】
1 横軸ポンプ
2 筒状ポンプケーシング
3 横軸ポンプの一端部吸込口
9 吸込水路
12 吸込水路の天井
13 下向きの張出し部
14 吸込水路の水路断面積を漸次縮小させる斜面
P1 下向きの張出し部の下限位置
P2 横軸ポンプの一端部吸込口の上限位置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drainage facility using a horizontal axis pump.
[0002]
[Prior art]
Conventionally, there is a drainage facility shown in FIG. 4 as a drainage facility using a horizontal shaft pump that is installed as a single straight water channel and is called a cylindrical pump (tubular pump). Such a drainage facility using the horizontal axis pump 1 is suitable for flood drainage, sewage stormwater drainage, farmland drainage, and the like, and a drive unit such as an electric motor or gear reducer (not shown) has a horizontal axis C. It is installed in a cylindrical pump casing 2. The outer shape of the horizontal axis pump 1 has a straight cylindrical shape on the horizontal axis C from the one end suction port 3 to the other end discharge port 4. The suction port 3 faces the suction water tank 5, and discharges it. The outlet 4 faces the discharge water tank 6 and includes an axial flow impeller or a mixed flow impeller (not shown) driven by the drive unit (see, for example, Non-Patent Document 1).
[0003]
In this type of drainage facility, the entire horizontal axis pump 1 is installed as a single straight water channel, so that the installation area is small, and no ground building is required, and the height of the machine can be kept low. For this reason, civil engineering construction costs can be reduced, and it is said that it is advantageous for large-diameter and multi-unit installation. Further, the straight water flow path from the one end suction port 3 to the other end discharge port 4 is not bent, so that the flow path loss is kept small and high efficiency is obtained, and driving of the electric motor, gear reducer, etc. Since the part is installed inside the pump casing 2, there is an advantage that noise does not go outside.
[0004]
Now, in the drainage system of FIG. 4, when the elbow 7 and the suction bell mouth 8 are omitted and the drainage system of FIG. 5 in which the tip of the suction port 3 is opened to the suction water tank 5 is considered, air suction starts. The minimum water absorption level LWL1 is higher than the upper limit position P2 of the suction port 3 by Δh2, and the horizontal axis pump 1 cannot be operated below this water level. However, as shown in FIG. 4, in the drainage facility in which the elbow 7 bent downward at the tip of the suction port 3 and the suction bell mouth 8 are attached, the upper limit position of the suction port, that is, the opening upper limit position P3 of the suction bell mouth 8 is illustrated. 5 is reduced by an amount equivalent to Δh from the upper limit position P2 of the suction port 3, and the lowest water absorption level LWL2 is reduced by an amount equivalent to Δh3 from the lowest water absorption level LWL1, thereby reducing the amount of residual water below the lowest water absorption level LWL2. be able to. That is, the remaining water amount in the suction water tank 5 in the drainage facility in FIG. 4 can be made smaller than the remaining water amount in the suction water tank 5 in the drainage facility in FIG.
[0005]
[Non-Patent Document 1]
“Mechanical Map Pump” by the Japan Society of Mechanical Engineers
Meijin Printing Co., Ltd., February 20, 1980, p. 64 FIG.
[0006]
[Problems to be solved by the invention]
However, in the drainage facility in which the elbow 7 and the suction bell mouth 8 that are bent downward are attached to the tip of the suction port 3 in FIG. 4, the suction water tank 5 is further provided corresponding to the depth H from the lower limit position of the suction port 3. It has to be deeply dug down, and there is a problem that the cost of civil engineering construction increases accordingly. In the drainage facility of FIG. 4, the water cross-sectional area is rapidly reduced at the entrance of the bell mouth 8, so that the water flow is disturbed and air suction vortices are easily generated. For this reason, depending on the shape of the suction water tank 5 or the relative relationship between the suction water tank 5 and the suction bell mouth 8, an air suction vortex may occur at a level slightly higher than the lowest water absorption level LWL2. Therefore, the actual minimum water absorption level must be set higher than the minimum water absorption level LWL2, and the remaining water amount in the suction water tank 5 increases accordingly.
[0007]
The present invention has been made in consideration of such circumstances, and although the excavation depth of the suction water channel corresponding to the suction water tank is kept shallow, the construction work cost can be reduced, but the air An object of the present invention is to provide a drainage facility using a horizontal shaft pump that can lower the minimum water absorption level at which suction starts and reduce the amount of residual water in the suction channel.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a drainage facility using a horizontal axis pump according to the first aspect of the present invention is a drainage system using a horizontal axis pump including a cylindrical pump casing having both ends opened. One end suction port of the horizontal axis pump faces the suction water channel, and a downward projecting portion having a lower limit position set lower than an upper limit position of the one end suction port is provided on the ceiling of the suction water channel. In the position immediately upstream of the suction port, the ceiling surface of the suction channel is inclined upward from the lower limit position of the downward projecting portion to the upper limit position of the suction port, and the width dimension of the suction channel is gradually narrowed, thereby breaking the channel. The area is gradually reduced from the upstream side to the one end suction port at a position immediately upstream of the suction port.
[0009]
Moreover, it is preferable that the bottom surface level of the suction channel is set to be flush with or substantially flush with the lower limit position of the suction port.
[0010]
According to the first aspect of the present invention, not only the excavation depth of the suction channel can be kept shallow, but also the minimum water absorption level at which the suction of the air of the horizontal axis pump starts is the upper limit of the one end suction port of the horizontal axis pump. It can be set to a level lower than the position, and the water passage cross-sectional area of the suction water channel is reduced smoothly to the suction port without abrupt reduction, allowing water to flow smoothly without being disturbed be able to. As a result, air suction vortices are less likely to occur, and the lowest water absorption level can be set to a lower level.
[0011]
According to the second aspect of the present invention, since the level of the bottom surface of the suction channel is set to be substantially or flush with the lower limit position of the suction port, the level difference is eliminated. Foreign matter such as will not accumulate.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings. FIG. 1 is a longitudinal side view showing an embodiment of the present invention, FIG. 2 is a plan sectional view of FIG. 1, and FIG. 3 is an enlarged sectional view taken along line AA of FIG. The same parts as those in FIGS. 4 and 5 are denoted by the same reference numerals.
1 and 2, a horizontal pump 1 is a cylindrical pump (tubular pump), and a drive unit such as an electric motor or gear reducer (not shown) has a horizontal axis (horizontal axis) C. It is installed in the casing 2. There is also a horizontal shaft pump 1 having a structure in which only the electric motor is installed without the reduction gear. The outer shape of the pump casing 2 has a single straight cylindrical shape on the horizontal line C from the one end suction port 3 to the other end discharge port 4.
[0013]
One end suction port 3 of the horizontal axis pump 1 faces a suction channel 9 having a closed cross-sectional structure (closed shape), and the other end discharge port 4 faces a discharge channel 9A. The suction water channel 9 is made of, for example, a concrete structure, and has a closed cross-section structure that is watertightly surrounded by a bottom surface 10, vertical surfaces 11, 11 and a ceiling 12 on both sides in the width direction, as shown in FIG. It extends substantially horizontally from the upstream area of the axial pump 1 to the suction port 3 at one end of the horizontal axis pump 1.
[0014]
On the other hand, on the ceiling 12 of the suction water channel 9, in the vicinity of the one end suction port 3 in the horizontal shaft pump 1, a downward projecting portion in which the lower limit position P1 is set lower than the upper limit position P2 of the suction port 3 by Δh4. (Shaded area in FIG. 1) 13 is provided. The downward projecting portion 13 includes an upstream slope 13A inclined downward from the ceiling 12 to the lower limit position P1, and a downstream slope 13B inclined upward from the lower limit position P1 to the ceiling 12 and the upper limit position P2 of the suction port 3. And is formed of concrete continuously on the ceiling 12 of the suction channel 9 made of a concrete structure. Further, the level of the bottom surface 10 is set to be flush with or substantially flush with the lower limit position of the suction port 3 to eliminate the step.
[0015]
On the other hand, on the vertical surfaces 11, 11 on both sides in the width direction of the suction water channel 9, the width dimension of the suction water channel 9 is measured from the upstream side to the one end suction port 3 at a position immediately upstream of the one end suction port 3 in the horizontal shaft pump 1. Slopes (shaded areas in FIG. 2) 14 and 14 for gradually narrowing and gradually reducing the channel cross-sectional area of the suction channel 9 are provided. That is, the suction side water passage cross-sectional area in the suction water passage 9 is smoothly reduced to the suction port 3 of the horizontal shaft pump 1 without being rapidly reduced, so that the water can flow smoothly without being disturbed. . The slopes 14 and 14 are made of concrete continuously with the elevations 11 and 11 of the suction channel 9 made of a concrete structure.
[0016]
With such a configuration, it is not necessary to dig deeper into the suction water channel 9 than the lower limit position of the suction port 3, so that the excavation depth of the suction water channel 9 can be kept shallow, and civil engineering construction costs can be reduced. . Further, by reducing the minimum water absorption level LWL3 at which the suction of the air of the horizontal axis pump 1 starts by an amount equivalent to Δh5 from the upper limit position P2 of the suction port 3, the amount of residual water below the minimum water absorption level LWL3 can be reduced. . Furthermore, since the level of the bottom surface 10 is set to be flush with or substantially flush with the lower limit position of the suction port 3 and the level difference is eliminated, it acts to avoid accumulation of foreign matters such as sludge on the bottom surface 10.
[0017]
In addition, the slopes 14 and 14 are provided, and the water passage sectional area on the suction side in the suction water passage 9 is not rapidly reduced, but is gently reduced to the suction port 3 of the horizontal shaft pump 1 without disturbing water. Since it is made to flow smoothly, the air suction vortex is hardly generated, and the lowest water absorption level LWL3 can be set to a lower level. That is, the slopes 14 and 14 that gradually reduce the channel cross-sectional area of the suction channel 9 contribute to setting the lowest water absorption level LWL3 to a lower level.
[0018]
In the above-described embodiment, the suction water channel 9 having a closed cross-sectional structure (closed shape) is described. However, the suction water channel 9 may have an open cross-sectional structure (open shape). In addition, although a description has been given of a structure in which two horizontal axis pumps 1 are installed in parallel, the number of horizontal axis pumps 1 to be installed is not limited to two, but one or three. The structure which installed the above in parallel may be sufficient. Furthermore, although the downward projecting portion 13 is described as a structure formed of concrete continuous with the ceiling 12 of the suction channel 9, a structure in which the projecting portion 13 of the steel plate welded structure or the cast structure is integrally provided on the concrete ceiling 12 is described. It may be. Moreover, although the slopes 14 and 14 which protrude so that the width dimension of the suction channel 9 may be reduced are demonstrated with the structure formed with the concrete which continues to the standing surfaces 11 and 11 of the suction channel 9, the concrete vertical surface 11 is demonstrated. , 11 may be provided with slopes 14 and 14 of a steel plate welded structure.
[0019]
【The invention's effect】
As described above, since the drainage facility using the horizontal axis pump according to the present invention is configured, the following special effects are produced.
[0020]
According to the first aspect of the present invention, it is possible not only to reduce the excavation depth of the suction channel and reduce the civil engineering construction cost, but also to set the minimum water absorption level at which the suction of the air of the horizontal axis pump starts at the horizontal axis. By setting the pump lower than the upper limit position of the one end suction port of the pump, it is possible to reduce the amount of residual water below the lowest water absorption level, and the suction channel cross-sectional area of the suction water channel is abruptly reduced. Since the water is smoothly reduced without being disturbed, the air suction vortex is less likely to occur and the minimum water absorption level is set to a lower level. The effect to obtain is acquired.
[0021]
According to the second aspect of the present invention, since the level of the bottom surface of the suction channel is set to be substantially or flush with the lower limit position of the suction port, the level difference is eliminated. Foreign matter such as will not accumulate.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view showing an embodiment of the present invention.
FIG. 2 is a plan sectional view of FIG.
FIG. 3 is an enlarged cross-sectional view taken along line AA in FIG.
FIG. 4 is a longitudinal sectional view of a conventional example.
FIG. 5 is a longitudinal sectional view showing a comparative example with a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Horizontal axis pump 2 Cylindrical pump casing 3 One end suction port of horizontal axis pump 9 Suction channel 12 Suction channel ceiling 13 Downward projecting part 14 Slope which gradually reduces the channel cross-sectional area of the suction channel P1 Lower limit of downward projecting part Position P2 Upper limit position of one end suction port of horizontal axis pump

Claims (2)

両端部を開口した筒状ポンプケーシングを備えている横軸ポンプを用いた排水設備であって、前記横軸ポンプの一端部吸込口が吸込水路に臨んでおり、この吸込水路の天井に下限位置を前記一端部吸込口の上限位置よりも低位置に設定した下向きの張出し部が設けられ、前記吸込口の直上流位置で、前記吸込水路の天井面を下向きの張出し部の下限位置から吸込口の上限位置にかけて上向きに傾斜させるとともに、吸込水路の幅寸法を漸次狭めることにより、水路断面積が、上流側から前記一端部吸込口かけて漸次縮小されていることを特徴とする横軸ポンプを用いた排水設備。A drainage facility using a horizontal shaft pump having a cylindrical pump casing having both ends opened, wherein one end suction port of the horizontal shaft pump faces the suction water channel, and a lower limit position is located on the ceiling of the suction water channel. Is formed at a position lower than the upper limit position of the one end suction port, and a downwardly extending portion is provided at a position immediately upstream of the suction port, and the ceiling surface of the suction channel from the lower limit position of the downward protruding portion to the suction port. A horizontal axis pump characterized in that the cross-sectional area of the water channel is gradually reduced from the upstream side to the one end suction port by inclining upward toward the upper limit position and gradually narrowing the width dimension of the suction water channel. Drainage equipment used. 前記吸込水路の底面レベルを、前記吸込口の下限位置と面一もしくは略面一に設定してある請求項1に記載の横軸ポンプを用いた排水設備。  The drainage equipment using a horizontal axis pump according to claim 1, wherein a bottom surface level of the suction water channel is set to be flush with or substantially flush with a lower limit position of the suction port.
JP2002298928A 2002-10-11 2002-10-11 Drainage facility using horizontal pump Expired - Lifetime JP3762905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298928A JP3762905B2 (en) 2002-10-11 2002-10-11 Drainage facility using horizontal pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298928A JP3762905B2 (en) 2002-10-11 2002-10-11 Drainage facility using horizontal pump

Publications (2)

Publication Number Publication Date
JP2004132301A JP2004132301A (en) 2004-04-30
JP3762905B2 true JP3762905B2 (en) 2006-04-05

Family

ID=32288204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298928A Expired - Lifetime JP3762905B2 (en) 2002-10-11 2002-10-11 Drainage facility using horizontal pump

Country Status (1)

Country Link
JP (1) JP3762905B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7480934B2 (en) 2019-08-05 2024-05-10 株式会社ミゾタ Submersible pumps and their equipment

Also Published As

Publication number Publication date
JP2004132301A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP3895505B2 (en) Equipment for collecting and transferring sediment
JP2010249120A (en) Vortex prevention device and pump device
JP4566852B2 (en) Horizontal axis pump, pump gate equipment, drainage station
KR100982610B1 (en) Underwater pump with a whirlpool preventing device
JP4657845B2 (en) Horizontal shaft pump
JP3762905B2 (en) Drainage facility using horizontal pump
JP3995245B2 (en) Suction cover structure of horizontal shaft pump
JP3998148B2 (en) Suction cover structure of horizontal shaft pump
JP4578283B2 (en) Drainage system
KR102525988B1 (en) Flow Rate Reducing Device in Running Water Pipelines
CN111749930A (en) Suction cover, horizontal shaft pump, pump gate and operation method of pump gate
JP2007332890A (en) Resin submerged pump
JPH11323884A (en) Discharge pump system
JP2005023630A (en) Structure of suction water tank
KR100677865B1 (en) Under water structure for river fountain and construction method thereof
JPH10317477A (en) Prewhirl tank
JP2003328978A (en) Vertical shaft type pump
JP6896206B2 (en) Divided vertical channel mud pumping device
JP3372877B2 (en) Drainage pump
CN214994455U (en) Drainage ditch
JPS6022154Y2 (en) Manhole internal structure
US10604927B2 (en) Prerotation basin for pumping fluids from a wet well
JPH06330882A (en) Pump suction tank
JPH1113126A (en) Prewhirl tank
JP4098310B2 (en) Vertical soil removal method and equipment for propulsion method, etc.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3762905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

EXPY Cancellation because of completion of term