JP3761266B2 - Pipe joint structure - Google Patents

Pipe joint structure Download PDF

Info

Publication number
JP3761266B2
JP3761266B2 JP32830696A JP32830696A JP3761266B2 JP 3761266 B2 JP3761266 B2 JP 3761266B2 JP 32830696 A JP32830696 A JP 32830696A JP 32830696 A JP32830696 A JP 32830696A JP 3761266 B2 JP3761266 B2 JP 3761266B2
Authority
JP
Japan
Prior art keywords
cylindrical body
peripheral surface
cylindrical
outer peripheral
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32830696A
Other languages
Japanese (ja)
Other versions
JPH10169865A (en
Inventor
喜久雄 斉藤
孝 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waterworks Technology Development Organization Co Ltd
Original Assignee
Waterworks Technology Development Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waterworks Technology Development Organization Co Ltd filed Critical Waterworks Technology Development Organization Co Ltd
Priority to JP32830696A priority Critical patent/JP3761266B2/en
Publication of JPH10169865A publication Critical patent/JPH10169865A/en
Application granted granted Critical
Publication of JP3761266B2 publication Critical patent/JP3761266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/12Adjustable joints, Joints allowing movement allowing substantial longitudinal adjustment or movement

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Joints With Sleeves (AREA)
  • Joints Allowing Movement (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地中に埋設された水道管等の流体輸送管の配管系に、地震や不同沈下等に起因する筒軸芯方向の圧縮力や引張力、或いは、筒軸芯に対して交差する方向の剪断力や曲げモーメント等の外力が作用したとき、この外力を管接続部において極力吸収して、配管系の脆弱部での破損を抑制することができるように、第1筒状体に、第2筒状体の一端側を一定範囲内で筒軸芯方向に相対移動自在に密封状態で挿入接続するとともに、前記第2筒状体の他端側に、第3筒状体を相対揺動自在に密封状態で外嵌接続してある管継手構造に関する。
【0002】
【従来の技術】
この種の管継手構造として、従来では、図5に示すように、前記第2筒状体52の他端側に形成された球状筒部52Aに、第3筒状体53の一端側に形成した部分球状筒部53Aと、該部分球状筒部53Aの外周面に突設した連結フランジ53Bにボルト55・ナット56を介して固定連結可能な連結フランジ54Bを備えた連結筒54の部分球状筒部54Aとを、筒軸芯方向の両側方から外嵌するとともに、この第3筒状体53側の連結フランジ53Bと連結筒54の連結フランジ54Bとをボルト55・ナット56にて締結して、前記第2筒状体52と第3筒状体53とを球状筒部52Aの外周面に沿って相対摺接揺動自在に抜止め連結し、更に、前記第2筒状体52の直線状筒部52Bの外周面で、かつ、前記連結筒54の端部54aの揺動領域から第1筒状体51側に離間した中間部位には、前記第1筒状体51の第3筒状体53側への最大移動位置を該第1筒状体51の端部51aとの接当によって規制するストッパー部57を突出形成したものが提案されている(例えば、実開昭57−71883号公報参照)。
【発明が解決しようとする課題】
従来の管継手構造では、地震や不同沈下等に起因する圧縮方向の外力が作用して、前記第1筒状体51が第3筒状体53側への最大限に収縮移動しても、その第1筒状体51の端部51aの最大移動位置が、前記ストッパー部57によって前記連結筒54の端部54aの揺動領域から外れた位置に接当規制されるから、前記第2筒状体52の直線状筒部52Bの外径に比して、シール材等の密封構造の存在によって外径が大きくなっている第1筒状体51の端部51aが、前記連結筒54の端部54aと第2筒状体52の直線状筒部52Bの外周面との間に入り込むことがなく、このような第1筒状体51の端部51aの入り込みに起因する第2筒状体52と第3筒状体53との屈曲揺動範囲の減少を抑制することができる。
しかしながら、前記ストッパー部57が前記連結筒54の端部54aの揺動領域から第1筒状体51側に大きく離間した第2筒状体52の直線状筒部52Bの筒軸芯方向中間位置に設けられているため、該第2筒状体52の全長が長くなり、管継手構造の大型化、重量化を招来し易い。
しかも、前記第2筒状体52と第3筒状体53とが最大屈曲角度まで相対揺動したとき、前記連結筒54の端部54aが第2筒状体52の直線状筒部52Bの外周面に強圧されるため、この部位での応力集中によって第2筒状体52に割れ等の破損を招来する可能性がある。
【0003】
本発明は、上記の実情に鑑みて為されたものであって、その主たる課題は、前記ストッパー部の外径を第2筒状体の端部の外径よりも小さくすることができる点に着目して、該ストッパー部の形成位置を工夫することにより、第2筒状体と第3筒状体との相対揺動範囲を極力大きくとりながらも、これら両筒状体が最大限に屈曲された場合の破損を抑制することができ、しかも、管継手構造の小型化と軽量化をも同時に達成することのできる管継手構造を提供する点にある。
【0004】
【課題を解決するための手段】
本発明の請求項1による管継手構造の特徴構成は、冒記の構成において、前記第2筒状体の外周面に、前記第1筒状体の端部の第3筒状体側への最大移動位置を前記第3筒状体の端部の揺動領域外に接当規制するストッパー部を突出形成し、前記第2筒状体と第3筒状体とが最大屈曲角度まで相対揺動したとき、第3筒状体の端部がストッパー部の外周面に接当するように構成した点にある。
上記特徴構成によれば、地震や不同沈下等に起因する圧縮方向の外力が作用して、前記第1筒状体の端部が第3筒状体側へ最大限に収縮移動しても、その第1筒状体の端部の最大移動位置が、前記ストッパー部によって前記第3筒状体の端部の揺動領域から外れた位置に接当規制されるから、前記第2筒状体の端部の外径に比して、シール材等の密封構造の存在によって外径が大きくなっている第1筒状体の端部が、前記第3筒状体の端部内周面と第2筒状体の外周面との間に入り込むことがない。
しかも、地震や不同沈下等に起因する剪断力や曲げモーメント等の外力が作用して、前記第2筒状体と第3筒状体とが最大屈曲角度まで相対揺動したとき、この第3筒状体の端部が、第2筒状体の外周面に突出形成された機械的強度の大きいなストッパー部の外周面に接当するから、このストッパー部で外力を確実に受け止めることができる。更に、前記第1筒状体と第2筒状体との相対移動範囲を従来と同一の移動範囲に構成しながらも、前記ストッパー部が第3筒状体の端部に近接する分だけ、第2筒状体の全長を短く構成することができる。
それでいて、前記ストッパー部の外径は、シール材等の密封構造が付加される第1筒状体の端部の外径よりも小さく構成することができるから、第1筒状体の端部が、前記第3筒状体の端部と第2筒状体の外周面との間に入り込む場合に比して、第2筒状体と第3筒状体との相対揺動範囲を大きくすることができる。
従って、前記ストッパー部の形成位置を前述の如く工夫することにより、第2筒状体と第3筒状体との相対揺動範囲を極力大きくとりながらも、これら両筒状体が最大限に屈曲された場合の破損を抑制することができ、しかも、管継手構造の小型化と軽量化をも同時に達成することができる。
【0005】
本発明の請求項2による管継手構造の特徴構成は、前記第2筒状体と第3筒状体とが最大屈曲角度まで相対揺動したとき、第3筒状体の端部と前記ストッパー部の外周面とが筒軸芯方向に沿って接当するように構成されている点にある。
上記特徴構成によれば、前記第2筒状体と第3筒状体とが最大屈曲角度まで相対揺動して、第3筒状体の端部がストッパー部の外周面に圧接されたとき、その圧接力を筒軸芯方向で分散支持することができるから、管継手構造の耐久性能の向上を図ることができる。
【0006】
本発明の請求項3による管継手構造の特徴構成は、前記第2筒状体の他端側に形成された球状筒部に、この球状筒部の外周面に沿って相対摺接揺動自在な部分球状筒部を備えた第3筒状体が筒軸芯方向の一方から外嵌されているとともに、前記第2筒状体の球状筒部の外周面と前記第3筒状体の部分球状筒部の内周面との間に形成される間隙に、前記第2筒状体の球状筒部の外周面に摺接する摺接案内部材が筒軸芯方向の他方から嵌め込まれていて、前記第2筒状体と第3筒状体とが相対摺接揺動自在に抜止め連結されている点にある。
上記特徴構成によれば、前記第2筒状体と第3筒状体とを相対摺接揺動自在に抜止め連結するにあたって、前記摺接案内部材を、前記第2筒状体の球状筒部の外周面と前記第3筒状体の部分球状筒部の内周面との間に形成される間隙内に筒軸芯方向から嵌め込むが故に、従来の管継手構造のように連結フランジやボルト・ナット等の連結構成部材が径方向外方に突出することがなく、管継手構造のコンパクト化と外面形状の簡素化とを図ることができる。
しかも、このような抜止め連結手段を採用することによって、前記第3筒状体の端部の内周面と第2筒状体の外周面との間に形成される間隙の開口径が、第1筒状体の端部の外径よりも大きくなる場合があるが、この場合でも、前記ストッパー部によって第1筒状体の端部の入り込みを阻止することができ、前記請求項1で記載した効果を確実に発揮させることができる。
【0007】
【発明の実施の形態】
〔第1実施形態〕
図1、図2に示す流体輸送用(例えば、水道用)の管継手構造は、第1筒状体Aとしての鋳鉄製の直管状の第1継手管1の両端側の各々に、第2筒状体Bとしての鋳鉄製の第2継手管2の一端側を一定範囲内で筒軸芯X方向(管軸芯方向)に相対移動自在に密封状態で挿入接続するとともに、前記各第2継手管2の他端側の各々に、第3筒状体Cとしての鋳鉄製の第3継手管3を相対揺動自在に密封状態で外嵌接続して、これら第1継手管1と両第2継手管2と両第3継手管3とを連通接続してある。
【0008】
図1〜図3に示すように、前記両第2継手管2の直管部2Bの外周面のうち、第1継手管1内に挿入された部位の各々には、前記第1継手管1の内周面の筒軸芯X方向中間部に形成された環状の規制溝4よりも筒軸芯X方向長さの小なる環状の取付け溝5を形成し、これら各取付け溝5に、前記規制溝4の筒軸芯X方向の端面4aとの面接当によって、前記第2継手管2の一端側からの第1継手管1の抜け出しを規制する拡径変形可能なステンレス鋼製のCの字状の係止部材6を着脱自在に嵌着して、前記第1継手管1に、第2継手管2の一端側の抜け出しを阻止する状態で相対移動自在に挿入接続してある。
また、前記第2継手管2の直管部2Bの外周面と前記規制溝4の内周面4bとの筒径方向(直径方向)での対向間隔を、前記係止部材6の挿抜を許容する間隔に構成してある。換言すれば、前記第2継手管2の直管部2Bの外周面と前記規制溝4の内周面4bとの対向面間に、前記係止部材6の挿抜を許容する環状空間を形成してある。
更に、図3に示すように、地震や不同沈下等に起因する引き抜き方向の外力(引張力)が管継手構造に作用して、前記第1継手管1の開口端部側(第2継手管2の挿入側)に位置する規制溝4の各端面4aに対して、前記両第2継手管2の取付け溝5に嵌着された係止部材6の各々が筒軸芯X方向から面接当したとき、該係止部材6の取付け溝5からの筒径方向外方への抜け出し移動を接当阻止する拡径規制部7を設けてある。
【0009】
図3に示すように、前記両拡径規制部7の各々は、前記規制溝4の一端面4aに接当した係止部材6の外周面6aに近接する状態で規制溝4の内周面4bの一端側に形成された拡径規制面7aから構成されているとともに、前記係止部材6の外周面6a及び拡径規制面7aの各々が筒軸芯Xと平行又はほぼ平行に構成されている。
また、前記係止部材6の筒軸芯X方向両側の端面6c、及び、前記規制溝4の筒軸芯X方向の両端面4aの各々は、筒軸芯Xに対して直交又はほぼ直交する方向に沿う偏平面に構成されているとともに、前記規制溝4の内周面4bのうち、前記両拡径規制面7aにそれぞれ連続する境界面部分4cがテーパー面に形成されている。
【0010】
図1〜図4に示すように、前記両第2継手管2の他端側に形成された部分球面状の外周面2aを備えた球状筒部としての球状管部2Aに、この球状管部2Aの外周面に沿って相対摺接揺動自在な部分球面状の内周面3b、及び、円周面状の内周面3cとを備えた部分球状筒部としての部分球状管部3Aを備えた第3継手管3を筒軸芯X方向の第2継手管2の他端側外方から外嵌するとともに、前記第2継手管2の球状管部2Aの外周面2aと、前記第3継手管3の部分球状管部3Aの円周面状の内周面3cとの間に形成される間隙に、前記第2継手管2の球状管部2Aの外周面2aに摺接する第2継手管2の球状管部2Aの外周面2aに摺接する球面状の摺接面13aと、第3継手管3の部分球状管部3Aの円周面状の内周面3cに摺接する円周面状の摺接面13bとを備えた鋳鉄製の摺接案内部材13を、筒軸芯X方向の第1継手管1側から嵌め込み、更に、前記第3継手管3の部分球状管部3Aの円周面状の内周面3cに形成してある保持溝3dに、前記摺接案内部材13の抜け出し移動を接当阻止する縮径変形可能なステンレス鋼製のCの字状の抜け止め部材14を着脱自在に嵌着して、摺接案内部材13の前記間隙からの抜け出し移動を阻止することにより、前記第2継手管2と第3継手管3とを相対摺接揺動自在に抜止め連結してある。
【0011】
更に、図2,図4に示すように、前記両第2継手管2の直管部2Bの外周面の各々には、地震や不同沈下等に起因する圧縮方向の外力が管継手構造に作用したとき、第1継手管1の端部1aに筒軸芯X方向から面接当して、当該第1継手管1の端部1aの第3継手管3側への最大移動位置を第3継手管3の第1継手管1側の端部3aの揺動領域外に接当規制するストッパー部8を一体的に突出形成してあり、前記規制溝4の端面4aと係止部材6との面接当、並びに、前記第1継手管1の端部1aとストッパー部8との面接当によって、第1継手管1と一方の第2継手管2との筒軸芯X方向での相対移動範囲が一定範囲内となるように規制してある。
前記ストッパー部8は、前記第2継手管2の直管部2Bの外周面に、それの円周方向に沿って一体的に突出形成してある環状の突条から構成されているとともに、このストッパー部8の外周面の外径を、前記第1継手管1の端部1aの最大外径よりも小に構成してある。
【0012】
図2,図4に示すように、前記地震や不同沈下等に起因する筒軸芯Xに対して交差する方向の剪断力や曲げモーメント等の外力が管継手構造に作用したときには、前記第2継手管2の球状管部2Aの外周面2aと第3継手管3の部分球状管部3Aの球面状の内周面3bとの球面に沿う相対摺動と、この第2継手管2の球状管部2Aの外周面2aと摺接案内部材13の球面状の摺接面13aとの球面に沿う相対摺動とによって、第2継手管2と第3継手管3とが相対摺接揺動して屈曲し、管継手構造の破損を抑制することができる。
更に、前記第2継手管2と第3継手管3とが球面に沿って最大屈曲角度にまで相対摺接揺動したとき、第1継手管1と第3継手管3とが相互に干渉しない状態で、前記第3継手管3の端部3aの開口内周縁角部分3eが前記ストッパー部8の外周面に接当するように構成してある。詳しくは、図4に示すように、前記第2継手管2と第3継手管3とが球面に沿って最大屈曲角度にまで相対摺接揺動したとき、第1継手管1の端部1aと第3継手管3と端部3aとが接当することなく、前記開口内周縁角部分3eとストッパー部8の外周面とが筒軸芯X方向に沿って接当するように構成してある。
つまり、前記ストッパー部8は第2継手管2の直管部2Bの外周面のうち、第3継手管3の端部3aの開口内周縁角部分3eの揺動軌跡と交差する位置に形成されていて、前記第2継手管2と第3継手管3とが最大屈曲角度にまで相対摺接揺動した状態で、前記開口内周縁角部分3eが、ストッパー部8の外周面に筒軸芯X方向に沿うテーパー面に形成してある。
【0013】
尚、図1〜図4に示すように、前記第1継手管1の内周面の筒軸芯X方向の両端部近くの各々には、第2継手管2の直管部2Bの外周面との間を密封する密封構造の一例である合成ゴム製(例えば、スチレンブタジエンゴム)の第1弾性シール材9を保持する環状のシール保持溝10を形成するとともに、前記各第3継手管3の部分球状管部3Aの両内周面3b,3c間の各々には、第2継手管2の球状管部2Aの外周面2aとの間を密封する密封構造の一例である合成ゴム製(例えば、スチレンブタジエンゴム)の第2弾性シール材11を保持する環状のシール保持溝12を形成し、更に、前記両第3継手管3の直管部3Bの端部の各々には、流体輸送管(例えば水道管)や仕切り弁装置等の他の流体配管装置類Pをボルト・ナットにて固定連結するための複数の連結用貫通孔3fを同芯円状に備えた連結フランジ3Cを一体形成してある。
【0014】
従って、このように構成された管継手構造では、地震や不同沈下等に起因する圧縮方向の外力が作用して、前記第1継手管1の端部1aが第3継手管3側へ最大限に収縮移動しても、その第1継手管1の端部1aの最大移動位置が、前記ストッパー部8によって前記第3継手管3の端部3aの揺動領域から外れた位置に接当規制されるから、前記第2継手管2の端部の外径に比して、密封構造の一例である第1弾性シール材9の存在によって外径が大きくなっている第1継手管1の端部1aが、前記第3継手管3の端部3a内周面と第2継手管2の外周面との間に入り込むことがない。
しかも、地震や不同沈下等に起因する剪断力や曲げモーメント等の外力が作用して、前記第2継手管2と第3継手管3とが最大屈曲角度まで相対揺動したとき、この第3継手管3の端部3aの開口内周縁角部分3eが、第2継手管2の外周面に突出形成された機械的強度の大きいなストッパー部8の外周面に筒軸芯X方向に沿って接当するから、換言すれば、前記第3継手管3の端部3aの開口内周縁角部分3eが、第2継手管2の直管部2Bの外周面のうち、管壁の肉厚が最も厚いストッパー部8の外周面に筒軸芯X方向に沿って接当するから、このストッパー部8で、前記外力を第3継手管3の端部3aからの圧接力として確実に受け止めて分散支持することができる。
【0015】
〔その他の実施形態〕
▲1▼ 上述の第1実施形態では、前記ストッパー部8を第2筒状体Bの外周面に一体的に突出形成したが、第2筒状体Bと別体形成されたストッパー部8を、該第2筒状体Bの外周面の所定位置に固着してもよい。尚、この場合、ストッパー部8の材質は、鋳鉄に限定されるものではなく、ステンレス鋼や硬質合成樹脂、或いは、合成ゴムであってもよい。
▲2▼ 上述の第1実施形態では、前記ストッパー部8を環状の突条から構成したが、この形状に限定されるものではなく、例えば、第2筒状体Bの円周方向に沿って断続的に形成してある突起群から構成してもよい。
▲3▼ 上述の第1実施形態では、一つの第1筒状体Aと二つの第2筒状体B及び二つの第3筒状体Cとの五つの筒状体の組合せからなる管継手構造について説明したが、他端側に他の筒状体に対して一体的に連通接続可能な連結部を備えた第1筒状体Aと一つの第2筒状体B及び一つの第3筒状体Cとの三つの筒状体の組合せからなる管継手構造にも、本発明の技術を適用することができる。
【図面の簡単な説明】
【図1】本発明の管継手構造の第1実施形態を示す全体の縦断面図
【図2】圧縮方向の外力と筒軸芯に対して交差する方向の外力とを受けたときの全体の縦断面図
【図3】引き抜き方向の外力を受けたときの要部の拡大断面図
【図4】圧縮方向の外力と筒軸芯に対して交差する方向の外力とを受けたときの要部の拡大断面図
【図5】従来の管継手構造を示す縦断面図
【符号の説明】
A 第1筒状体(第1継手管)
B 第2筒状体(第2継手管)
C 第3筒状体(第3継手管)
X 筒軸芯
1a 端面
2A 球状筒部
2a 外周面
3A 部分球状筒部
3a 端部
3c 内周面
8 ストッパー部
13 摺接案内部材
[0001]
BACKGROUND OF THE INVENTION
The present invention is applied to a pipe system of a fluid transport pipe such as a water pipe buried in the ground, intersecting with a compressive force or tensile force in the direction of the cylinder axis due to an earthquake or non-uniform subsidence, or with respect to the cylinder axis. When an external force such as a shearing force or a bending moment acting in the direction is applied, this external force is absorbed as much as possible in the pipe connecting portion, and the breakage at the fragile portion of the piping system can be suppressed. In addition, one end side of the second cylindrical body is inserted and connected in a sealed state so as to be relatively movable in the cylinder axis direction within a certain range, and a third cylindrical body is connected to the other end side of the second cylindrical body. The present invention relates to a pipe joint structure that is externally fitted and connected in a sealed state so as to be capable of relative oscillation.
[0002]
[Prior art]
As a pipe joint structure of this type, conventionally, as shown in FIG. 5, a spherical cylindrical portion 52 </ b> A formed on the other end side of the second cylindrical body 52 is formed on one end side of the third cylindrical body 53. The partial spherical cylinder of the connecting cylinder 54 provided with a partial spherical cylinder 53A and a connecting flange 54B that can be fixedly connected to the connecting flange 53B protruding from the outer peripheral surface of the partial spherical cylinder 53A via a bolt 55 and a nut 56. The portion 54A is externally fitted from both sides in the cylinder axis direction, and the connection flange 53B on the third cylindrical body 53 side and the connection flange 54B of the connection cylinder 54 are fastened with bolts 55 and nuts 56. The second cylindrical body 52 and the third cylindrical body 53 are connected to each other so as to be swingable and slidable relative to each other along the outer peripheral surface of the spherical cylindrical portion 52A. The outer peripheral surface of the cylindrical tube portion 52B and the end portion 54a of the connecting tube 54 At the intermediate portion spaced from the swing region toward the first cylindrical body 51, the maximum movement position of the first cylindrical body 51 toward the third cylindrical body 53 is set to the end of the first cylindrical body 51. There has been proposed a projection in which a stopper portion 57 that is restricted by contact with 51a is formed (see, for example, Japanese Utility Model Publication No. 57-71883).
[Problems to be solved by the invention]
In the conventional pipe joint structure, even if the external force in the compression direction due to an earthquake or non-uniform settlement acts, the first cylindrical body 51 moves to the maximum extent toward the third cylindrical body 53, Since the maximum movement position of the end portion 51a of the first cylindrical body 51 is restricted by the stopper portion 57 to a position outside the swinging region of the end portion 54a of the connecting cylinder 54, the second cylinder The end 51a of the first cylindrical body 51 whose outer diameter is larger due to the presence of a sealing structure such as a sealing material than the outer diameter of the linear cylindrical portion 52B of the cylindrical body 52 is The second cylindrical shape resulting from the entry of the end portion 51a of the first cylindrical body 51 without entering between the end portion 54a and the outer peripheral surface of the linear cylindrical portion 52B of the second cylindrical body 52. A decrease in the bending swing range of the body 52 and the third cylindrical body 53 can be suppressed.
However, the stopper portion 57 is positioned at the intermediate position in the cylinder axis direction of the linear cylindrical portion 52B of the second cylindrical body 52 that is largely separated from the swing region of the end portion 54a of the connecting cylinder 54 toward the first cylindrical body 51. Therefore, the entire length of the second cylindrical body 52 is increased, and the size and weight of the pipe joint structure are easily increased.
Moreover, when the second cylindrical body 52 and the third cylindrical body 53 are relatively swung up to the maximum bending angle, the end portion 54a of the connecting cylinder 54 is formed on the straight cylindrical portion 52B of the second cylindrical body 52. Since strong pressure is applied to the outer peripheral surface, there is a possibility that damage such as cracks may be caused in the second cylindrical body 52 due to stress concentration at this portion.
[0003]
The present invention has been made in view of the above circumstances, and the main problem is that the outer diameter of the stopper portion can be made smaller than the outer diameter of the end portion of the second cylindrical body. Paying attention to the position of the stopper, the two cylindrical bodies are bent to the maximum while the relative swinging range between the second cylindrical body and the third cylindrical body is made as large as possible. It is an object of the present invention to provide a pipe joint structure that can suppress breakage in the case of being made, and that can simultaneously achieve a reduction in size and weight of the pipe joint structure.
[0004]
[Means for Solving the Problems]
The characteristic structure of the pipe joint structure according to claim 1 of the present invention is that, in the structure described in the opening paragraph, on the outer peripheral surface of the second tubular body, the maximum of the end portion of the first tubular body toward the third tubular body side is provided. A stopper is formed to project and restrict the movement position outside the swing region of the end of the third cylindrical body, and the second cylindrical body and the third cylindrical body swing relative to each other up to the maximum bending angle. When it does, it exists in the point comprised so that the edge part of a 3rd cylindrical body might contact | connect the outer peripheral surface of a stopper part.
According to the above characteristic configuration, even when an external force in the compression direction due to an earthquake, non-uniform subsidence, etc. acts and the end of the first cylindrical body contracts and moves to the third cylindrical body side to the maximum extent, Since the maximum movement position of the end portion of the first cylindrical body is restricted by the stopper portion to a position outside the swing region of the end portion of the third cylindrical body, The end portion of the first cylindrical body whose outer diameter is larger due to the presence of a sealing structure such as a sealing material than the outer diameter of the end portion is the end inner peripheral surface of the third cylindrical body and the second end surface. It does not enter between the outer peripheral surfaces of the cylindrical body.
Moreover, when an external force such as a shearing force or a bending moment due to an earthquake or non-uniform subsidence acts, the second cylindrical body and the third cylindrical body relatively swing to the maximum bending angle. Since the end portion of the cylindrical body comes into contact with the outer peripheral surface of the stopper portion having a high mechanical strength that is formed to protrude from the outer peripheral surface of the second cylindrical body, it is possible to reliably receive an external force with this stopper portion. . Furthermore, while configuring the relative movement range of the first cylindrical body and the second cylindrical body to the same movement range as before, the stopper portion is close to the end of the third cylindrical body, The total length of the second cylindrical body can be shortened.
Still, since the outer diameter of the stopper portion can be configured to be smaller than the outer diameter of the end portion of the first cylindrical body to which a sealing structure such as a sealing material is added, the end portion of the first cylindrical body is The relative swinging range between the second cylindrical body and the third cylindrical body is increased as compared with the case where the second cylindrical body enters between the end of the third cylindrical body and the outer peripheral surface of the second cylindrical body. be able to.
Therefore, by devising the position where the stopper portion is formed as described above, the two cylindrical bodies are maximized while the relative swinging range between the second cylindrical body and the third cylindrical body is made as large as possible. It is possible to suppress breakage when bent, and to achieve a reduction in size and weight of the pipe joint structure at the same time.
[0005]
The characteristic structure of the pipe joint structure according to claim 2 of the present invention is that when the second tubular body and the third tubular body are relatively swung to the maximum bending angle, the end portion of the third tubular body and the stopper It is in the point comprised so that the outer peripheral surface of a part may contact | connect along a cylinder axial direction.
According to the above characteristic configuration, when the second cylindrical body and the third cylindrical body are relatively swung to the maximum bending angle, and the end of the third cylindrical body is pressed against the outer peripheral surface of the stopper portion. Since the pressure contact force can be dispersedly supported in the cylinder axis direction, the durability performance of the pipe joint structure can be improved.
[0006]
According to a third aspect of the present invention, there is provided a pipe joint structure having a characteristic configuration in which a spherical cylindrical portion formed on the other end side of the second cylindrical body is swingable relative to the spherical cylindrical portion along the outer peripheral surface thereof. A third cylindrical body having a partial spherical cylindrical portion is fitted from one side in the cylindrical axis direction, and an outer peripheral surface of the spherical cylindrical portion of the second cylindrical body and a portion of the third cylindrical body A sliding contact guide member that is in sliding contact with the outer peripheral surface of the spherical cylindrical portion of the second cylindrical body is fitted into the gap formed between the inner peripheral surface of the spherical cylindrical portion from the other side in the cylindrical axis direction, The second cylindrical body and the third cylindrical body are connected to each other so as to be slidably swingable relative to each other.
According to the above characteristic configuration, when the second cylindrical body and the third cylindrical body are connected to each other so as to be swingable and swingable relative to each other, the sliding contact guide member is used as a spherical cylinder of the second cylindrical body. Since it fits in the gap formed between the outer peripheral surface of the part and the inner peripheral surface of the partial spherical cylindrical part of the third cylindrical body from the direction of the cylinder axis, the connecting flange as in the conventional pipe joint structure In addition, connecting components such as bolts and nuts do not protrude outward in the radial direction, and the pipe joint structure can be made compact and the outer shape can be simplified.
Moreover, by adopting such a retaining connecting means, the opening diameter of the gap formed between the inner peripheral surface of the end of the third cylindrical body and the outer peripheral surface of the second cylindrical body is In some cases, the outer diameter of the end portion of the first tubular body may be larger than that of the end portion of the first tubular body. Even in this case, the stopper portion can prevent the end portion of the first tubular body from entering. The described effect can be surely exhibited.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
The pipe joint structure for fluid transportation (for example, for water supply) shown in FIG. 1 and FIG. 2 is provided on each of both end sides of a cast iron straight tubular first joint pipe 1 as the first tubular body A. One end side of the second joint pipe 2 made of cast iron as the cylindrical body B is inserted and connected in a sealed state so as to be relatively movable in the cylinder axis X direction (tube axis direction) within a certain range. A cast iron third joint pipe 3 serving as a third cylindrical body C is fitted to each other end side of the joint pipe 2 so as to be relatively swingable in a sealed state. The second joint pipe 2 and both the third joint pipes 3 are connected in communication.
[0008]
As shown in FIGS. 1 to 3, each of the outer peripheral surfaces of the straight pipe portions 2 </ b> B of both the second joint pipes 2 inserted into the first joint pipe 1 includes the first joint pipe 1. An annular mounting groove 5 that is smaller in length in the cylinder axis X direction than the annular regulating groove 4 formed in the middle portion in the cylinder axis X direction on the inner peripheral surface of the inner circumferential surface is formed. The diameter of the stainless steel C made of deformable stainless steel that restricts the withdrawal of the first joint pipe 1 from the one end side of the second joint pipe 2 by the surface contact with the end face 4a in the cylinder axis X direction of the regulation groove 4 is as follows. A character-shaped locking member 6 is detachably fitted, and is inserted and connected to the first joint pipe 1 so as to be relatively movable in a state of preventing the second joint pipe 2 from coming out on one end side.
Further, the opposing distance in the cylinder radial direction (diameter direction) between the outer peripheral surface of the straight pipe portion 2B of the second joint pipe 2 and the inner peripheral surface 4b of the restricting groove 4 is allowed to insert and remove the locking member 6. It is configured at intervals. In other words, an annular space is formed between the outer peripheral surface of the straight pipe portion 2B of the second joint pipe 2 and the inner peripheral surface 4b of the restriction groove 4 to permit the insertion and removal of the locking member 6. It is.
Further, as shown in FIG. 3, an external force (tensile force) in the pulling direction caused by an earthquake, non-uniform settlement, etc. acts on the pipe joint structure, so that the opening end side of the first joint pipe 1 (second joint pipe) Each of the locking members 6 fitted in the mounting grooves 5 of the second joint pipes 2 is brought into surface contact with the end surfaces 4a of the restriction grooves 4 positioned on the insertion side 2) from the cylindrical axis X direction. In this case, a diameter expansion restricting portion 7 is provided to prevent the locking member 6 from coming out from the mounting groove 5 outward in the cylinder radial direction.
[0009]
As shown in FIG. 3, each of the both diameter expansion restricting portions 7 is in the state of being close to the outer peripheral surface 6 a of the locking member 6 contacting the one end surface 4 a of the restricting groove 4. 4b, the outer peripheral surface 6a and the diameter expansion regulating surface 7a of the locking member 6 are each configured to be parallel or substantially parallel to the cylinder axis X. ing.
Each of the end surfaces 6c on both sides of the locking member 6 in the cylinder axis X direction and both end surfaces 4a of the restriction groove 4 in the cylinder axis X direction are orthogonal to or substantially orthogonal to the cylinder axis X. A boundary surface portion 4c is formed on the tapered surface that is continuous with the both diameter-enlargement regulating surfaces 7a of the inner circumferential surface 4b of the regulating groove 4 while being configured as a flat surface along the direction.
[0010]
As shown in FIG. 1 to FIG. 4, the spherical tube portion 2 </ b> A as a spherical tube portion having a partially spherical outer peripheral surface 2 a formed on the other end side of both the second joint tubes 2. A partial spherical tube portion 3A as a partial spherical tube portion provided with a partial spherical inner peripheral surface 3b and a circumferential inner peripheral surface 3c that can swing and swing relative to each other along the outer peripheral surface of 2A. The third joint pipe 3 provided is fitted from the outside of the other end side of the second joint pipe 2 in the cylinder axis X direction, and the outer peripheral surface 2a of the spherical pipe portion 2A of the second joint pipe 2 A second slidable contact with the outer peripheral surface 2a of the spherical tube portion 2A of the second joint tube 2 is formed in a gap formed between the circumferential surface-shaped inner peripheral surface 3c of the partial spherical tube portion 3A of the three joint tube 3. The spherical sliding contact surface 13a that is in sliding contact with the outer peripheral surface 2a of the spherical tube portion 2A of the joint pipe 2 and the circumferential inner peripheral surface 3c of the partial spherical tube portion 3A of the third joint pipe 3 are in sliding contact. A slidable contact guide member 13 made of cast iron having a circumferential slidable contact surface 13b is fitted from the first joint pipe 1 side in the cylindrical axis X direction, and further, a partial spherical tube portion of the third joint pipe 3 C-shaped dropout made of stainless steel that can be reduced in diameter to prevent the sliding movement of the sliding guide member 13 from coming into contact with the holding groove 3d formed on the inner peripheral surface 3c of the 3A circumferential surface. The stopper member 14 is detachably fitted to prevent the sliding contact guide member 13 from moving out of the gap, thereby allowing the second joint pipe 2 and the third joint pipe 3 to swing relative to each other. It is connected to the stopper.
[0011]
Further, as shown in FIGS. 2 and 4, external force in the compression direction due to an earthquake or non-uniform subsidence acts on the pipe joint structure on each of the outer peripheral surfaces of the straight pipe portions 2B of both the second joint pipes 2. Then, the end portion 1a of the first joint pipe 1 is brought into surface contact with the cylindrical axis X direction, and the maximum movement position of the end portion 1a of the first joint pipe 1 toward the third joint pipe 3 side is determined as the third joint. A stopper portion 8 for restricting contact is formed integrally outside the swinging region of the end portion 3a of the tube 3 on the first joint tube 1 side, and the end surface 4a of the restricting groove 4 and the locking member 6 are Relative movement range in the cylinder axis X direction between the first joint pipe 1 and the one second joint pipe 2 by the surface contact and the surface contact between the end portion 1a of the first joint pipe 1 and the stopper portion 8. Is regulated to be within a certain range.
The stopper portion 8 is composed of an annular ridge formed integrally on the outer peripheral surface of the straight pipe portion 2B of the second joint pipe 2 along the circumferential direction thereof. The outer diameter of the outer peripheral surface of the stopper portion 8 is configured to be smaller than the maximum outer diameter of the end portion 1 a of the first joint pipe 1.
[0012]
As shown in FIGS. 2 and 4, when an external force such as a shearing force or a bending moment in a direction intersecting the cylindrical axis X due to the earthquake or non-uniform settlement acts on the pipe joint structure, the second Relative sliding along the spherical surface of the outer peripheral surface 2a of the spherical tube portion 2A of the joint tube 2 and the spherical inner peripheral surface 3b of the partial spherical tube portion 3A of the third joint tube 3, and the spherical shape of the second joint tube 2 The second joint pipe 2 and the third joint pipe 3 swing relative to each other by relative sliding along the spherical surface of the outer peripheral surface 2a of the pipe portion 2A and the spherical sliding contact surface 13a of the sliding contact guide member 13. Can be bent, and damage to the pipe joint structure can be suppressed.
Further, when the second joint pipe 2 and the third joint pipe 3 swing relative to each other up to the maximum bending angle along the spherical surface, the first joint pipe 1 and the third joint pipe 3 do not interfere with each other. In this state, the opening inner peripheral edge corner portion 3 e of the end portion 3 a of the third joint pipe 3 is configured to contact the outer peripheral surface of the stopper portion 8. Specifically, as shown in FIG. 4, when the second joint pipe 2 and the third joint pipe 3 swing relative to each other up to the maximum bending angle along the spherical surface, the end portion 1a of the first joint pipe 1 is obtained. The third joint pipe 3 and the end portion 3a are not in contact with each other, and the opening inner peripheral edge corner portion 3e and the outer peripheral surface of the stopper portion 8 are in contact with each other along the cylindrical axis X direction. is there.
That is, the stopper portion 8 is formed at a position on the outer peripheral surface of the straight pipe portion 2B of the second joint pipe 2 that intersects the swinging locus of the opening inner peripheral corner portion 3e of the end 3a of the third joint pipe 3. Then, in a state where the second joint pipe 2 and the third joint pipe 3 are swung relative to each other up to the maximum bending angle, the opening inner peripheral edge corner portion 3e is formed on the outer peripheral surface of the stopper portion 8 on the cylindrical axis. It is formed on a tapered surface along the X direction.
[0013]
As shown in FIGS. 1 to 4, the outer peripheral surface of the straight pipe portion 2 </ b> B of the second joint pipe 2 is located near both ends of the inner peripheral surface of the first joint pipe 1 in the cylinder axis X direction. An annular seal holding groove 10 is formed to hold a first elastic sealing material 9 made of synthetic rubber (for example, styrene butadiene rubber), which is an example of a sealing structure that seals between the third joint pipes 3 and 3. Synthetic rubber which is an example of a sealing structure that seals between the inner peripheral surfaces 3b and 3c of the partial spherical tube portion 3A and the outer peripheral surface 2a of the spherical tube portion 2A of the second joint pipe 2 ( For example, an annular seal holding groove 12 for holding a second elastic sealing material 11 made of styrene butadiene rubber is formed, and fluid transport is provided to each end of the straight pipe portion 3B of the third joint pipe 3. Fix other fluid piping devices P such as pipes (for example, water pipes) and gate valves with bolts and nuts. A plurality of connecting through-holes 3f for connecting are integrally formed a coupling flange 3C having coaxially circular.
[0014]
Therefore, in the pipe joint structure configured in this way, an external force in the compression direction caused by an earthquake, non-uniform subsidence, etc. acts, and the end portion 1a of the first joint pipe 1 is maximized toward the third joint pipe 3 side. Even when contracted and moved, the maximum movement position of the end portion 1a of the first joint pipe 1 is restricted to a position deviated from the swinging region of the end portion 3a of the third joint pipe 3 by the stopper portion 8. Therefore, compared to the outer diameter of the end portion of the second joint pipe 2, the end of the first joint pipe 1 whose outer diameter is increased due to the presence of the first elastic sealing material 9 which is an example of a sealing structure. The part 1 a does not enter between the inner peripheral surface of the end 3 a of the third joint pipe 3 and the outer peripheral surface of the second joint pipe 2.
Moreover, when an external force such as a shearing force or a bending moment due to an earthquake or uneven subsidence acts, the second joint pipe 2 and the third joint pipe 3 are relatively swung to the maximum bending angle. An opening inner peripheral edge corner portion 3e of the end portion 3a of the joint pipe 3 protrudes from the outer peripheral surface of the second joint pipe 2 and extends along the cylinder axis X direction on the outer peripheral surface of the stopper portion 8 having high mechanical strength. In other words, the inner peripheral edge corner portion 3e of the end portion 3a of the third joint pipe 3 has a wall thickness of the outer peripheral surface of the straight pipe portion 2B of the second joint pipe 2. Since it contacts the outer peripheral surface of the thickest stopper portion 8 along the direction of the cylinder axis X, the stopper portion 8 reliably receives and disperses the external force as a pressure contact force from the end portion 3a of the third joint pipe 3. Can be supported.
[0015]
[Other Embodiments]
(1) In the first embodiment described above, the stopper portion 8 is integrally projected on the outer peripheral surface of the second tubular body B. However, the stopper portion 8 formed separately from the second tubular body B is provided. The second cylindrical body B may be fixed to a predetermined position on the outer peripheral surface. In this case, the material of the stopper portion 8 is not limited to cast iron, and may be stainless steel, hard synthetic resin, or synthetic rubber.
(2) In the first embodiment described above, the stopper portion 8 is constituted by an annular ridge, but is not limited to this shape, for example, along the circumferential direction of the second cylindrical body B. You may comprise from the processus | protrusion group formed intermittently.
(3) In the first embodiment described above, a pipe joint comprising a combination of five cylindrical bodies, one first cylindrical body A, two second cylindrical bodies B, and two third cylindrical bodies C. Although the structure has been described, the first cylindrical body A, one second cylindrical body B, and one third cylinder provided with a connecting portion that can be integrally connected to another cylindrical body on the other end side. The technique of the present invention can also be applied to a pipe joint structure formed by combining three cylindrical bodies with the cylindrical body C.
[Brief description of the drawings]
FIG. 1 is an overall longitudinal sectional view showing a first embodiment of a pipe joint structure according to the present invention. FIG. 2 is an overall view when an external force in a compression direction and an external force in a direction intersecting a cylinder axis are received. Longitudinal sectional view [Fig. 3] Enlarged sectional view of the main part when receiving external force in the pulling direction [Fig. 4] Main part when receiving external force in the compressing direction and external force in the direction intersecting the cylinder axis Fig. 5 is a longitudinal sectional view showing a conventional pipe joint structure.
A 1st cylindrical body (1st joint pipe)
B 2nd cylindrical body (2nd joint pipe)
C 3rd cylindrical body (3rd joint pipe)
X cylindrical shaft core 1a end surface 2A spherical cylindrical portion 2a outer peripheral surface 3A partial spherical cylindrical portion 3a end portion 3c inner peripheral surface 8 stopper portion 13 sliding contact guide member

Claims (3)

第1筒状体に、第2筒状体の一端側を一定範囲内で筒軸芯方向に相対移動自在に密封状態で挿入接続するとともに、前記第2筒状体の他端側に、第3筒状体を相対揺動自在に密封状態で外嵌接続してある管継手構造であって、
前記第2筒状体の外周面に、前記第1筒状体の端部の第3筒状体側への最大移動位置を前記第3筒状体の端部の揺動領域外に接当規制するストッパー部を突出形成し、前記第2筒状体と第3筒状体とが最大屈曲角度まで相対揺動したとき、第3筒状体の端部がストッパー部の外周面に接当するように構成してある管継手構造。
One end side of the second cylindrical body is inserted and connected to the first cylindrical body in a sealed state so as to be relatively movable in the cylinder axis direction within a certain range, and the other end side of the second cylindrical body is connected to the other end side of the second cylindrical body. A pipe joint structure in which three cylindrical bodies are externally connected in a sealed state so as to be relatively swingable,
Limiting the position of the maximum movement of the end of the first cylindrical body toward the third cylindrical body on the outer peripheral surface of the second cylindrical body outside the swing region of the end of the third cylindrical body When the second cylindrical body and the third cylindrical body swing relative to the maximum bending angle, the end of the third cylindrical body contacts the outer peripheral surface of the stopper section. A pipe joint structure configured as described above.
前記第2筒状体と第3筒状体とが最大屈曲角度まで相対揺動したとき、前記第3筒状体の端部と前記ストッパー部の外周面とが筒軸芯方向に沿って接当するように構成されている請求項1記載の管継手構造。When the second cylindrical body and the third cylindrical body swing relative to each other up to the maximum bending angle, the end of the third cylindrical body and the outer peripheral surface of the stopper portion are in contact with each other along the cylinder axis direction. The pipe joint structure according to claim 1, which is configured to hit. 前記第2筒状体の他端側に形成された球状筒部に、この球状筒部の外周面に沿って相対摺接揺動自在な部分球状筒部を備えた第3筒状体が筒軸芯方向の一方から外嵌されているとともに、前記第2筒状体の球状筒部の外周面と前記第3筒状体の部分球状筒部の内周面との間に形成される間隙に、前記第2筒状体の球状筒部の外周面に摺接する摺接案内部材が、筒軸芯方向の他方から嵌め込まれていて、前記第2筒状体と第3筒状体とが相対摺接揺動自在に抜止め連結されている請求項1又は2記載の管継手構造。A third cylindrical body provided with a partial spherical cylindrical portion that can swing relative to and slide along the outer peripheral surface of the spherical cylindrical portion on the spherical cylindrical portion formed on the other end side of the second cylindrical body is a cylinder. A gap that is fitted from one side in the axial direction and formed between the outer peripheral surface of the spherical cylindrical portion of the second cylindrical body and the inner peripheral surface of the partial spherical cylindrical portion of the third cylindrical body Further, a sliding contact guide member slidably contacting the outer peripheral surface of the spherical cylindrical portion of the second cylindrical body is fitted from the other side in the cylindrical axis direction, and the second cylindrical body and the third cylindrical body are The pipe joint structure according to claim 1 or 2, wherein the pipe joint structure is connected so as to be swingable relative to the sliding contact.
JP32830696A 1996-12-09 1996-12-09 Pipe joint structure Expired - Lifetime JP3761266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32830696A JP3761266B2 (en) 1996-12-09 1996-12-09 Pipe joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32830696A JP3761266B2 (en) 1996-12-09 1996-12-09 Pipe joint structure

Publications (2)

Publication Number Publication Date
JPH10169865A JPH10169865A (en) 1998-06-26
JP3761266B2 true JP3761266B2 (en) 2006-03-29

Family

ID=18208766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32830696A Expired - Lifetime JP3761266B2 (en) 1996-12-09 1996-12-09 Pipe joint structure

Country Status (1)

Country Link
JP (1) JP3761266B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025392B2 (en) 2002-11-20 2006-04-11 Higashio Mech Co., Ltd. Joint construction for cable piping
JP6032530B2 (en) * 2012-06-12 2016-11-30 株式会社栗本鐵工所 Seismic joint structure of cable protection tube
CN108691555B (en) * 2018-04-20 2020-01-17 北京工业大学 Fault broken zone section anti-seismic tunnel pipeline connecting piece

Also Published As

Publication number Publication date
JPH10169865A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
JP3415985B2 (en) Telescopic fittings
EP0870965B1 (en) Telescopic pivotal pipe joint
EP0945661B1 (en) Device for connecting a pipe joint
KR101754397B1 (en) Grooveless coupling
EP0633991B1 (en) Flexible pipe joint
EP1394460A1 (en) Flexible pipe joint
JP4382226B2 (en) Reinforced joint for pipe connection
JP3761266B2 (en) Pipe joint structure
EP0899499A2 (en) Saddle connection for plastic pipe
JP3894639B2 (en) Pipe joint structure
JP3292610B2 (en) Pipe fittings
JP4293783B2 (en) Expansion joint structure
JP3253853B2 (en) Swing telescopic joint
JP2005273772A (en) Bellow type sleeve joint
JP3594342B2 (en) Telescopic fittings
JPH1144388A (en) Pipe joint construction
JPH0522714Y2 (en)
JPH0417892Y2 (en)
JP3060593U (en) Pipe joint structure
JP3572405B2 (en) Vibration absorbing pipe fittings
JPH0334522Y2 (en)
JPH10281370A (en) Extensible and contractible swivel pipe joint
JPH047433Y2 (en)
JPH10205667A (en) Pipe joint
JPH0231648Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term