JP3761822B2 - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JP3761822B2
JP3761822B2 JP2002071385A JP2002071385A JP3761822B2 JP 3761822 B2 JP3761822 B2 JP 3761822B2 JP 2002071385 A JP2002071385 A JP 2002071385A JP 2002071385 A JP2002071385 A JP 2002071385A JP 3761822 B2 JP3761822 B2 JP 3761822B2
Authority
JP
Japan
Prior art keywords
power supply
cooling fan
power
control means
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002071385A
Other languages
Japanese (ja)
Other versions
JP2003274572A (en
Inventor
徹 田中
幹夫 山崎
亨 鈴木
富夫 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002071385A priority Critical patent/JP3761822B2/en
Publication of JP2003274572A publication Critical patent/JP2003274572A/en
Application granted granted Critical
Publication of JP3761822B2 publication Critical patent/JP3761822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蓄電池、太陽光発電手段、冷却ファン等を収納する電源箱を含めた電源装置に係り、太陽光発電手段で発生した電力を利用して冷却ファンを運転し電源箱内を冷却し、条例で定められた各種基準に適合した冷却システムを備えた電源装置に関する。
【0002】
【従来の技術】
従来、蓄電池等を収納した屋外用電源箱内を冷却する冷却ファンの運転には商用電源あるいは蓄電池の電力が用いられており、ファンの起動・停止はサーモスタットによって制御し、ファンの回転数は日射強度に関係なく一定であるか、電源箱内の温度によって回転数が変わるファンを使用していた。
【0003】
【発明が解決しようとする課題】
しかし、従来の屋外用電源箱内を冷却するシステムにおいては、商用電源が停止し、蓄電池も放電終了するとファンも停止してしまい、これら電源が停止後、日射が強い場合には電源箱内の温度が上昇して、蓄電池の劣化が進行してしまうと共に、法令が定めている条例キュービクル式変電設備等の基準のうち、蓄電池設備内が著しく高温にならないようにするという項や、条例キュービクル式蓄電池設備の試験基準のうち、屋外箱内の温度は40℃を限度とする規定に抵触するという問題が生じる。また、電源箱内の温度上昇は、日射強度の上昇に比べて若干の遅れが出ること、好天では急激な温度上昇が起こるため、ファンの起動に遅れが出てしまい、十分な冷却効果が得られない。さらに、各自治体が定める公害防止条例の騒音基準において、一番規制の厳しい夕方から夜間の基準を満たすために、回転数が一定であるファンを用いた場合、ファンの回転数を低くしなければならず、日中、日射強度が強い場合には十分な冷却効果が得られない。また電源箱内の温度によって、回転数が変わるファンを用いる場合、電源箱の温度が夕方・夜間になっても依然として高い場合は、高速回転のままであり規制基準を上回ってしまう。
【0004】
本発明の目的は、上記従来技術における問題点を解決するためになされたものであって、商用電源が停止し、蓄電池が放電しきった後でも電源箱内を冷却することができ、条例で定められた基準に適合した電源箱の冷却システムを備えた電源装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明は特許請求の範囲に記載のような構成とするものである。すなわち、本発明は請求項1に記載のように、少なくとも蓄電池と太陽光発電手段と冷却ファンとを収納する電源箱を含めた電源装置であって、外部負荷に電力を供給する蓄電池と、太陽光により発電する太陽光発電手段と、上記電源箱内の空気を循環すると共に、温められた空気を外に排出して、上記電源箱内を冷却する冷却ファンと、上記太陽光発電手段により生じた電力を上記冷却ファンに供給するか、上記蓄電池に供給するか、もしくは上記蓄電池の電力を上記冷却ファンに供給するか、を切り替え制御する第1の制御手段と、上記第1の制御手段を介して上記冷却ファンに供給される上記太陽光発電手段により生じた電力または上記蓄電池の電力を制御して上記冷却ファンの回転数を制御する第2の制御手段と、上記第1、第2の制御手段を制御する第3の制御手段を備え、上記太陽光発電手段により生じた電力の電圧をデューティー比一定で変換する電圧変換手段をさらに備え、上記第3の制御手段により、上記第1の制御手段にて上記太陽光発電手段により上記冷却ファンに電力を供給する状態に選択された場合、上記太陽光発電手段から上記電圧変換手段を介して上記冷却ファンに電力を供給することにより、日射強度がある強度以上となり、上記冷却ファンが起動できる電圧に達すると、上記冷却ファンが起動し、日射強度に応じて上記冷却ファンの回転数が変化し、かつ、日射強度が低下し上記冷却ファンが停止する電圧に達すると上記冷却ファンが停止し、日射強度に応じて上記冷却ファンの起動・停止・回転数の制御を行う電源装置とするものである。
【0007】
また、請求項に記載のように、請求項1において、上記第3の制御手段内にタイマーをさらに備え、上記第3の制御手段から出力される上記タイマーに設定された時刻によって上記第2の制御手段は、上記冷却ファンから発生する騒音を、あらかじめ定められた騒音基準以下となるように、上記冷却ファン回転数を制御するよう動作する電源装置とするものである。
【0008】
また、請求項に記載のように、請求項1または請求項において、上記第3の制御手段内に温度検出手段をさらに備え、上記第3の制御手段から出力される上記温度検出手段からの信号によって上記第1の制御手段は、上記電源箱内の温度が冷却する必要があるしきい値温度を上回った場合に、上記太陽光発電手段によって生じた電力を上記冷却ファンヘ供給し、上記しきい値温度を下回った場合に、上記太陽光発電手段によって生じた電力を上記蓄電池へ供給して上記蓄電池を補助的に充電するよう動作する電源装置とするものである。
【0009】
また、請求項に記載のように、請求項1または請求項において、上記第3の制御手段内に温度検出手段をさらに備え、上記第3の制御手段から出力される上記温度検出手段からの信号によって上記第1の制御手段は、上記電源箱内の温度があらかじめ定められた上限値手前の温度を上回り、かつ上記太陽光発電手段によって生じた電力が上記冷却ファンの作動電圧以下である場合に、上記蓄電池の電力を上記冷却ファンヘ供給して上記電源箱内を冷却するよう動作する電源装置とするものである。
【0010】
また、請求項に記載のように、請求項1ないし請求項のいずれか1項において、上記電源箱の屋根裏の構造をドーム型とすると共に、屋根横周囲に空気排出口を設け、上記冷却ファンで生じた空気の流れを効率よく排出する構造にした電源装置とするものである。
【0011】
また請求項に記載のように、請求項1ないし請求項のいずれか1項において、上記電源箱を二重構造とし外箱と内箱の間に影を作ると共に、外箱の外側表面に赤外線反射塗料を塗布した電源装置とするものである。
【0012】
また、請求項に記載のように、請求項において、上記電源箱の内側の板内面に断熱材を貼り付けた電源装置とするものである。
【0013】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を詳細に説明する。
図1は本発明の実施の形態の一例である蓄電池、太陽光発電手段、冷却ファン等を収納する電源箱を含めた電源装置の構成を示す図、図2は本発明の実施の形態の一例である電源箱の構造を示す図。図3は本発明の実施の形態の一例である電力供給ブロック図、図4は本実施の形態に係る電圧変換手段bの一例として昇圧コンバータを用いた時の各入力電圧におけるデューティー比と出力電圧の関係を示す図、図5は本実施の形態に係るファン入力電圧とファン回転数の関係を示す図、図6は本実施の形態に係る日射量と時刻に応じたファンの回転数(運転状態)を示す図、図7は本実施の形態に係る電源箱内の温度に応じた電力供給状態を示す図、図8は本実施の形態に係る蓄電池からファンヘ電力供給する場合の日射量と電源箱内の温度状態を示す図、図9は本実施の形態に係る電源箱に赤外線反射塗料を塗布した場合と塗布しない場合の温度上昇の比較図である。
また、表1は東京都と大阪府の騒音防止条例における騒音レベル規制基準である。
【0014】
図1において、通信装置1は平常時には商用電源Pで運転しており、上記商用電源の電圧を変換する電圧変換手段a3と、上記電圧変換手段a3に接続された負荷2とで構成される。本発明の電源装置21は上記商用電源Pが停止したとき上記負荷2に電力を供給する蓄電池4と、電源箱5(図2参照)と、上記電源箱5の上部に太陽光Lにより発電する太陽光発電手段6と、上記太陽光発電手段6により生じた電圧を変換する電圧変換手段b7と、上記電源箱5内の空気を循環させると共に、上記電源箱5内で日射や外気温で温められた空気を外に排出して、上記電源箱5を冷却する冷却ファン12と、上記太陽光発電手段6によって生じた電力を上記冷却ファン12ヘ供給するか、上記蓄電池4へ供給するか、あるいは上記蓄電池4の電力を上記冷却ファン12ヘ供給するかを切り替えるスイッチ1と、上記冷却ファン12の回転数を切り替えるスイッチ2と電圧変換手段c10と、上記スイッチ1と2を制御する制御手段11によって構成されている。
【0015】
本発明の電源装置では図3に示すように、太陽光から太陽光発電手段6によって電力を発生し、得られた電力を電圧変換手段b7で所要の電圧に変換して冷却ファン12に電力を供給し、冷却ファン12を作動させる。この作動した冷却ファン12によって日射や外気温で温められた電源箱内部の空気を強制的に排気し電源箱5内を冷却する。
図3に示すように、スイッチ2(9)はタイマー11bによって切り替えを、スイッチ1a(8a)、スイッチ1b(8b)はサーモスタット11aによって開閉を行う。ダイオード19は蓄電池放電が行われたときに逆流電流が電圧変換手段bに流れるのを防ぐためにある。
【0016】
まず太陽光発電手段6と、電圧変換手段bの動作について説明する。太陽光発電手段6は、日射強度に応じて取り出すことのできる電力が変化する。この性質を利用して、電圧変換手段bの出力電圧も日射強度に応じて変化するようにした。太陽光発電手段6から出力される最大電圧が冷却ファン12の定格運転時の電圧に比べて低い場合、電圧変換手段bは昇圧コンバータに、あるいは太陽光発電手段6から出力される最大電圧がファン12の定格運転時の電圧に比べて高い場合、電圧変換手段bは降圧コンバータにすればよい。
【0017】
図4に電圧変換手段bの一例として昇圧コンバータを用いた時の各入力電圧におけるデューティー比と出力電圧の関係を示す。通常のコンバータでは入力電圧が変化するとデューティー比を変化させて出力電圧を一定とする。本発明ではコンバータのデューティー比を一定とする。日射強度が十分にあるときは電圧変換手段bからの出力電力は一定であるため、コンバータの出力電圧は一定となる。しかし日射強度が少なくなると取り出せる電力が小さくなるため、入力電圧が低下し、コンバータの出力電圧も低下する。この電圧をファンに供給すると電圧に応じた回転数となる。したがって日射強度に応じた回転数が実現する。
【0018】
図5に、ファン入力電圧とファン回転数の関係を示す。出力電圧が小さいとファンは回転せず、ある電圧になると回転し始めるが回転数は低い。出力電圧が大きくなるとファン回転数も増加してゆく。コンバータの出力電圧をファンの定格電圧に設定しておけば、日射強度が強くなり過ぎても出力電圧は一定となるため、ファン回転数も一定となる。
【0019】
次に、スイッチ2(9)とタイマー11b(図3参照)の動作について説明する。電源箱ではファン以外に音を出すものが存在しないため、ファンの回転数のみによって騒音レベルが変化する。すなわち、ファンの回転数が高ければ騒音レベルは大きくなり、ファンの回転数が低ければ騒音レベルは小さくなる。ここで、自治体が定める公害防止条例の騒音基準を満たすためにファンの回転数を抑える必要があるが、騒音基準は時間帯によって変化し、昼間は比較的基準が緩く、夕方から夜間、深夜にかけては基準が厳しい。例えば、東京都の住宅地域における騒音基準は午前8時から午後7時までは45dB(A)、それ以外は40dB(A)となっている。したがって、ファンの回転数は昼間は騒音基準が緩いため比較的高く、夕方以降は低く設定すれば騒音基準を満たしつつ昼間の電源箱の冷却を効果的に行うことができる。スイッチ2が接点1に接続されるとファンの入力電圧はコンバータの出力電圧と等しいため、日射強度に応じたファン回転数となる。スイッチ2が接点2に接続されると、ファンの入力電圧は電圧変換手段c内のダイオード20のツェナー電圧以上の電圧とはならないため、日射強度が強くなっても、ある回転数で制御される。このスイッチ2の切り替えをタイマーによって制御し、タイマーは騒音基準が変わる時刻に設定しておく。例えば、東京都の騒音基準に合わせると、午前8時にスイッチ2が接点1へ、午後7時に接点2へ接続されるように設定しておく。公害防止条例の騒音規制基準は表1に示すように各自治体によって時間帯、騒音レベルが異なるため、タイマーは各自治体の基準に沿って設定することも可能であり、また比較的厳しい自治体の基準に合わせておくようにすれば、それより緩い基準を持つ自治体には無条件で適応することができる。
【0020】
【表1】

Figure 0003761822
図6に、日射強度(日射量)と時刻に応じたファンの運転状態(回転数)を示す。日の出と共に、太陽光発電手段は発電を開始するが電圧が低いためファンは起動しない。この時、まだ午前8時前であればスイッチ2は接点2へ接続されている。ある日射強度になるとファン起動電圧に達するため、ファンは起動する。さらに、日射強度が上昇すると強度に応じてファン回転数が上昇する。しかし、スイッチ2が接点2へ接続されているため日射強度がさらに上昇してもファン回転数はある値で一定となる。8時になると騒音基準が緩くなるため、ファン回転数を増加させることができ、タイマーによりスイッチ2は接点1へ切り替わりファンは高速回転となる。夕方になると日射強度が弱くなるためファン回転数が減少する。午後7時になるとタイマーが作動しスイッチ2が接点2に切り替わり、ファン回転数がある値で一定となる。さらに日射強度が弱くなるとコンバータの出力電圧の減少に応じてファン回転数も減少してゆく。日射強度が0近くになると、太陽光発電手段で生じた電圧がファン作動電圧よりも小さくなり、ファンは停止する。以上によりファンの回転数をタイマーにより制御することにより、自治体の公害防止条例の騒音基準を満たしつつ、昼間日射強度が強い場合には効果的に電源箱内を冷却することができる。
【0021】
スイッチ1a、1bは、電力供給の切り替えスイッチであり、サーモスタットによって制御される。図7に、電源箱内の温度Tに応じた電力供給状態を示す。電源箱内温度が冷却する必要のあるしきい値温度Taを上回るとサーモスタットによってスイッチが切り替わるように設定すると、Ta以上となるとスイッチ1aはオン、スイッチ1bはオフとなり太陽光発電手段で生じた電力はファンヘ供給される。Ta以下になると、スイッチ1aはオフ、スイッチ1bはオンとなり、太陽光発電手段で生じた電力は蓄電池へ供給される。これにより、電源箱内の冷却が必要でない場合には、太陽光発電手段で発生した電力を蓄電池に充電することにより、商用電源から蓄電池へ充電する電力を節約することができる。
【0022】
日射強度が極めて弱いかゼロであるにもかかわらず、電源箱内の温度が依然として高い状態があった場合には、緊急手段として蓄電池からの電力でファンを作動する。図8に蓄電池からファンヘ電力供給する場合の日射量と電源箱内の温度状態を示す。電圧変換手段bの出力電圧を検出してファンが作動できない電圧であり、かつサーモスタットで検出した電源箱内温度Tが法令等が定める上記電源箱内温度の上限値手前の温度Tb以上の条件が揃った場合には、スイッチ1a、1bを同時にオンさせ蓄電池からファンヘ電力を供給する。また、この電力供給は蓄電池が、ある電圧以下となった場合には蓄電池を保護するためスイッチ1bをオフする。この供給方法は、商用電源が停止し蓄電池電力が通信装置の負荷によって消費され蓄電池放電終了電圧まで放電しきった場合には使用することはできないが、蓄電池が放電しきって、かつ日没後に電源箱内温度が依然として高いというケースは極めて希である。
【0023】
次に、電源箱構造の詳細について説明する。図2に示すように、電源箱5は二重構造となっており、外箱13の鋼板の外側には赤外線反射塗料が塗布されており、内側の鋼板の裏側には断熱材15が貼り付けてある。また、電源箱5上部の構造は外から水や異物の侵入を抑えるため、屋根裏と冷却ファン12外周に壁を設けると共に、ファンの空気排出口16には網を張ってある。そして、屋根裏の構造をドーム型構造17とすることにより換気装置(冷却ファン12)で排気した空気を効率よく屋根横の空気排出口16に流れるようにしてある。さらに、屋根横周囲の排出口を多く開けることにより、空気を効率よく外に排出できるようにしてある。屋根裏の構造はドーム型の他に四角錐にしてもよく、この場合、鋼板の加工性が容易になるという利点がある。
【0024】
図9は、電源箱に赤外線反射塗料を塗布した場合と塗布しない場合の温度上昇の比較図である。気温が低い場合には差はほとんど見られないが、気温が高い地点では2、3℃の違いが見られる。これは特に、日中日射が強い時に効果的であることが分かる。また、電源箱を二重構造とすると外箱と内箱の間に影ができるため、内箱に及ぼす日射の影響を小さくすることができる。さらに、内箱の板内面に断熱材を張ることにより、日射や外気温によって温められた空気が電源箱内に侵入することを防ぐ効果がある。
【0025】
【発明の効果】
(1)本発明の請求項1記載の電源装置においては、本発明の請求項1に記載の商用の電力、蓄電池の電力とは独立した太陽光発電手段を用いて、太陽光発電の電力で冷却ファンを駆動することにより、商用電源が停止し蓄電池放電終了後でも電源箱内を冷却することができ、さらに、太陽光発電手段からデューティー比一定の電圧変換手段bを介して上記冷却ファンに電力を供給することにより、日射強度に応じた冷却ファンの回転数を実現し、日射強度が急激に上昇した場合でも即座に冷却することができると共に、回路構成はデューティー比一定であるため、フィードバック回路が不要となり、部品点数を削減することができ、コスト削減と省スペース化を図ることができる。
また、本発明の請求項記載の電源装置においては、タイマーにより各自治体が定める公害防止条例の騒音基準を満たすように冷却ファン回転数を制御するため、昼間、電源箱内温度が高くなった場合には、冷却ファンを高速回転で運転し電源箱内を効果的に冷却し、夕方や夜には、冷却ファンを低速回転に落とすことにより、昼間よりも厳しい騒音基準を満たしつつ、上記電源箱内を冷却することができる。
また、本発明の請求項記載の電源装置においては、制御手段内の温度検出手段において上記電源箱内の温度Tが蓄電池を冷却する必要のあるしきい値温度Taを上回った場合に、スイッチ1を通じて太陽光発電手段によって生じた電力をファンヘ供給し、Taを下回った場合に切り替えスイッチ1を通じて蓄電池へ供給する構成としており、外気温は低いが日射がある程度存在するような状況が生じた場合には、太陽光発電手段の電力を蓄電池に充電できるため、商用電源からの蓄電池に充電する電力を節約することができる。
また、本発明の請求項記載の電源装置においては、制御手段内の温度検出手段において、上記箱内の温度Tが法令等が定める電源箱内温度の上限値手前の温度Tbを上回り、か太陽光発電手段によって生じた電圧がファン作動電圧以下である場合に、スイッチ1を通じて蓄電池の電力をファンヘ供給し上記電源箱内を冷却し、法令等が定める上記電源箱内温度の上限値を越えないように制御しており、外気温は高いが日射がゼロ、あるいは弱く、太陽光発電手段の電力ではファンが作動しない状況が生じた場合には、蓄電池からの電力で冷却ファンを駆動する緊急手段があるため、蓄電池の温度上昇を防ぐことができ、その劣化防止に役立
また、本発明の請求項記載の電源装置においては、屋根裏の構造をドーム型にすると共に、屋根横周囲に空気排出口を設け、上記電源箱内の空気を効率よく排出することができる。
また、本発明の請求項記載の電源装置においては、上記電源箱に赤外線反射塗料を塗布し、かつ、二重構造とすることにより日射に対する遮蔽効果を上げることができる。
また、本発明の請求項記載の電源装置においては、上記電源箱の内箱の板内側に断熱材を貼り付けることにより日射によって温められた空気が上記電源箱内に侵入しないようにできる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例である蓄電池、太陽光発電手段、冷却ファン等を収納する電源箱を含めた電源装置の構成を示す図。
【図2】本発明の実施の形態の一例である電源箱の構造を示す模式図。
【図3】本発明の実施の形態の一例である電力供給ブロック図。
【図4】本発明の実施の形態に係る電圧変換手段として昇圧コンバータを用いた時の各入力電圧におけるデューティー比と出力電圧の関係を示す図。
【図5】本発明の実施の形態に係るファン入力電圧とファン回転数の関係を示す図。
【図6】本発明の実施の形態に係る日射強度(日射量)と時刻に応じたファンの運転状態(回転数)を示す図。
【図7】本発明の実施の形態に係る電源箱内の温度に応じた電力供給状態を示す図。
【図8】本発明の実施の形態に係る蓄電池からファンヘ電力供給する場合の日射量と電源箱内の温度状態を示す図。
【図9】本発明の実施の形態に係る電源箱に赤外線反射塗料を塗布した場合と塗布しない場合の温度上昇の比較を示す図。
【符号の説明】
1…通信装置
2…負荷
3…電圧変換手段a
4…蓄電池
5…電源箱
6…太陽光発電手段
7…電圧変換手段b
8…スイッチ1
8aスイッチ1a
8bスイッチ1b
9…スイッチ2
10…電圧変換手段c
11…制御手段
11a…サーモスタット
11b…タイマー
12…冷却ファン
13…外箱
14…内箱
15…断熱材
16…空気排気口
17…ドーム型構造
18…雨水侵入防止板
19…ダイオード1
20…ダイオード2
21…電源装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply device including a power supply box that houses a storage battery, a solar power generation means, a cooling fan, etc., and operates the cooling fan using power generated by the solar power generation means to cool the inside of the power supply box. The present invention relates to a power supply device provided with a cooling system that conforms to various standards defined by regulations.
[0002]
[Prior art]
Conventionally, commercial power supply or storage battery power is used to operate the cooling fan that cools the inside of the outdoor power supply box that houses the storage battery, etc., and the start and stop of the fan is controlled by a thermostat, and the rotation speed of the fan is controlled by solar radiation. A fan whose rotation speed is constant regardless of the strength or whose rotation speed varies depending on the temperature in the power supply box was used.
[0003]
[Problems to be solved by the invention]
However, in the conventional system that cools the inside of the outdoor power supply box, the commercial power supply stops, the storage battery discharges and the fan stops when the discharge is completed. As the temperature rises, the deterioration of the storage battery progresses, and among the standards of the ordinance cubicle type substation equipment, etc. stipulated by laws and regulations, the section that the storage battery equipment does not become extremely hot or the ordinance cubicle type Among the test standards for storage battery equipment, the temperature inside the outdoor box violates regulations that limit 40 ° C. In addition, the temperature rise in the power supply box is slightly delayed compared to the increase in solar radiation intensity, and since the temperature rises suddenly in fine weather, the startup of the fan is delayed and a sufficient cooling effect is obtained. I can't get it. Furthermore, in order to satisfy the standards from the evening of the most severe regulations to the night in the noise standards of the pollution prevention regulations established by each local government, if a fan with a constant rotation speed is used, the fan rotation speed must be reduced. In addition, a sufficient cooling effect cannot be obtained when the solar radiation intensity is strong during the day. Also, when using a fan whose rotational speed varies depending on the temperature in the power supply box, if the power supply box temperature is still high even in the evening or at night, it remains at high speed and exceeds the regulation standard.
[0004]
An object of the present invention is to solve the above-described problems in the prior art, and the power supply box can be cooled even after the commercial power supply is stopped and the storage battery is completely discharged. It is an object of the present invention to provide a power supply device including a cooling system for a power supply box that conforms to established standards.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as described in the claims. That is, the present invention is a power supply device including a power supply box that houses at least a storage battery, solar power generation means, and a cooling fan, as described in claim 1, a storage battery that supplies power to an external load, Photovoltaic power generation means that generates electricity by light, and the cooling fan that circulates the air in the power supply box and discharges the warmed air to cool the power supply box, and the solar power generation means First control means for switching control of whether to supply power to the cooling fan, to supply the storage battery, or to supply power to the storage battery to the cooling fan, and the first control means, Second control means for controlling the number of revolutions of the cooling fan by controlling the power generated by the solar power generation means supplied to the cooling fan or the power of the storage battery, and the first and second A third control means for controlling the control means further includes a voltage conversion means for converting the voltage of the power generated by the photovoltaic means with the duty ratio constant, by the third control means, said first When the control means is selected to supply power to the cooling fan by the solar power generation means, solar power is supplied from the solar power generation means to the cooling fan via the voltage conversion means. When the strength exceeds a certain level and reaches a voltage at which the cooling fan can be activated, the cooling fan is activated, the number of rotations of the cooling fan changes according to the solar radiation intensity, and the solar radiation intensity decreases to decrease the cooling fan. When the voltage reaches the stop voltage, the cooling fan stops, and the power supply device controls the start / stop / rotation speed of the cooling fan according to the solar radiation intensity .
[0007]
Further, as described in claim 2, Oite, by the further comprising a timer to the third control means, the third time set in the timer output from the control means to claim 1, The second control means is a power supply device that operates to control the number of rotations of the cooling fan so that noise generated from the cooling fan is equal to or lower than a predetermined noise standard.
[0008]
Further, as described in claim 3 , in claim 1 or claim 2 , further comprising a temperature detection means in the third control means, and the temperature detection means output from the third control means. In response to the signal , the first control means supplies the electric power generated by the solar power generation means to the cooling fan when the temperature in the power supply box exceeds a threshold temperature that needs to be cooled. When the temperature is lower than the threshold temperature, the power generated by the solar power generation means is supplied to the storage battery so as to supplementarily charge the storage battery.
[0009]
Further, as described in claim 4 , in claim 1 or claim 2 , further comprising a temperature detection means in the third control means, and the temperature detection means output from the third control means. With the above signal , the first control means causes the temperature in the power supply box to exceed a predetermined upper limit temperature, and the electric power generated by the solar power generation means is less than the operating voltage of the cooling fan. In some cases, the power supply device operates to supply power from the storage battery to the cooling fan to cool the inside of the power supply box.
[0010]
Further, as described in claim 5 , in any one of claims 1 to 4 , the attic structure of the power supply box is a dome shape, and an air discharge port is provided around the roof, The power supply device has a structure for efficiently discharging the air flow generated by the cooling fan.
[0011]
In addition , as described in claim 6 , in any one of claims 1 to 5 , the power supply box has a double structure, and a shadow is formed between the outer box and the inner box. The power supply device has an infrared reflective paint applied to the surface.
[0012]
Further, as described in claim 7 , in claim 6 , the power supply device is configured such that a heat insulating material is attached to the inner surface of the plate inside the power supply box.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
FIG. 1 is a diagram showing a configuration of a power supply apparatus including a power supply box that houses a storage battery, solar power generation means, a cooling fan, etc. as an example of an embodiment of the present invention, and FIG. 2 is an example of an embodiment of the present invention. The figure which shows the structure of the power supply box which is. FIG. 3 is a power supply block diagram as an example of an embodiment of the present invention, and FIG. 4 is a diagram illustrating a duty ratio and an output voltage at each input voltage when a boost converter is used as an example of the voltage conversion unit b according to the present embodiment. FIG. 5 is a diagram showing the relationship between the fan input voltage and the fan rotation speed according to the present embodiment, and FIG. 6 is a fan rotation speed (operation) according to the amount of solar radiation and time according to the present embodiment. FIG. 7 is a diagram showing a power supply state according to the temperature in the power supply box according to the present embodiment, and FIG. 8 is the amount of solar radiation when power is supplied to the fan from the storage battery according to the present embodiment. The figure which shows the temperature state in a power supply box, FIG. 9 is a comparison figure of the temperature rise when not apply | coating with the case where an infrared reflective coating material is apply | coated to the power supply box which concerns on this Embodiment.
Table 1 shows the noise level regulations in the Tokyo and Osaka Prefectures.
[0014]
In FIG. 1, the communication device 1 is operated with a commercial power source P in a normal state, and includes a voltage converting unit a3 that converts the voltage of the commercial power source and a load 2 connected to the voltage converting unit a3. The power supply device 21 of the present invention generates power by sunlight L on the storage battery 4 that supplies power to the load 2 when the commercial power supply P is stopped, the power supply box 5 (see FIG. 2), and the power supply box 5. The solar power generation means 6, the voltage conversion means b 7 for converting the voltage generated by the solar power generation means 6, and the air in the power supply box 5 are circulated and warmed in the power supply box 5 by solar radiation or outside temperature. The discharged air is discharged to the outside, and the cooling fan 12 that cools the power supply box 5 and the power generated by the solar power generation means 6 are supplied to the cooling fan 12 or the storage battery 4, Alternatively, the switch 1 that switches whether the power of the storage battery 4 is supplied to the cooling fan 12, the switch 2 that switches the rotation speed of the cooling fan 12, the voltage conversion means c10, and the control that controls the switches 1 and 2. It is constituted by a step 11.
[0015]
In the power supply device of the present invention, as shown in FIG. 3, electric power is generated from sunlight by the solar power generation means 6, and the obtained electric power is converted into a required voltage by the voltage conversion means b <b> 7 to supply power to the cooling fan 12. Then, the cooling fan 12 is operated. The power supply box 5 is forcibly exhausted by the activated cooling fan 12 and heated in the solar radiation or outside air temperature to cool the power supply box 5.
As shown in FIG. 3, the switch 2 (9) is switched by a timer 11b, and the switches 1a (8a) and 1b (8b) are opened and closed by a thermostat 11a. The diode 19 is for preventing a reverse current from flowing to the voltage conversion means b when the storage battery is discharged.
[0016]
First, operations of the solar power generation means 6 and the voltage conversion means b will be described. The electric power that can be taken out from the solar power generation means 6 changes according to the solar radiation intensity. Using this property, the output voltage of the voltage converting means b is also changed according to the solar radiation intensity. When the maximum voltage output from the solar power generation means 6 is lower than the voltage during the rated operation of the cooling fan 12, the voltage conversion means b is applied to the boost converter or the maximum voltage output from the solar power generation means 6 is the fan. If the voltage is higher than the rated operation voltage of 12, the voltage conversion means b may be a step-down converter.
[0017]
FIG. 4 shows the relationship between the duty ratio and the output voltage at each input voltage when a boost converter is used as an example of the voltage conversion means b. In a normal converter, when the input voltage changes, the duty ratio is changed to make the output voltage constant. In the present invention, the duty ratio of the converter is constant. When the solar radiation intensity is sufficient, the output power from the voltage conversion means b is constant, so the output voltage of the converter is constant. However, when the solar radiation intensity decreases, the power that can be extracted decreases, so the input voltage decreases and the output voltage of the converter also decreases. When this voltage is supplied to the fan, the number of rotations according to the voltage is obtained. Therefore, the rotation speed according to the solar radiation intensity is realized.
[0018]
FIG. 5 shows the relationship between the fan input voltage and the fan speed. When the output voltage is small, the fan does not rotate, and when it reaches a certain voltage, it starts rotating, but the rotational speed is low. As the output voltage increases, the fan speed also increases. If the output voltage of the converter is set to the rated voltage of the fan, the output voltage will be constant even if the solar radiation intensity becomes too strong, so the fan speed will also be constant.
[0019]
Next, the operation of the switch 2 (9) and the timer 11b (see FIG. 3) will be described. Since there is nothing in the power supply box that emits sound other than the fan, the noise level changes only by the rotation speed of the fan. That is, the noise level increases when the fan speed is high, and the noise level decreases when the fan speed is low. Here, it is necessary to suppress the fan speed to meet the noise standards of the pollution prevention regulations set by the local government, but the noise standards vary depending on the time of day, and the standards are relatively loose during the day, from evening to night to midnight. The standards are strict. For example, the noise standard in a residential area in Tokyo is 45 dB (A) from 8 am to 7 pm, and 40 dB (A) otherwise. Therefore, the rotation speed of the fan is relatively high because the noise standard is loose during the daytime, and if it is set low after the evening, the power box can be effectively cooled during the day while satisfying the noise standard. When the switch 2 is connected to the contact 1, since the input voltage of the fan is equal to the output voltage of the converter, the fan rotation speed is in accordance with the solar radiation intensity. When the switch 2 is connected to the contact 2, the input voltage of the fan does not exceed the Zener voltage of the diode 20 in the voltage conversion means c, so that even if the solar radiation intensity increases, it is controlled at a certain rotational speed. . The switching of the switch 2 is controlled by a timer, and the timer is set at a time when the noise reference changes. For example, in accordance with the noise standards of Tokyo, the switch 2 is set to be connected to the contact 1 at 8 am and to the contact 2 at 7 pm. As shown in Table 1, the noise regulation standards of the pollution prevention regulations vary depending on the time zone and noise level of each municipality, so the timer can be set according to the standards of each municipality, and the standards of relatively strict municipalities If it is adapted to, it can adapt unconditionally to local governments with looser standards.
[0020]
[Table 1]
Figure 0003761822
FIG. 6 shows the fan operating state (rotation speed) according to the solar radiation intensity (solar radiation amount) and time. As the sun rises, the solar power generation means starts generating power, but the fan does not start because the voltage is low. At this time, if it is still before 8 am, the switch 2 is connected to the contact 2. When a certain solar radiation intensity is reached, the fan starts up because the fan starting voltage is reached. Further, when the solar radiation intensity increases, the fan rotation speed increases according to the intensity. However, since the switch 2 is connected to the contact 2, even if the solar radiation intensity further increases, the fan rotation speed becomes constant at a certain value. At 8 o'clock, since the noise standard becomes loose, the fan rotation speed can be increased, and the timer switches the switch 2 to the contact 1 and the fan rotates at high speed. In the evening, the fan rotation speed decreases because the solar radiation intensity decreases. At 7:00 pm, the timer is activated and the switch 2 switches to the contact 2 so that the fan speed becomes constant at a certain value. Furthermore, if the solar radiation intensity becomes weaker, the fan speed also decreases as the output voltage of the converter decreases. When the solar radiation intensity becomes close to 0, the voltage generated by the solar power generation means becomes smaller than the fan operating voltage, and the fan stops. By controlling the number of rotations of the fan with the timer as described above, the inside of the power supply box can be effectively cooled when the daytime solar radiation intensity is strong while satisfying the noise standards of the local government pollution prevention regulations.
[0021]
The switches 1a and 1b are power supply changeover switches and are controlled by a thermostat. FIG. 7 shows a power supply state according to the temperature T in the power supply box. If the thermostat is set so that the switch is switched when the temperature in the power supply box exceeds the threshold temperature Ta that needs to be cooled, the switch 1a is turned on and the switch 1b is turned off when the temperature is equal to or higher than Ta. Is supplied to the fan. When Ta falls below Ta, the switch 1a is turned off, the switch 1b is turned on, and the electric power generated by the solar power generation means is supplied to the storage battery. Thereby, when the cooling in the power supply box is not necessary, the power charged from the commercial power source to the storage battery can be saved by charging the storage battery with the power generated by the solar power generation means.
[0022]
Even if the solar radiation intensity is extremely weak or zero, when the temperature in the power supply box is still high, the fan is operated with the electric power from the storage battery as an emergency means. FIG. 8 shows the amount of solar radiation and the temperature state in the power supply box when power is supplied from the storage battery to the fan. The voltage at which the fan cannot operate by detecting the output voltage of the voltage conversion means b, and the temperature T in the power supply box detected by the thermostat is equal to or higher than the temperature Tb before the upper limit of the power supply box temperature defined by laws and regulations. When they are aligned, the switches 1a and 1b are simultaneously turned on to supply power from the storage battery to the fan. In addition, when the storage battery is below a certain voltage, the power supply turns off the switch 1b to protect the storage battery. This supply method cannot be used when the commercial power supply is stopped and the storage battery power is consumed by the load of the communication device and is completely discharged to the storage battery discharge end voltage, but the storage battery is completely discharged and the power supply box after sunset The case where the internal temperature is still high is extremely rare.
[0023]
Next, the details of the power supply box structure will be described. As shown in FIG. 2, the power supply box 5 has a double structure, and an infrared reflective paint is applied to the outer side of the steel plate of the outer box 13, and a heat insulating material 15 is attached to the back side of the inner steel plate. It is. In addition, the upper structure of the power supply box 5 is provided with walls on the attic and on the outer periphery of the cooling fan 12 in order to suppress the intrusion of water and foreign matter from the outside, and the air discharge port 16 of the fan is stretched. The attic structure is changed to the dome-shaped structure 17 so that the air exhausted by the ventilation device (cooling fan 12) flows efficiently to the air outlet 16 on the side of the roof. Furthermore, air can be efficiently discharged outside by opening a large number of discharge openings around the roof. The structure of the attic may be a quadrangular pyramid in addition to the dome shape, and in this case, there is an advantage that the workability of the steel plate becomes easy.
[0024]
FIG. 9 is a comparison diagram of temperature rise when the infrared reflective coating is applied to the power supply box and when it is not applied. When the temperature is low, there is almost no difference, but at a point where the temperature is high, a difference of a few degrees is seen. This proves particularly effective when the daytime solar radiation is strong. Further, when the power supply box has a double structure, a shadow is formed between the outer box and the inner box, so that the influence of solar radiation on the inner box can be reduced. Further, by applying a heat insulating material to the inner surface of the inner box, there is an effect of preventing air heated by solar radiation or outside temperature from entering the power supply box.
[0025]
【The invention's effect】
(1) The power supply device according to claim 1 Symbol placement of the present invention, the commercial power according to claim 1 of the present invention, by using solar power means independent of the power of the storage battery, the photovoltaic power By driving the cooling fan, the inside of the power supply box can be cooled even after the commercial power supply is stopped and the storage battery discharge is completed, and the cooling fan is further passed from the solar power generation means via the voltage conversion means b with a constant duty ratio. By supplying electric power to the cooling fan, the number of rotations of the cooling fan can be realized according to the solar radiation intensity, and even if the solar radiation intensity suddenly increases, the circuit configuration is constant and the duty ratio is constant. A feedback circuit becomes unnecessary, the number of parts can be reduced, and cost reduction and space saving can be achieved.
( 2 ) In the power supply device according to claim 2 of the present invention , the temperature in the power supply box is controlled during the daytime in order to control the rotation speed of the cooling fan so as to satisfy the noise standards of the pollution prevention regulations stipulated by each local government by a timer. When the temperature becomes high , the cooling fan is operated at a high speed to cool the power box effectively, and in the evening or at night, the cooling fan is turned to a low speed to meet stricter noise standards than in the daytime. Meanwhile, the inside of the power supply box can be cooled.
(3) In the power supply device according to claim 3 of the present invention, in the temperature detecting means in the control means, the temperature T inside the power box exceeds the threshold temperature Ta that need to cool the battery In this case, the power generated by the solar power generation means is supplied to the fan through the switch 1, and when it falls below Ta, the power is supplied to the storage battery through the changeover switch 1, and the outside air temperature is low but there is some solar radiation. When the situation arises, the power of the solar power generation means can be charged to the storage battery, so that the power charged from the commercial power source to the storage battery can be saved.
( 4 ) Further , in the power supply device according to claim 4 of the present invention, in the temperature detection means in the control means, the temperature T in the box is set to a temperature Tb before the upper limit of the temperature in the power supply box determined by laws and regulations. exceeded, when the voltage generated by either one photovoltaic device is less than the fan operating voltage, the power of the storage battery and Fanhe supply cooled in the power box through the switch 1, the power supply box in temperature laws stipulated If the outside air temperature is high but the solar radiation is zero or weak and the fan does not operate with the power of the solar power generation means, the cooling fan is powered by the power from the storage battery. because there is an urgent means for driving the can prevent the temperature rise of the storage battery, useful elevational one to the deterioration prevention.
( 5 ) Moreover, in the power supply device according to claim 5 of the present invention , the structure of the attic is made to be a dome shape, and an air discharge port is provided around the roof, so that the air in the power supply box is efficiently discharged. Can do.
( 6 ) Moreover, in the power supply device according to claim 6 of the present invention, it is possible to increase the shielding effect against solar radiation by applying an infrared reflective paint to the power supply box and forming a double structure.
( 7 ) Moreover, in the power supply device according to claim 7 of the present invention, air heated by solar radiation is prevented from entering the power supply box by attaching a heat insulating material to the inner side of the inner box of the power supply box. Can be.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of a power supply device including a power supply box that houses a storage battery, solar power generation means, a cooling fan, and the like, which is an example of an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a structure of a power supply box which is an example of an embodiment of the present invention.
FIG. 3 is a power supply block diagram as an example of an embodiment of the present invention.
FIG. 4 is a diagram showing a relationship between a duty ratio and an output voltage at each input voltage when a boost converter is used as the voltage conversion unit according to the embodiment of the present invention.
FIG. 5 is a diagram showing a relationship between fan input voltage and fan rotation speed according to the embodiment of the present invention.
FIG. 6 is a diagram showing the operating state (rotation speed) of the fan according to the solar radiation intensity (amount of solar radiation) and time according to the embodiment of the present invention.
FIG. 7 is a diagram showing a power supply state according to the temperature in the power supply box according to the embodiment of the present invention.
FIG. 8 is a diagram showing the amount of solar radiation and the temperature state in the power supply box when electric power is supplied to the fan from the storage battery according to the embodiment of the present invention.
FIG. 9 is a diagram showing a comparison of temperature rise when an infrared reflective paint is applied to a power supply box according to an embodiment of the present invention and when it is not applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Communication apparatus 2 ... Load 3 ... Voltage conversion means a
4 ... Storage battery 5 ... Power supply box 6 ... Solar power generation means 7 ... Voltage conversion means b
8 ... Switch 1
8a switch 1a
8b switch 1b
9 ... Switch 2
10: Voltage conversion means c
DESCRIPTION OF SYMBOLS 11 ... Control means 11a ... Thermostat 11b ... Timer 12 ... Cooling fan 13 ... Outer box 14 ... Inner box 15 ... Heat insulating material 16 ... Air exhaust port 17 ... Dome type structure 18 ... Rainwater intrusion prevention plate 19 ... Diode 1
20 ... Diode 2
21 ... Power supply

Claims (7)

少なくとも蓄電池と太陽光発電手段と冷却ファンとを収納する電源箱を含めた電源装置であって、外部負荷に電力を供給する蓄電池と、太陽光により発電する太陽光発電手段と、上記電源箱内の空気を循環すると共に、温められた空気を外に排出して、上記電源箱内を冷却する冷却ファンと、上記太陽光発電手段により生じた電力を上記冷却ファンに供給するか、上記蓄電池に供給するか、もしくは上記蓄電池の電力を上記冷却ファンに供給するか、を切り替え制御する第1の制御手段と、上記第1の制御手段を介して上記冷却ファンに供給される上記太陽光発電手段により生じた電力または上記蓄電池の電力を制御して上記冷却ファンの回転数を制御する第2の制御手段と、上記第1、第2の制御手段を制御する第3の制御手段を備え、上記太陽光発電手段により生じた電力の電圧をデューティー比一定で変換する電圧変換手段をさらに備え、上記第3の制御手段により、上記第1の制御手段にて上記太陽光発電手段により上記冷却ファンに電力を供給する状態に選択された場合、上記太陽光発電手段から上記電圧変換手段を介して上記冷却ファンに電力を供給することにより、日射強度がある強度以上となり、上記冷却ファンが起動できる電圧に達すると、上記冷却ファンが起動し、日射強度に応じて上記冷却ファンの回転数が変化し、かつ、日射強度が低下し上記冷却ファンが停止する電圧に達すると上記冷却ファンが停止し、日射強度に応じて上記冷却ファンの起動・停止・回転数の制御を行うことを特徴とする電源装置。A power supply device including at least a storage battery, a photovoltaic power generation means, and a cooling fan, and includes a storage battery that supplies power to an external load, a photovoltaic power generation means that generates power by sunlight, and the inside of the power supply box Circulates the air and discharges the heated air to the outside, and supplies the cooling fan for cooling the inside of the power supply box and the power generated by the solar power generation means to the cooling fan, or to the storage battery. A first control unit that controls whether to supply power to the cooling fan, or the solar power generation unit that is supplied to the cooling fan via the first control unit. the resulting power or by controlling the power of the storage battery includes a second control means for controlling the rotational speed of the cooling fan, the third control means for controlling the first, second control means, on Voltage conversion means for converting the voltage of the electric power generated by the solar power generation means at a constant duty ratio is further provided, and the third control means causes the solar power generation means to change the cooling fan to the first control means. When the power supply state is selected, by supplying power from the solar power generation means to the cooling fan via the voltage conversion means, the solar radiation intensity becomes a certain intensity or more, and the voltage at which the cooling fan can be started. The cooling fan is started, the rotation speed of the cooling fan changes according to the solar radiation intensity, and when the solar fan intensity reaches a voltage at which the cooling fan stops, the cooling fan stops, A power supply device that controls start, stop, and rotation speed of the cooling fan in accordance with solar radiation intensity . 請求項1において、上記第3の制御手段内にタイマーをさらに備え、上記第3の制御手段から出力される上記タイマーに設定された時刻によって上記第2の制御手段は、上記冷却ファンから発生する騒音を、あらかじめ定められた騒音基準以下となるように、上記冷却ファン回転数を制御するよう動作することを特徴とする電源装置。Oite to claim 1, said further comprising a timer to the third control means, by the third time set in the timer output from the control means, said second control means, the cooling fan A power supply device that operates to control the number of rotations of the cooling fan so that noise generated from the noise falls below a predetermined noise standard. 請求項1または請求項において、上記第3の制御手段内に温度検出手段をさらに備え、上記第3の制御手段から出力される上記温度検出手段からの信号によって上記第1の制御手段は、上記電源箱内の温度が冷却する必要があるしきい値温度を上回った場合に、上記太陽光発電手段によって生じた電力を上記冷却ファンヘ供給し、上記しきい値温度を下回った場合に、上記太陽光発電手段によって生じた電力を上記蓄電池へ供給して上記蓄電池を補助的に充電するよう動作することを特徴とする電源装置。According to claim 1 or claim 2, said further comprising a temperature detector to the third control means, by a signal from the temperature detecting means is outputted from said third control means, said first control means When the temperature inside the power supply box exceeds a threshold temperature that needs to be cooled, the power generated by the solar power generation means is supplied to the cooling fan, and when the temperature falls below the threshold temperature, A power supply device that operates to supply power generated by the solar power generation means to the storage battery to supplementarily charge the storage battery. 請求項1または請求項において、上記第3の制御手段内に温度検出手段をさらに備え、上記第3の制御手段から出力される上記温度検出手段からの信号によって上記第1の制御手段は、上記電源箱内の温度があらかじめ定められた上限値手前の温度を上回り、かつ上記太陽光発電手段によって生じた電力が上記冷却ファンの作動電圧以下である場合に、上記蓄電池の電力を上記冷却ファンヘ供給して上記電源箱内を冷却するよう動作することを特徴とする電源装置。According to claim 1 or claim 2, said further comprising a temperature detector to the third control means, by a signal from the temperature detecting means is outputted from said third control means, said first control means When the temperature in the power supply box is higher than a temperature before a predetermined upper limit value and the power generated by the solar power generation means is equal to or lower than the operating voltage of the cooling fan, the power of the storage battery is cooled. A power supply device that operates to supply a fan to cool the inside of the power supply box. 請求項1ないし請求項のいずれか1項において、上記電源箱の屋根裏の構造をドーム型とすると共に、屋根横周囲に空気排出口を設け、上記冷却ファンで生じた空気の流れを効率よく排出する構造としたことを特徴とする電源装置。In any one of claims 1 to 4, with the attic of the structure of the power supply box and dome, the air discharge port is provided laterally around the roof, effectively the flow of air generated by the cooling fan A power supply device characterized by having a structure for discharging. 請求項1ないし請求項のいずれか1項において、上記電源箱を二重構造とし外箱と内箱の間に影を作ると共に、外箱の外側表面に赤外線反射塗料を塗布したことを特徴とする電源装置。Characterized in any one of claims 1 to 5, with making a shadow between the outer box and the inner box and the power box and the double structure, that was applied an infrared reflective coating on the outer surface of the outer box Power supply. 請求項において、上記電源箱の内側の板内面に断熱材を貼り付けたことを特徴とする電源装置。The power supply device according to claim 6, wherein a heat insulating material is attached to an inner surface of the plate inside the power supply box.
JP2002071385A 2002-03-15 2002-03-15 Power supply Expired - Fee Related JP3761822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002071385A JP3761822B2 (en) 2002-03-15 2002-03-15 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002071385A JP3761822B2 (en) 2002-03-15 2002-03-15 Power supply

Publications (2)

Publication Number Publication Date
JP2003274572A JP2003274572A (en) 2003-09-26
JP3761822B2 true JP3761822B2 (en) 2006-03-29

Family

ID=29201677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071385A Expired - Fee Related JP3761822B2 (en) 2002-03-15 2002-03-15 Power supply

Country Status (1)

Country Link
JP (1) JP3761822B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441878C (en) * 2006-01-17 2008-12-10 台达电子工业股份有限公司 Fan system
JP4848780B2 (en) * 2006-01-27 2011-12-28 トヨタ自動車株式会社 Control device for cooling fan
JP5946210B2 (en) * 2012-05-14 2016-07-05 エムケー精工株式会社 Power supply
KR20130141266A (en) * 2012-06-15 2013-12-26 커넥스일렉트로닉스(주) Mept control method in solar cell module and apparatus thereof
JP6996128B2 (en) * 2017-06-28 2022-01-17 日新電機株式会社 Control method of stationary storage battery device and stationary storage battery device

Also Published As

Publication number Publication date
JP2003274572A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
US8423199B2 (en) Method and device for controlling operation of a power supply system
JP3690602B2 (en) Pneumatic solar system
JPH08275390A (en) Method and apparatus for controlling charging and discharging, and power generating system having such apparatus
CN111602009B (en) Air conditioner
US20100304660A1 (en) Hybrid Solar Attic Vent
JP2012080683A (en) Power supply device
AU2012281199B2 (en) Nane of invention - Generator and Motor Ventilator
JP3761822B2 (en) Power supply
JP2000028176A (en) Air conditioner using solar light power generation
US6002220A (en) Electric power storage air-conditioning system
JP4142838B2 (en) Air conditioner
JP2005287300A (en) Electric power reduction system for collective housing using solar battery and/or cubicle capable of reducing not only electric power charge but also carbon-dioxide emission amount
JPH0736556A (en) Method for cooling electric equipment using solar battery as power supply
JPH07240532A (en) Solar cell device
JP2001019310A (en) Elevator
JPH10127071A (en) Solar power generator
JP3504843B2 (en) Power supply device and air conditioner using the same
JP2003014280A (en) System using energy device
CN107681505A (en) Light distribution box
CN206432592U (en) Light distribution box
JP2968659B2 (en) Insulation structure of assembled battery
JP2006004700A (en) Emergency fuel cell power generation system
JP2001210113A (en) Lighting fixture
JPH11332128A (en) Power system
JP2002051571A (en) Booster unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees