JP3762619B2 - Analyzer - Google Patents

Analyzer Download PDF

Info

Publication number
JP3762619B2
JP3762619B2 JP2000185879A JP2000185879A JP3762619B2 JP 3762619 B2 JP3762619 B2 JP 3762619B2 JP 2000185879 A JP2000185879 A JP 2000185879A JP 2000185879 A JP2000185879 A JP 2000185879A JP 3762619 B2 JP3762619 B2 JP 3762619B2
Authority
JP
Japan
Prior art keywords
measurement cell
sample liquid
flow rate
analyzer
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000185879A
Other languages
Japanese (ja)
Other versions
JP2002005943A5 (en
JP2002005943A (en
Inventor
隆章 矢田
義公 湯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2000185879A priority Critical patent/JP3762619B2/en
Publication of JP2002005943A publication Critical patent/JP2002005943A/en
Publication of JP2002005943A5 publication Critical patent/JP2002005943A5/ja
Application granted granted Critical
Publication of JP3762619B2 publication Critical patent/JP3762619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、測定セルに試料液を導入し分析測定を行う分析計に関する。
【0002】
【従来の技術】
測定セルに試料液を導入して分析測定を行う場合、測定方法によっては、試料液の液温によって測定値が大きな影響を受けることがあり、特に、近赤外分光法などの分光学的方法においてはその影響が顕著である。
【0003】
例えば、分析測定しようとする試料液がアンモニア−過酸化水素水溶液である場合、高温になると多量の気泡が発生し、この気泡によって測定データが干渉影響を受けることが多い。従って、このような場合には、正確な測定を行うため、液温を下げ、かつ、温度調整して測定することが望ましい。
【0004】
上記のような点が考慮されている従来の分析計として、図4に示すように、試料液Sを冷却する冷却部1と、試料液S中の気泡を除去するための脱泡槽18と、試料液Sの分析を行うための測定セル3と、試料液Sの流れを一時的に停止させるための弁19とを備えたものがある。尚、図中、4は試料槽、5は吸引ポンプである。
【0005】
【発明が解決しようとする課題】
しかし、上記の構成からなる従来の分析計では、測定セル3における試料液Sの1回の測定毎に、前記弁19によって試料液Sの流れを停止させていたことから、1回の分析測定に要する時間が長くなる(例えば最短でも約20秒必要)という問題があった。
【0006】
また、自然発生的に生じた気泡が前記測定セル3内に付着すると、分析計の分析に悪影響が及ぶため、前記気泡を測定セル3から除去する必要があった。
【0007】
本発明は、上述の事柄に留意してなされたもので、その目的は、気泡の発生しやすい試料液を、短時間で精度良く分析測定することが可能な分析計を提供することである。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明は、測定セルに試料液を導入して分析測定を行う分析計であって、前記測定セルの上流側に試料液中の気泡を除去するための気泡除去部を備え、前記測定セルに試料液を連続的に導入するとともに、前記測定セルの下流側の導出路に前記測定セルを連続的に流れる試料液の流量を少なくとも2段階に制御する流量制御手段を設け、前記測定セルを通る試料液の流量が小となり測定セル側が高圧となる測定状態と、測定セルを通る試料液の流量が大となり測定セル側が低圧となる気泡除去状態とに切り換え可能としたことを特徴としている(請求項1)。
【0009】
上記の構成からなる分析計では、測定セルを連続的に通る試料液の流量を、測定セル側が高圧となる測定状態と、測定セル側が低圧となる気泡除去状態との2段階に調整することができるので、測定セル内を流れる試料液の流量を急激に変化させることにより、測定セル内に付着した気泡を簡単に除去することができる。
【0010】
【0011】
さらに、前記流量制御手段は、前記分岐路中にも設けられていてもよい(請求項)。この場合には、前記導出路を流れる試料液の流量と前記分岐路を流れる試料液の流量とのバランスを簡単にとることができる。
【0012】
また、前記導出路は、バイパス流路を有しており、このバイパス流路が、前記導出路中に設けられた前記流量制御手段をまたぐように配置されていてもよい(請求項)。この場合には、簡単な構成で、前記測定セルを流れる試料液の流量を、少なくとも2段階に調整することができる。
【0013】
【発明の実施の形態】
以下、この発明の詳細について図を参照しながら説明する。
図1は、本発明の第1実施例に係る分析計Dの構成を概略的に示す説明図である。
本発明の分析計Dは、試料液S中の気泡を除去するための気泡除去部2を測定セル3の上流側に備え、測定セル3に、気泡が除去された状態の試料液Sを連続的に導入して試料液Sの分析測定を行うものであり、測定セル3を通る試料液Sの流量を少なくとも2段階に調整可能とし、測定セル3を通る試料液Sの流量が小となり、測定セル3側が高圧となる測定状態と、測定セル3を通る試料液Sの流量が大となり、測定セル3側が低圧となる気泡除去状態とに切り換え可能に構成されている。
【0014】
そして、前記分析計Dは、外部にある試料槽4から吸引ポンプ5によって第1導入路6を通して送られてきた試料液Sが導入される気泡除去部2と、この第1導入路6中に設けられ、試料液Sを冷却するための冷却部1と、気泡除去部2からの試料液Sを、試料液Sの分析測定を行うための測定セル3に導入するための第2導入路7と、測定セル3からの試料液Sを外部の試料槽4に導出する(戻す)ための導出路8と、この導出路8中に設けられた逆止弁9と、気泡除去部2から試料液Sの一部を導出路8に直接送るための分岐路10とを備えている。そして、前記導出路8中には、導出路8を流れる試料液Sの流量を制御するための流量制御手段11と、逆止弁9の下流側に設けられ、かつ流量制御手段11をまたぐように配置されているバイパス流路12とが設けられている。
【0015】
前記試料液Sは、例えばアンモニア−過酸化水素水溶液であり、試料槽4において高温状態で保持されている。なお、試料液Sは、アンモニア−過酸化水素水溶液に限られるものではなく、例えば硫酸−過酸化水素水溶液や塩酸−過酸化水素水溶液などの薬液でもよい。すなわち、本発明の分析計Dは、高温で気泡の発生しやすい多成分水溶液等の試料液Sをも安定に測定することができる。
【0016】
前記冷却部1は、第1導入路6の一部を螺旋状に巻回させることで形成した熱交換部分1aに、排気ファン1bを近接させて配置することにより構成されている。なお、冷却部1は、このような構成に限るものではなく、例えば、熱交換部分1aが直線状やジグザグ状に設けられていてもよいが、排気ファン1bによる試料液Sの熱交換の効率をできるだけ向上させるために、短い距離でなるべく熱交換部分1aの表面積が大きくなるような構成にしておくことが望ましい。また、冷却部1は、上記のように、熱交換部分1aに排気ファン1bを近接させるものに限られず、例えば、電気的に冷却を行う構成のものや水冷により冷却を行う構成のものでもよく、これら複数の構成をともに有するものなどであってもよい。
【0017】
前記気泡除去部2は、例えば脱泡槽からなり、第1導入路6を経て送られてきた試料液S中の気泡を分離するためのものである。そして、気泡除去部2は、その一端側(上部側)より、試料液S中から発生したガスを導出路8に向けて分岐路10中へ送出し、その他端側(下部側)より、気泡が分離された試料液Sを測定セル3に向けて第2導入路7中へ送出する構成となっている。なお、気泡除去部2は、脱泡槽に限られるものではなく、例えばT字管などであってもよい。
【0018】
前記測定セル3の両側には、特定波長の光を照射する光源3aと、その光を検出可能な検出器3bとが配置されており、前記光源3aからの特定波長の光を、内部に試料液Sが流れている状態の測定セル3に向けて照射し、前記検出器3bによって測定セル3を透過した光を検出することによって、高い精度でその吸光度を測定することができる。そして、この吸光度から、ランバート・ベール(Lambert-Beer)の法則などの換算式を用いて成分濃度の検出をすることができる。
【0019】
前記第2導入路7中には、前記気泡除去部2において気泡が除去された後の試料液Sを冷却するための冷却部13が設けられている。この冷却部13は、前記冷却部1と同じ構成であり、前記第2導入路7の一部を螺旋状に巻回させることで形成した熱交換部分13aに、排気ファン13bを近接させて配置することにより構成されている。なお、冷却部13は、このような構成に限るものではなく、例えば、前記熱交換部分13aが直線状やジグザグ状に設けられていてもよいが、前記排気ファン13bによる試料液Sの熱交換の効率をできるだけ向上さ せるために、短い距離でなるべく熱交換部分13aの表面積が大きくなるような構成にしておくことが望ましい。また、前記冷却部13は、上記のように、熱交換部分13aに排気ファン13bを近接させるものに限られず、例えば、電気的に冷却を行う構成のものや水冷により冷却を行う構成のものでもよく、これら複数の構成をともに有するものなどであってもよい。
【0020】
なお、前記冷却部13は、試料液Sが特に高温である場合などに設ければよく、常に設ける必要はない。
【0021】
また、前記冷却部1を構成する排気ファン1bおよび冷却部13を構成する排気ファン13bはともに、分析計D内に常設のものを利用することができるが、専用の排気ファンを用いるようにしてもよいし、あるいは、例えばペルチェ素子を使用した電子冷却器などを用いるようにしてもよく、水冷により冷却を行う構成のものでもよい。もちろん、上記の冷却手段や冷却するための構成を複数あわせ持つようなものでもよい。
【0022】
さらに、前記冷却部1および冷却部13は、ともに分析計Dの内部・外部のいずれに配置されていてもよい。
【0023】
前記導出路8からの試料液Sは、試料槽4へと戻らずに、図示しない別の試料槽などへ送られてもよい。
【0024】
前記流量制御手段11は、例えば可変式のニードル弁であり、前記導出路8を流れる試料液Sの流量を制御するためのものである。この流量制御手段11によって導出路8を流れる試料液Sの流量を小さくする(しぼる)。この流量・流速は、測定セル3における試料液Sの測定に要する所要時間を考慮して決定される。なお、流量制御手段11としては、上記ニードル弁に限るものではなく、例えば、図2に示すような、所定の抵抗を得ることができる部材(例えば固定のキャピラリーなど)14でもよいし、図3に示すような、試料液Sの流量調整をより簡単かつ確実に行うことができる可変バルブ15などでもよい。さらに、この可変バルブ15には、前記バイパス流路12を流れる試料液Sの流量の調整を行えるバイパス流量調整機能のついたバルブを用いてもよい。
【0025】
また、上記流量制御手段11と同一構造の部材である流量制御手段16を、前記分岐路10中にも設けることにより、導出路8を流れる試料液Sの流量と分岐路10を流れる試料液Sの流量とのバランスをより簡単にとることができる。
【0026】
前記バイパス流路12は、一端が前記逆止弁9とこの逆止弁9の下流側に設けられた流量制御手段11との間において導出路8に接続されており、他端が、前記分岐路10と導出路8との接続ポイントよりも下流側において導出路8に接続されている。なお、前記他端が、前記流量制御手段11よりも下流側で、かつ前記接続ポイントよりも上流側において導出路8に接続されていてもよい。
【0027】
また、前記バイパス流路12には、例えば二方電磁弁や二方空圧弁などからなる開閉弁17が設けられており、この開閉弁17によって、バイパス流路12に試料液Sを流したり、流さないようにしたりする操作を行うことができる。なお、バイパス流路12に流すことが可能な試料液Sの流量が、流量制御手段11が設けられている導出路8に流すことが可能な試料液Sの流量に比して、充分に大きくなるように構成されている。
【0028】
次に、上記の構成からなる分析計Dの動作について説明する。
予め前記試料槽4内に収容されている試料液Sを分析計Dを用いて分析するには、まず、前記試料液Sを、吸引ポンプ5によって第1導入路6を通して分析計D内に導入する。そして、分析計D内に導入された試料液Sは、冷却部1において冷却された後、気泡除去部2においてその内部に発生した気泡が除去される。この気泡除去部2において試料液Sから除去された気泡は、分岐路10を通って 導出路8に送られる一方、前記気泡が除去された試料液Sは、第2導入路7に送出され、冷却部13において冷却された後、測定セル3に送られる。
【0029】
そして、前記測定セル3において、所定の分析が行われ、その後、導出路8中の逆止弁9と流量制御手段11を通って分析計Dの外部へと導出され、試料槽4に戻される。なお、上記のように試料液Sの分析を行う測定状態においては、前記バイパス流路12に設けられている開閉弁17は閉じられており、試料液Sがバイパス流路12を流れることはない。
【0030】
上記のように分析計Dを用いて試料液Sの分析を続けていると、前記測定セル3内に自然発生的に生じた気泡が付着し、測定に悪影響を及ぼすようになる場合がある。このような場合には、バイパス流路12中に設けられた開閉弁17を開き、試料液Sがバイパス流路12にも流れる気泡除去状態にしてやることにより、測定セル3の下流側における試料液Sの流量が急激に大きくなり、測定セル3を流れる試料液Sの流量も急激に大きくなることになる。そして、測定セル3に流量が急激に増大した試料液Sを流すことによって、測定セル3内の気泡が除去される。
【0031】
上記の構成からなる分析計Dでは、測定セル3を流れる試料液Sの流量を、測定セル3によって分析可能な程度と、測定セル3内に付着した気泡を除去できる程度との少なくとも2段階に調整可能としてあり、言い換えれば、前記測定セル3を通る試料液Sの流量が小となり、測定セル3側が高圧となる測定状態と、測定セル3を通る試料液Sの流量が大となり、測定セル3側が低圧となる気泡除去状態とに切り換え可能としてあることから、短時間で、かつ連続的に試料液Sの分析を行えるとともに、測定セル3内に付着した気泡を簡単に除去することができるのである。
【0032】
なお、図1および図2に示した分析計Dでは、前記測定セル3を流れる試料液Sの流量の少なくとも2段階の調整は、バイパス流路12に設けられた開閉弁1 7の開閉によって行われるが、図3に示すように、前記流量制御手段11として試料液Sの流量を簡単かつ確実に変化させることが可能な可変バルブ15を用いた分析計Dでは、可変バルブ15のみを調整することで、測定セル3を流れる試料液Sの流量を少なくとも二段階に調整できることから、前記バイパス流路12および開閉弁17を省くことが可能となる。
【0033】
なお、上記の構成からなる分析計Dにおいて、測定セル3における気泡の検出に関しては、測定波形などより、ソフト的に気泡と判断し、データ処理することが従来から行われている。また、測定セル3内に付着した気泡の除去のために、バイパス流路12中に設けられた開閉弁17の開閉は、定期的・定時間毎(例えば30分毎、1時間毎など)に行ってもよいし、ソフト処理で、気泡を検出したときに行うようにしてもよい。
【0034】
上記の構成からなる分析計Dでは、分析計Dの外部から導入した試料液Sを、気泡除去部2にまで高い速度で送ることが可能であることから、応答の遅れが問題とならない。
【0035】
また、試料液Sの分析時には、測定セル3の下流側を流れる試料液Sの流量が、流量制御手段11によって絞られることから、測定セル3付近を流れる試料液Sの流量が小さくなる。これにより、前記冷却部13が設けられている場合には、この冷却部13における試料液Sの冷却効率が上昇し、簡単な構成の冷却部13を用いて、試料液Sの温度を目的の温度まで下げることが可能となる。また、この冷却効率の上昇に加えて、流量制御手段11の上流側における試料液Sの圧力が高くなることから、試料液Sからの気泡の発生が抑止され、測定セル3における試料液Sの分析を精度良く行うことができ、さらに、測定セル3内に気泡が付着しにくくなり、バイパス流路12の開閉弁17を開いて測定セル3内に付着した気泡を一掃するという作業を行う回数を減らすことができる。
【0036】
なお、上記の構成からなる分析計Dでは、気泡除去部2から分岐路10へはガ スのみが導出される構成となっているが、このような構成に限るものではなく、気泡除去部2から分岐路10へは、ガスのみならず試料液Sの大半を導出する構成としてもよい。この場合には、試料槽4から分析計D内への試料液Sの導入を、より短時間で行うことが可能となる。
【0037】
【発明の効果】
以上説明したように、本発明の分析計Dによれば、気泡の発生しやすい試料液を、短時間で精度良く分析測定することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例に係る分析計の構成を概略的に示す説明図である。
【図2】 上記第1実施例における流量制御手段として、所定の抵抗を得ることができる部材を用いた場合の分析計の構成を概略的に示す説明図である。
【図3】 上記第1実施例における流量制御手段として、可変バルブを用いた場合の分析計の構成を概略的に示す説明図である。
【図4】 従来の分析計の構成を概略的に示す説明図である。
【符号の説明】
2…気泡除去部、3…測定セル、6…第1導入路、7…第2導入路、8…導出路、10…分岐路、11,16…流量制御手段、12…バイパス流路、D…分析計、S…試料液。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an analyzer that performs analytical measurement by introducing a sample solution into a measurement cell.
[0002]
[Prior art]
When performing analytical measurement by introducing a sample solution into a measurement cell, the measured value may be greatly affected by the temperature of the sample solution, depending on the measurement method. In particular, spectroscopic methods such as near infrared spectroscopy The effect is remarkable in.
[0003]
For example, when the sample solution to be analyzed and measured is an ammonia-hydrogen peroxide aqueous solution, a large amount of bubbles are generated at a high temperature, and measurement data is often affected by interference due to the bubbles. Therefore, in such a case, in order to perform accurate measurement, it is desirable to lower the liquid temperature and adjust the temperature.
[0004]
As a conventional analyzer in which the above points are considered, as shown in FIG. 4, a cooling unit 1 for cooling the sample liquid S, and a defoaming tank 18 for removing bubbles in the sample liquid S, Some have a measurement cell 3 for analyzing the sample liquid S and a valve 19 for temporarily stopping the flow of the sample liquid S. In the figure, 4 is a sample tank and 5 is a suction pump.
[0005]
[Problems to be solved by the invention]
However, in the conventional analyzer having the above-described configuration, the flow of the sample liquid S is stopped by the valve 19 for each measurement of the sample liquid S in the measurement cell 3, so that one analysis measurement is performed. There is a problem that the time required for the process becomes long (for example, it takes about 20 seconds at the shortest).
[0006]
Further, if bubbles generated spontaneously adhere to the measurement cell 3, the analysis of the analyzer is adversely affected, so that the bubbles need to be removed from the measurement cell 3.
[0007]
The present invention has been made in consideration of the above-described matters, and an object of the present invention is to provide an analyzer that can accurately analyze and measure a sample liquid in which bubbles are easily generated in a short time.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is an analyzer that performs analytical measurement by introducing a sample liquid into a measurement cell, and a bubble removing unit for removing bubbles in the sample liquid upstream of the measurement cell And a flow rate control means for continuously introducing the sample liquid into the measurement cell and for controlling the flow rate of the sample liquid flowing continuously through the measurement cell to the outlet path downstream of the measurement cell in at least two stages. It is possible to switch between a measurement state in which the flow rate of the sample liquid passing through the measurement cell is low and the measurement cell side is high pressure, and a bubble removal state in which the flow rate of the sample liquid passing through the measurement cell is high and the measurement cell side is low in pressure. (Claim 1).
[0009]
In the analyzer having the above-described configuration, the flow rate of the sample liquid continuously passing through the measurement cell can be adjusted in two stages: a measurement state in which the measurement cell side has a high pressure and a bubble removal state in which the measurement cell side has a low pressure. Therefore, the bubbles attached in the measurement cell can be easily removed by rapidly changing the flow rate of the sample solution flowing in the measurement cell.
[0010]
[0011]
Further, the flow rate control means may be provided also in the branch path (Claim 2 ). In this case, it is possible to easily balance the flow rate of the sample liquid flowing through the outlet path and the flow rate of the sample liquid flowing through the branch path.
[0012]
Further, the lead-out path may have a bypass flow path, and the bypass flow path may be arranged so as to straddle the flow rate control means provided in the lead-out path (Claim 3 ). In this case, the flow rate of the sample liquid flowing through the measurement cell can be adjusted to at least two stages with a simple configuration.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, details of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram schematically showing the configuration of the analyzer D according to the first embodiment of the present invention.
The analyzer D of the present invention includes a bubble removing unit 2 for removing bubbles in the sample solution S on the upstream side of the measurement cell 3, and the sample solution S in a state where the bubbles are removed is continuously provided in the measurement cell 3. The sample solution S is analyzed and measured, and the flow rate of the sample solution S passing through the measurement cell 3 can be adjusted to at least two stages, and the flow rate of the sample solution S passing through the measurement cell 3 is reduced, The measurement cell 3 side is configured to be switchable between a measurement state in which the pressure is high and a bubble removal state in which the flow rate of the sample liquid S passing through the measurement cell 3 is large and the measurement cell 3 side is at a low pressure.
[0014]
The analyzer D includes a bubble removing unit 2 into which the sample liquid S sent from the external sample tank 4 through the first introduction path 6 by the suction pump 5 is introduced, and the first introduction path 6. A second introduction path 7 for introducing the cooling unit 1 for cooling the sample solution S and the sample solution S from the bubble removing unit 2 to the measurement cell 3 for performing analysis and measurement of the sample solution S is provided. A lead-out path 8 for leading (returning) the sample liquid S from the measurement cell 3 to the external sample tank 4, a check valve 9 provided in the lead-out path 8, and a sample from the bubble removing unit 2 And a branch path 10 for sending a part of the liquid S directly to the outlet path 8. A flow rate control means 11 for controlling the flow rate of the sample liquid S flowing through the lead-out path 8 and a downstream side of the check valve 9 are provided in the lead-out path 8 and straddle the flow rate control means 11. And a bypass channel 12 disposed in the center.
[0015]
The sample liquid S is, for example, an ammonia-hydrogen peroxide aqueous solution, and is held in a high temperature state in the sample tank 4. The sample solution S is not limited to an ammonia-hydrogen peroxide solution, and may be a chemical solution such as a sulfuric acid-hydrogen peroxide solution or a hydrochloric acid-hydrogen peroxide solution. That is, the analyzer D of the present invention can stably measure a sample solution S such as a multi-component aqueous solution that easily generates bubbles at high temperatures.
[0016]
The cooling unit 1 is configured by disposing an exhaust fan 1b close to a heat exchange portion 1a formed by winding a part of the first introduction path 6 in a spiral shape. The cooling unit 1 is not limited to such a configuration. For example, the heat exchange portion 1a may be provided in a linear shape or a zigzag shape, but the efficiency of heat exchange of the sample liquid S by the exhaust fan 1b is not limited. In order to improve as much as possible, it is desirable that the heat exchange portion 1a has a surface area as large as possible at a short distance. Further, the cooling unit 1 is not limited to the one in which the exhaust fan 1b is brought close to the heat exchanging portion 1a as described above, and may be, for example, a configuration that electrically cools or a configuration that cools by water cooling. It may be one having both of these configurations.
[0017]
The bubble removing unit 2 includes, for example, a defoaming tank and separates bubbles in the sample liquid S sent through the first introduction path 6. And the bubble removal part 2 sends out the gas which generate | occur | produced in the sample liquid S from the one end side (upper side) toward the derivation path 8 in the branch path 10, and bubbles from the other end side (lower side). In this configuration, the sample solution S from which the gas is separated is sent into the second introduction path 7 toward the measurement cell 3. In addition, the bubble removal part 2 is not restricted to a defoaming tank, For example, a T-shaped pipe etc. may be sufficient.
[0018]
A light source 3a that emits light of a specific wavelength and a detector 3b that can detect the light are arranged on both sides of the measurement cell 3, and the light of the specific wavelength from the light source 3a is sampled inside. By irradiating the measurement cell 3 in a state where the liquid S is flowing and detecting the light transmitted through the measurement cell 3 by the detector 3b, the absorbance can be measured with high accuracy. From this absorbance, the component concentration can be detected using a conversion formula such as Lambert-Beer's law.
[0019]
A cooling unit 13 is provided in the second introduction path 7 for cooling the sample liquid S after the bubbles are removed in the bubble removing unit 2. The cooling unit 13 has the same configuration as the cooling unit 1, and is arranged with an exhaust fan 13b in proximity to a heat exchange portion 13a formed by spirally winding a part of the second introduction path 7. It is comprised by doing. The cooling unit 13 is not limited to such a configuration. For example, the heat exchange portion 13a may be provided in a linear shape or a zigzag shape, but the heat exchange of the sample liquid S by the exhaust fan 13b is possible. In order to improve the efficiency of the heat exchange as much as possible, it is desirable that the surface area of the heat exchange portion 13a be as large as possible over a short distance. Further, as described above, the cooling unit 13 is not limited to the one in which the exhaust fan 13b is brought close to the heat exchanging portion 13a. For example, the cooling unit 13 may be one that is electrically cooled or one that is cooled by water cooling. It may be one having both of these configurations.
[0020]
The cooling unit 13 may be provided when the sample solution S is at a particularly high temperature, and need not always be provided.
[0021]
Further, both the exhaust fan 1b constituting the cooling unit 1 and the exhaust fan 13b constituting the cooling unit 13 can be permanently installed in the analyzer D, but a dedicated exhaust fan should be used. Alternatively, for example, an electronic cooler using a Peltier element or the like may be used, or a structure in which cooling is performed by water cooling may be used. Of course, it may have a plurality of the above cooling means and cooling structures.
[0022]
Furthermore, both the cooling unit 1 and the cooling unit 13 may be disposed either inside or outside the analyzer D.
[0023]
The sample liquid S from the lead-out path 8 may be sent to another sample tank or the like (not shown) without returning to the sample tank 4.
[0024]
The flow rate control means 11 is, for example, a variable needle valve, and controls the flow rate of the sample liquid S flowing through the lead-out path 8. The flow rate of the sample liquid S flowing through the outlet path 8 is reduced ( squeezed) by the flow rate control means 11 . The flow rate / flow velocity is determined in consideration of the time required for measuring the sample liquid S in the measurement cell 3. The flow rate control means 11 is not limited to the needle valve, and may be, for example, a member (for example, a fixed capillary) 14 capable of obtaining a predetermined resistance as shown in FIG. The variable valve 15 or the like that can adjust the flow rate of the sample liquid S more easily and reliably as shown in FIG. Further, the variable valve 15 may be a valve having a bypass flow rate adjusting function capable of adjusting the flow rate of the sample liquid S flowing through the bypass flow path 12.
[0025]
Further, the flow rate control means 16, which is a member having the same structure as the flow rate control means 11, is also provided in the branch path 10, whereby the flow rate of the sample liquid S flowing through the outlet path 8 and the sample liquid S flowing through the branch path 10. It is possible to easily balance the flow rate.
[0026]
One end of the bypass flow path 12 is connected to the lead-out path 8 between the check valve 9 and the flow rate control means 11 provided on the downstream side of the check valve 9, and the other end is connected to the branch passage. It is connected to the lead-out path 8 on the downstream side of the connection point between the path 10 and the lead-out path 8. The other end may be connected to the outlet path 8 on the downstream side of the flow rate control means 11 and on the upstream side of the connection point.
[0027]
The bypass channel 12 is provided with an on-off valve 17 made of, for example, a two-way solenoid valve or a two-way pneumatic valve. The on-off valve 17 allows the sample solution S to flow through the bypass channel 12, It is possible to perform an operation to prevent the flow. Note that the flow rate of the sample liquid S that can be flowed to the bypass flow path 12 is sufficiently larger than the flow rate of the sample liquid S that can be flowed to the outlet path 8 provided with the flow rate control means 11. It is comprised so that it may become.
[0028]
Next, the operation of the analyzer D having the above configuration will be described.
In order to analyze the sample liquid S previously stored in the sample tank 4 using the analyzer D, first, the sample liquid S is introduced into the analyzer D through the first introduction path 6 by the suction pump 5. To do. Then, after the sample liquid S introduced into the analyzer D is cooled in the cooling unit 1, bubbles generated in the bubble removing unit 2 are removed. The bubbles removed from the sample liquid S in the bubble removing unit 2 are sent to the outlet path 8 through the branch path 10, while the sample liquid S from which the bubbles have been removed are sent to the second introduction path 7, After being cooled in the cooling unit 13, it is sent to the measurement cell 3.
[0029]
Then, a predetermined analysis is performed in the measurement cell 3, and thereafter, the measurement cell 3 is led out of the analyzer D through the check valve 9 and the flow rate control means 11 in the lead-out path 8, and returned to the sample tank 4. . In the measurement state in which the sample solution S is analyzed as described above, the on-off valve 17 provided in the bypass channel 12 is closed, and the sample solution S does not flow through the bypass channel 12. .
[0030]
If the analysis of the sample liquid S is continued using the analyzer D as described above, bubbles generated spontaneously may adhere to the measurement cell 3 and adversely affect the measurement. In such a case, the sample liquid on the downstream side of the measurement cell 3 is opened by opening the on-off valve 17 provided in the bypass flow path 12 and removing the bubbles in which the sample liquid S also flows into the bypass flow path 12. The flow rate of S increases rapidly, and the flow rate of the sample liquid S flowing through the measurement cell 3 also increases rapidly. Then, the sample liquid S whose flow rate is rapidly increased is caused to flow through the measurement cell 3, whereby bubbles in the measurement cell 3 are removed.
[0031]
In the analyzer D having the above-described configuration, the flow rate of the sample liquid S flowing through the measurement cell 3 is at least in two stages, that is, the level that can be analyzed by the measurement cell 3 and the level that bubbles attached to the measurement cell 3 can be removed. In other words, the flow rate of the sample liquid S passing through the measurement cell 3 is small, the measurement state in which the measurement cell 3 side is at a high pressure, and the flow rate of the sample liquid S passing through the measurement cell 3 is large. Since it is possible to switch to the bubble removal state in which the side 3 is at a low pressure, the sample liquid S can be analyzed in a short time and continuously, and the bubbles adhering to the measurement cell 3 can be easily removed. It is.
[0032]
In the analyzer D shown in FIGS. 1 and 2, at least two stages of adjustment of the flow rate of the sample liquid S flowing through the measurement cell 3 are performed by opening and closing the on-off valve 17 provided in the bypass flow path 12. However, as shown in FIG. 3, in the analyzer D using the variable valve 15 capable of easily and reliably changing the flow rate of the sample solution S as the flow rate control means 11, only the variable valve 15 is adjusted. As a result, the flow rate of the sample liquid S flowing through the measurement cell 3 can be adjusted in at least two stages, so that the bypass flow path 12 and the on-off valve 17 can be omitted.
[0033]
In the analyzer D having the above-described configuration, regarding the detection of bubbles in the measurement cell 3, it is conventionally performed to determine the bubbles as software based on the measurement waveform or the like and to perform data processing. Further, in order to remove bubbles adhering in the measurement cell 3, the opening / closing of the on-off valve 17 provided in the bypass passage 12 is periodically / every time (for example, every 30 minutes, every hour, etc.). It may be performed when a bubble is detected by software processing.
[0034]
In the analyzer D having the above configuration, since the sample liquid S introduced from the outside of the analyzer D can be sent to the bubble removing unit 2 at a high speed, a delay in response is not a problem.
[0035]
Further, at the time of analysis of the sample liquid S, the flow rate of the sample liquid S flowing in the vicinity of the measurement cell 3 is reduced by the flow rate control means 11, so that the flow rate of the sample liquid S flowing in the vicinity of the measurement cell 3 becomes small. Thereby, when the cooling unit 13 is provided, the cooling efficiency of the sample solution S in the cooling unit 13 is increased, and the temperature of the sample solution S is set to a desired value by using the cooling unit 13 having a simple configuration. The temperature can be lowered. Further, in addition to the increase in cooling efficiency, the pressure of the sample liquid S on the upstream side of the flow rate control means 11 is increased, so that the generation of bubbles from the sample liquid S is suppressed, and the sample liquid S in the measurement cell 3 is suppressed. The number of times that the analysis can be performed with high accuracy, the bubbles are less likely to adhere to the measurement cell 3, and the opening / closing valve 17 of the bypass channel 12 is opened to clear the bubbles adhering to the measurement cell 3. Can be reduced.
[0036]
Note that the analyzer D having the above-described configuration has a configuration in which only the gas is led out from the bubble removing unit 2 to the branch path 10. However, the configuration is not limited to this, and the bubble removing unit 2 is not limited thereto. It is good also as a structure which derives | leads out most not only gas but the sample liquid S to the branch path 10 from. In this case, the sample liquid S can be introduced from the sample tank 4 into the analyzer D in a shorter time.
[0037]
【The invention's effect】
As described above, according to the analyzer D of the present invention, it is possible to accurately analyze and measure a sample liquid in which bubbles are easily generated in a short time.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram schematically showing a configuration of an analyzer according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram schematically showing a configuration of an analyzer when a member capable of obtaining a predetermined resistance is used as the flow rate control means in the first embodiment.
FIG. 3 is an explanatory diagram schematically showing the configuration of an analyzer when a variable valve is used as the flow rate control means in the first embodiment.
FIG. 4 is an explanatory diagram schematically showing a configuration of a conventional analyzer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 2 ... Bubble removal part, 3 ... Measurement cell, 6 ... 1st introduction path, 7 ... 2nd introduction path, 8 ... Derivation path, 10 ... Branching path, 11, 16 ... Flow control means, 12 ... Bypass flow path, D ... Analyzer, S ... Sample solution.

Claims (3)

測定セルに試料液を導入して分析測定を行う分析計であって、前記測定セルの上流側に試料液中の気泡を除去するための気泡除去部を備え、前記測定セルに試料液を連続的に導入するとともに、前記測定セルの下流側の導出路に前記測定セルを連続的に流れる試料液の流量を少なくとも2段階に制御する流量制御手段を設け、前記測定セルを通る試料液の流量が小となり測定セル側が高圧となる測定状態と、測定セルを通る試料液の流量が大となり測定セル側が低圧となる気泡除去状態とに切り換え可能としたことを特徴とする分析計。  An analyzer for introducing a sample liquid into a measurement cell and performing an analytical measurement, comprising an air bubble removing unit for removing bubbles in the sample liquid upstream of the measurement cell, and continuously supplying the sample liquid to the measurement cell A flow rate control means for controlling the flow rate of the sample liquid continuously flowing through the measurement cell in at least two stages in the outlet path downstream of the measurement cell, and the flow rate of the sample liquid passing through the measurement cell The analyzer can be switched between a measurement state in which the measurement cell side is at a high pressure and a bubble removal state in which the flow rate of the sample liquid passing through the measurement cell is large and the measurement cell side is at a low pressure. 前記流量制御手段が前記分岐路中にも設けられている請求項に記載の分析計。The analyzer according to claim 1 , wherein the flow rate control means is also provided in the branch path. 前記導出路はバイパス流路を有しており、このバイパス流路が前記導出路中に設けられた前記流量制御手段をまたぐように配置されている請求項またはに記載の分析計。The analyzer according to claim 1 or 2 , wherein the outlet passage has a bypass passage, and the bypass passage is disposed so as to straddle the flow rate control means provided in the outlet passage.
JP2000185879A 2000-06-21 2000-06-21 Analyzer Expired - Fee Related JP3762619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000185879A JP3762619B2 (en) 2000-06-21 2000-06-21 Analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000185879A JP3762619B2 (en) 2000-06-21 2000-06-21 Analyzer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005340009A Division JP4404845B2 (en) 2005-11-25 2005-11-25 Analyzer

Publications (3)

Publication Number Publication Date
JP2002005943A JP2002005943A (en) 2002-01-09
JP2002005943A5 JP2002005943A5 (en) 2005-04-28
JP3762619B2 true JP3762619B2 (en) 2006-04-05

Family

ID=18686133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000185879A Expired - Fee Related JP3762619B2 (en) 2000-06-21 2000-06-21 Analyzer

Country Status (1)

Country Link
JP (1) JP3762619B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022795A1 (en) * 2011-08-05 2013-02-14 Wyatt Technology Corporation Bubble suppressing system for optical measurement cells
JP6401580B2 (en) * 2014-11-11 2018-10-10 ナガセテクノエンジニアリング株式会社 Analysis apparatus and analysis method
JP5930100B2 (en) * 2015-05-07 2016-06-08 セイコーエプソン株式会社 Detection device
CN105203496A (en) * 2015-09-22 2015-12-30 辽宁好护士药业(集团)有限责任公司 Near-infrared online detecting method for lame impediment tablet concentration process
CN105784778B (en) * 2016-05-25 2018-08-10 安徽华润金蟾药业股份有限公司 A kind of cinobufagin ethyl alcohol recycle section endpoint system and method
JP6904917B2 (en) 2018-03-28 2021-07-21 株式会社日立製作所 Reaction system and reaction method
WO2019229830A1 (en) * 2018-05-29 2019-12-05 株式会社日立ハイテクソリューションズ Water quality meter and water quality management system

Also Published As

Publication number Publication date
JP2002005943A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
US8130379B1 (en) Gas analyzer
US6494077B2 (en) Odor identifying apparatus
US9410872B2 (en) Exhaust gas flowmeter and exhaust gas analyzing system
JP6069034B2 (en) Exhaust gas sampling device
EP2685230B1 (en) Gas analysis device
JPH0795019B2 (en) Method for calibrating an exhaust gas mass flow measuring device for an internal combustion engine, device therefor and proportional sampling method
JP4413160B2 (en) Exhaust gas component analyzer
JP3762619B2 (en) Analyzer
JP4609217B2 (en) Water quality analyzer
JPH07318555A (en) Total organic carbon meter
JP2002005943A5 (en)
EP2352987A1 (en) Gas analyzer
JP4404845B2 (en) Analyzer
JP2013032959A (en) Gas analyzer
EP3333564B1 (en) Fluid analysis apparatus and fluid analysis method
WO2004079336A2 (en) Analyzer with variable volume ballast chamber and method of analysis
JP2006133200A (en) Gas concentration distribution determining device
JPH08226879A (en) Gas-sampling apparatus
JP2005156438A (en) Gas-liquid two phase sample analyzer and analysis method
KR102414181B1 (en) Total organic carbon analyzer
JPS5949532B2 (en) Gas concentration analyzer
JP3113917U (en) Volatile organic compound measuring device
JP2000028497A (en) Method and apparatus for collection of samples as aldehydes and ketones contained in exhaust gas
WO2023120015A1 (en) Exhaust gas analysis device, exhaust gas analysis method, and exhaust gas analysis program
JP5423662B2 (en) Water quality analyzer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees