JP3760821B2 - Steel strip joining method in continuous processing line - Google Patents

Steel strip joining method in continuous processing line Download PDF

Info

Publication number
JP3760821B2
JP3760821B2 JP2001264112A JP2001264112A JP3760821B2 JP 3760821 B2 JP3760821 B2 JP 3760821B2 JP 2001264112 A JP2001264112 A JP 2001264112A JP 2001264112 A JP2001264112 A JP 2001264112A JP 3760821 B2 JP3760821 B2 JP 3760821B2
Authority
JP
Japan
Prior art keywords
welding
steel strip
speed
electrode wheel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001264112A
Other languages
Japanese (ja)
Other versions
JP2003071567A (en
Inventor
裕之 柴田
弘 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001264112A priority Critical patent/JP3760821B2/en
Publication of JP2003071567A publication Critical patent/JP2003071567A/en
Application granted granted Critical
Publication of JP3760821B2 publication Critical patent/JP3760821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼帯の連続処理ラインにおいて先行鋼帯と後行鋼帯の端部どうしを重ね合わせ溶接により接合する方法に関するものである。
【0002】
【従来の技術】
鋼帯の連続処理ラインにおいて先行鋼帯と後行鋼帯の端部どうしを接合する方法としては、先行鋼帯と後行鋼帯の端部どうしを重ね合わせ、板幅方向に走行する上下一対の電極輪で加圧しながら溶接を行う重ね合わせ(シーム)溶接方法が一般に用いられている。
【0003】
【発明が解決しようとする課題】
しかしながら、このような方法で先行鋼帯と後行鋼帯の端部どうしの重ね合わせ溶接を行うと、溶接部表面に疵が付いたり、溶接部に貫通孔が生じたりするなどの問題を生じ、最悪のケースでは炉内で鋼帯が破断する場合もある。
【0004】
しかし、このような溶接欠陥の発生については長らくその原因が判らず、適切な対策を講じることができなかった。
【0005】
そこで本発明の目的は、先行鋼帯と後行鋼帯の端部どうしを接合するための重ね合わせ溶接において、良好な溶接部を得ることができる方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は上述の課題を解決すべく鋭意検討を重ねた結果、以下のような事実を見出した。
【0007】
すなわち、鋼帯の連続処理ラインにおいて先行鋼帯と後行鋼帯の端部どうしを接合するための重ね合わせ溶接では、重ね合わせ溶接機の電極輪回転エアーモーターは通常定回転型であり、上下の電極輪が無負荷時(空転時)には回転数Roは一定であるが、溶接時には鋼帯への加圧により回転数は低下してR1となる。また、電極輪を繰返し使用すると電極輪径が次第に減少し、電極輪周速が溶接機の移動速度すなわち溶接速度よりも小さくなる。このように径が小さくなった電極輪を使用すると、電極輪周速が溶接速度に追随できなくなってスリップし、この結果、溶接温度のハンチングが発生して上述した異常溶接の原因となることが判った。ここで、溶接温度のハンチングとは、溶接温度が不規則に上下変動する現象を指す。
【0008】
本発明者等はこのような知見に基づきさらに検討を進めた結果、電極輪が使用可能な最小径になる時点まで、電極輪周速が溶接速度より常に大きくなるように電極輪回転数及び電極輪径を設定することにより、電極輪と鋼帯のスリップを防ぎ溶接温度のハンチングを防止することができることが判った。
【0009】
本発明はこのような知見に基づきなされたものであり、その特徴は、鋼帯の連続処理ラインにおいて定回転型の電極輪回転モーターを用いた溶接機により先行鋼帯と後行鋼帯の端部どうしを重ね合わせ溶接により接合する方法において、最小の電極輪使用可能径で使用する際の加圧時の電極輪周速が溶接速度よりも大きくなるように、前記電極輪回転モーターの回転数を溶接前に設定することを特徴とする連続処理ラインにおける鋼帯の接合方法である。
【0010】
【発明の実施の形態】
図1および図2は、本発明による鋼帯の接合方法の一実施形態を示すもので、図1は鋼帯の連続処理ラインにおいて先行鋼帯と後行鋼帯との端部どうしを接合するための重ね合わせ溶接機、およびこの重ね合わせ溶接機による溶接状況を示す説明図であり、図1は、先行鋼帯5と後行鋼帯6の端部どうしの重ね合わせ部7、つまり溶接部7の断面を見たもので、これら先行鋼帯5および後行鋼帯6は紙面に垂直な方向に移動する。図2は電極輪の周速と溶接部の温度(重ね合わせ部の溶接温度平均値からの偏差)との関係の一例を示すグラフである。
【0011】
図1の重ね合わせ溶接機は、先行鋼帯5と後行鋼帯6の端部どうしの重ね合わせ部7を挟む上下1対の電極輪(溶接ロール)1a、1b、上電極輪1aの電極駆動モーター(図示せず)、前記電極輪1a、1bに隣接して位置する上下1対のスウェージングロール2a、2b(プラニッシュロール)、前記上電極輪1aおよび上部スウェージングロール2aをそれぞれ保持して昇降させるためのエアーシリンダー3、4、該エアーシリンダー3、4を保持し、鋼帯幅方向に移動可能な支持フレーム8から構成される。
【0012】
前記上下電極輪1a、1bは、先行鋼帯5と後行鋼帯6の端部どうしの重ね合わせ部7を上下から挟んで加圧し、通電しながら鋼帯面上を転動することにより、前記先行鋼帯5と後行鋼帯6の端部どうしの重ね合わせ部7を溶接する。
【0013】
前記上下スウェージングロール2a、2bは前記電極輪1a、1bに追従し、溶接部7を上下から挟んで押圧しながら転動することにより、当該溶接部7を平滑化する。本実施形態のスウェージングロール2a、2bは溶接機の移動速度に追従して回転するだけであるが、スウェージングロール2a、2bは駆動モーターによって駆動される形式でもよい。
【0014】
前記支持フレーム8は、リードスクリュウ方式または油圧シリンダー方式によって鋼帯5および6の幅方向に走行自在に構成される。
【0015】
図2は電極輪の周速と接合部の温度との関係の一例を示すグラフである。図2には初期電極輪径が200φの場合と、165φの場合について、初期電極輪の周速V1をそれぞれ3ケース(V1a〜V1c、V1d〜V1f)設定して、溶接テストを行って、そのときの溶接部の溶接温度平均値からの偏差である温度偏差を調査した結果が示されている。
【0016】
加圧時の電極輪回転数をR1(rpm)、電極輪直径をD1(mm)としたとき、設定電極輪周速V1 (mpm)は
1 =πR1D1/1000
で表される。また電極輪の回転数は、上下電極に加圧を加えて回転させた場合(R1)において、無負荷で回転させた場合(Ro)に比べ加圧による抵抗によりα倍回転数が低下する。(R1=α×Ro)
また、溶接時の電極輪回転数をR2(rpm)、電極輪直径をD2(mm)としたとき、電極輪周速V2 (mpm)は
2 =πR2D2/1000
で表される。
【0017】
初期電極輪周速V1 が溶接機の移動速度(=溶接速度)Vwよりも大きい、すなわち電極輪周速V1 >溶接速度Vwの場合、溶接時においては電極輪の回転数R2が低下し、電極輪周速V2が溶接速度Vwと同期する(V2 =Vwとなる)まで電極輪周速V2 が減少する。つまり図2の矢印bのように電極輪周速V2 は溶接速度Vwに一致するまで減少するが、このときの温度偏差は小さい。
【0018】
これに対して、初期電極輪周速V1 が溶接機の移動速度(=溶接速度)Vwよりも小さい、すなわち電極輪周速V1 <溶接速度Vwの場合、溶接時においては電極輪の回転数R2が上昇し、電極輪周速V2が溶接速度Vwと同期する(V2 =Vwとなる)まで電極輪周速V2 が増加する。つまり図2の矢印aのように電極輪周速V2 は溶接速度Vwに一致するまで増加しようとするが、電極輪にスリップが生じてしまう。このようなスリップが生じると先に述べたような溶接温度のハンチングが発生しやすい。したがって、このときに温度偏差が大きい。
【0019】
一方、電極輪は表面荒れによる溶接温度の変動を防ぐため一定の割合で表面の研磨が行われる。このため電極輪径は徐々に減少し、使用可能最小径(Dmin)となった時点で交換される。このような電極輪径の減少に伴い、当然のことながら、同じ回転数であっても電極輪周速は減少することとなる。一例として図3のモーター回転数を溶接前に30rpmに設定した場合のように、電極輪径が縮小すればする程電極輪周速は低下し、この例では電極輪径が約185mmとなったときに、電極輪周速V2 <溶接速度Vw となり溶接温度はハンチングを生じやすくなる。
【0020】
そこで、本発明法では、図3のモーター回転数を溶接前に35rpmに設定した場合のように、電極輪径が使用可能最小径(Dmin)となった時点においても、モーターの回転数を考慮し、電極輪周速V1dmin が溶接速度Vw(本例では15mpm)より大きくなるように設定しておく。つまり、電極輪周速と溶接速度とが下式(1)を満たすように電極輪回転数及び最小の電極輪使用可能径(Dmin)を溶接前に設定する。
Vw<V1dmin(=π×R1×Dmin=π×α×Ro×Dmin) …(1)
ここで、Vw:溶接機の移動速度(=溶接速度)、V1dmin:電極輪使用可能最小径時の周速、α:加圧による電極輪回転数の低下率、Ro:無負荷回転時の電極輪回転数、R1:加圧時の電極輪回転数(=α×Ro)、Dmin:電極輪の使用可能最小径
【0021】
【実施例】
本発明を連続焼鈍設備の入側溶接機に適用した例について述べる。本実施例の連続焼鈍設備の入側溶接機は、図1に示すような構造を有している。
【0022】
初期電極輪径は200mmφであり、165mmφにまで径が減少したときに使用を中止して新品と交換するようにしている。また、溶接の度に荒れた電極輪をオンラインで磨くドレッサーが付帯している。上電極輪はエアーシリンダーで下方向に加圧され、上スウェージングロールも同様にエアーシリンダーで下方向に加圧されている。
【0023】
図4および図5に、それぞれ比較例および本発明例の鋼帯板幅方向溶接温度チャートを示す。使用した鋼帯は先行鋼帯、後行鋼帯ともに板幅950mm、板厚0.4mmであって、溶接温度偏差は板幅方向の溶接温度変動の標準偏差であり、溶接温度ハンチング量の指標とする。ここで溶接温度とは、先行鋼帯と後行鋼帯の端部どうしの重ね合わせ溶接線上で、溶接点より数センチメートル(通常約2cm)後方に離れた箇所において計測した温度である。
【0024】
図4は比較例の鋼帯板幅方向溶接温度チャートを示しており、溶接速度15mpm、初期電極輪径φ200とした場合、電極輪の無負荷での回転数を25rpmとしたために初期電極輪周速が溶接速度より小さく設定されて、溶接温度のハンチング(図中矢印で示す)が発生して溶接温度偏差は32℃であった。これに対して本発明例では、溶接速度15mpm、電極輪使用可能最小径φ165とした場合、電極輪の無負荷での回転数を35rpmとすることにより電極輪周速が溶接速度より常に大きくなるように設定でき、図5に見られるように溶接温度偏差は16℃となって、図4のような溶接温度のハンチングを防止することができた。
【0025】
【発明の効果】
以上述べたように本発明によれば、鋼帯の連続処理ラインにおいて先行鋼帯と後行鋼帯の端部どうしを接合するための重ね合わせ溶接時に、溶接温度のハンチングを発生させずに、安定的に鋼帯の重ね合わせ溶接をすることができる。
【図面の簡単な説明】
【図1】本発明による鋼帯の接合方法の一実施形態を示すもので、鋼帯の連続処理ラインにおいて先行鋼帯と後行鋼帯の端部どうしを接合するための重ね合わせ溶接機、およびこの重ね合わせ溶接機による溶接状況を示す説明図
【図2】本発明による鋼帯の接合方法の一実施形態を示すもので、電極輪の周速と溶接部の温度(重ね合わせ部の溶接温度平均値からの偏差)との関係の一例を示すグラフ
【図3】本発明による電極輪径と電極輪周速との関係の一例を示すグラフ
【図4】比較例の鋼帯板幅方向溶接温度チャート
【図5】本発明例の鋼帯板幅方向溶接温度チャート
【符号の説明】
1a 上電極輪
1b 下電極輪
2a 上部スウェージングロール
2b 下部スウェージングロール
3 エアーシリンダー
4 エアーシリンダー
5 先行鋼帯
6 後行鋼帯
7 重ね合わせ部
8 支持フレーム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of joining the end portions of a preceding steel strip and a succeeding steel strip by means of lap welding in a continuous processing line of the steel strip.
[0002]
[Prior art]
As a method of joining the end portions of the preceding steel strip and the succeeding steel strip in the continuous processing line of the steel strip, the end portions of the preceding steel strip and the succeeding steel strip are overlapped, and a pair of upper and lower traveling traveling in the plate width direction is performed. An overlap (seam) welding method is generally used in which welding is performed while pressing with an electrode ring.
[0003]
[Problems to be solved by the invention]
However, if overlap welding is performed between the ends of the preceding steel strip and the succeeding steel strip by this method, problems such as flaws on the surface of the welded portion and through holes in the welded portion may occur. In the worst case, the steel strip may break in the furnace.
[0004]
However, the cause of such welding defects has not been known for a long time, and appropriate measures could not be taken.
[0005]
Accordingly, an object of the present invention is to provide a method capable of obtaining a good weld in the lap welding for joining the end portions of the preceding steel strip and the succeeding steel strip.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found the following facts.
[0007]
In other words, in the lap welding for joining the ends of the preceding steel strip and the succeeding steel strip in the continuous processing line of the steel strip, the electrode wheel rotating air motor of the lap welder is usually a constant rotation type, The rotational speed Ro is constant when the electrode wheel is unloaded (during idling), but during welding, the rotational speed decreases to R 1 due to the pressurization of the steel strip. Further, when the electrode wheel is repeatedly used, the electrode wheel diameter gradually decreases, and the electrode wheel peripheral speed becomes smaller than the moving speed of the welding machine, that is, the welding speed. If an electrode ring with a reduced diameter is used in this way, the electrode wheel peripheral speed cannot follow the welding speed and slips, and as a result, hunting of the welding temperature occurs, causing the above-described abnormal welding. understood. Here, hunting of the welding temperature refers to a phenomenon in which the welding temperature fluctuates irregularly.
[0008]
As a result of further investigation based on such knowledge, the present inventors have determined that the rotation speed of the electrode wheel and the electrode so that the peripheral speed of the electrode wheel is always larger than the welding speed until the electrode wheel reaches the minimum usable diameter. It was found that setting the ring diameter can prevent the electrode ring and the steel strip from slipping and prevent welding temperature hunting.
[0009]
The present invention has been made on the basis of such findings. The feature of the present invention is that the end of the preceding steel strip and the following steel strip is obtained by a welding machine using a constant rotation type electrode wheel rotation motor in a continuous processing line of the steel strip. In the method of joining the parts by overlap welding , the rotation speed of the electrode wheel rotation motor is such that the electrode wheel peripheral speed during pressurization when using the smallest electrode wheel usable diameter is larger than the welding speed. Is a method for joining steel strips in a continuous processing line, characterized in that is set before welding.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show an embodiment of a method for joining steel strips according to the present invention. FIG. 1 shows joining of end portions of a preceding steel strip and a succeeding steel strip in a continuous processing line of the steel strip. FIG. 1 is an explanatory view showing a welding machine for welding and a welding situation by this welding machine, and FIG. 1 shows a superposed part 7 between end parts of a preceding steel strip 5 and a succeeding steel strip 6, that is, a welded part. As seen from the cross section of FIG. 7, the preceding steel strip 5 and the trailing steel strip 6 move in a direction perpendicular to the paper surface. FIG. 2 is a graph showing an example of the relationship between the peripheral speed of the electrode wheel and the temperature of the welded portion (deviation from the average welding temperature value of the overlapped portion).
[0011]
1 is a pair of upper and lower electrode rings (welding rolls) 1a, 1b and an upper electrode ring 1a sandwiching an overlapping portion 7 between end portions of a preceding steel strip 5 and a trailing steel strip 6. A drive motor (not shown), a pair of upper and lower swaging rolls 2a and 2b (planar rolls) positioned adjacent to the electrode wheels 1a and 1b, and the upper electrode wheel 1a and the upper swaging roll 2a are held. Air cylinders 3 and 4 for moving up and down, and a support frame 8 that holds the air cylinders 3 and 4 and is movable in the width direction of the steel strip.
[0012]
The upper and lower electrode wheels 1a and 1b are pressed by sandwiching the overlapping portion 7 between the ends of the preceding steel strip 5 and the trailing steel strip 6 from above and below, and rolling on the steel strip surface while energizing, The overlapping portion 7 between the end portions of the preceding steel strip 5 and the trailing steel strip 6 is welded.
[0013]
The upper and lower swaging rolls 2a and 2b follow the electrode wheels 1a and 1b, and roll while pressing the welded portion 7 from above and below to smooth the welded portion 7. Although the swaging rolls 2a and 2b of the present embodiment only rotate following the moving speed of the welding machine, the swaging rolls 2a and 2b may be driven by a drive motor.
[0014]
The support frame 8 is configured to be able to run in the width direction of the steel strips 5 and 6 by a lead screw method or a hydraulic cylinder method.
[0015]
FIG. 2 is a graph showing an example of the relationship between the peripheral speed of the electrode wheel and the temperature of the joint. Fig. 2 shows three cases (V 1a to V 1c , V 1d to V 1f ) for the peripheral speed V 1 of the initial electrode ring for the initial electrode ring diameter of 200φ and 165φ, respectively. The result of investigating the temperature deviation which is the deviation from the welding temperature average value of the welded part at that time is shown.
[0016]
Pressurization of electrode wheels rotation speed R 1 (rpm), when the electrode wheels diameter was D 1 and (mm), setting the electrode wheel circumferential speed V 1 (mpm) is V 1 = πR 1 D 1/ 1000
It is represented by In addition, the rotation speed of the electrode wheel is reduced by α times when the upper and lower electrodes are rotated by applying pressure (R 1 ) due to the resistance due to the pressure compared to when rotating without load (Ro). . (R 1 = α × Ro)
Further, the electrode wheel speed during welding R 2 (rpm), when the electrode wheels diameter was D 2 (mm), the electrode wheel peripheral speed V 2 (mpm) is V 2 = πR 2 D 2/ 1000
It is represented by
[0017]
When the initial electrode ring circumferential speed V 1 is larger than the moving speed (= welding speed) Vw of the welding machine, that is, when the electrode ring circumferential speed V 1 > the welding speed Vw, the rotation speed R 2 of the electrode ring decreases during welding. and, the electrode wheel circumferential speed V 2 is synchronized with the welding speed Vw (a V 2 = Vw) electrode wheels circumferential speed V 2 is reduced to. That is, as shown by the arrow b in FIG. 2, the electrode wheel circumferential speed V 2 decreases until it coincides with the welding speed Vw, but the temperature deviation at this time is small.
[0018]
On the other hand, if the initial electrode wheel peripheral speed V 1 is smaller than the moving speed (= welding speed) Vw of the welding machine, that is, if the electrode wheel peripheral speed V 1 <welding speed Vw, the rotation of the electrode wheel during welding The number R 2 increases, and the electrode wheel peripheral speed V 2 increases until the electrode wheel peripheral speed V 2 synchronizes with the welding speed Vw (V 2 = Vw). That is, as shown by the arrow a in FIG. 2, the electrode wheel peripheral speed V 2 tends to increase until it coincides with the welding speed Vw, but the electrode wheel slips. When such slip occurs, hunting at the welding temperature as described above is likely to occur. Therefore, the temperature deviation is large at this time.
[0019]
On the other hand, the surface of the electrode wheel is polished at a certain rate in order to prevent fluctuations in the welding temperature due to surface roughness. For this reason, the electrode ring diameter gradually decreases and is replaced when the usable minimum diameter (Dmin) is reached. As the electrode ring diameter decreases, the electrode wheel peripheral speed naturally decreases even at the same rotation speed. As an example, as the motor rotation speed in FIG. 3 is set to 30 rpm before welding, the electrode ring peripheral speed decreases as the electrode ring diameter decreases. In this example, the electrode ring diameter is about 185 mm. Sometimes, the electrode wheel peripheral speed V 2 <welding speed Vw, and the welding temperature tends to cause hunting.
[0020]
Therefore, in the method of the present invention, even when the electrode ring diameter becomes the minimum usable diameter (Dmin) as in the case where the motor rotation speed in FIG. 3 is set to 35 rpm before welding, the rotation speed of the motor is taken into consideration. The electrode wheel peripheral speed V 1 dmin is set to be larger than the welding speed Vw (15 mpm in this example). That is, the electrode wheel rotation speed and the minimum electrode wheel usable diameter (Dmin) are set before welding so that the electrode wheel peripheral speed and the welding speed satisfy the following expression (1).
Vw <V 1 dmin (= π × R 1 × Dmin = π × α × Ro × Dmin) (1)
Here, Vw: moving speed of welding machine (= welding speed), V 1 dmin: peripheral speed at the minimum diameter that can be used for electrode wheel, α: rate of decrease of electrode wheel rotation speed due to pressurization, Ro: at no load rotation Electrode wheel rotation speed, R 1 : electrode wheel rotation speed during pressurization (= α × Ro), Dmin: minimum usable diameter of electrode ring [0021]
【Example】
The example which applied this invention to the entrance side welding machine of the continuous annealing equipment is described. The entrance side welding machine of the continuous annealing equipment of a present Example has a structure as shown in FIG.
[0022]
The initial electrode ring diameter is 200 mmφ, and when the diameter decreases to 165 mmφ, the use is stopped and replaced with a new one. In addition, a dresser that polishes the electrode wheel that is rough every time it is welded online is included. The upper electrode wheel is pressed downward by an air cylinder, and the upper swaging roll is similarly pressed downward by an air cylinder.
[0023]
4 and 5 show steel strip width direction welding temperature charts of a comparative example and an example of the present invention, respectively. The steel strip used was 950 mm in width and 0.4 mm in thickness for both the preceding steel strip and the trailing steel strip. The welding temperature deviation is the standard deviation of the welding temperature fluctuation in the plate width direction. And Here, the welding temperature is a temperature measured at a location a few centimeters (usually about 2 cm) behind the welding point on the overlap welding line between the ends of the preceding steel strip and the succeeding steel strip.
[0024]
FIG. 4 shows a steel strip width direction welding temperature chart of a comparative example. When the welding speed is 15 mpm and the initial electrode ring diameter is 200, the rotation speed of the electrode ring with no load is set to 25 rpm. The speed was set lower than the welding speed, welding temperature hunting (indicated by an arrow in the figure) occurred, and the welding temperature deviation was 32 ° C. On the other hand, in the present invention example, when the welding speed is 15 mpm and the minimum usable diameter of the electrode wheel is φ165, the peripheral speed of the electrode wheel is always higher than the welding speed by setting the rotation speed of the electrode wheel at no load to 35 rpm. As shown in FIG. 5, the welding temperature deviation was 16 ° C., and hunting of the welding temperature as shown in FIG. 4 could be prevented.
[0025]
【The invention's effect】
As described above, according to the present invention, at the time of lap welding for joining the end portions of the preceding steel strip and the subsequent steel strip in the continuous processing line of the steel strip, without generating hunting of the welding temperature, Steel strips can be stably welded together.
[Brief description of the drawings]
FIG. 1 shows an embodiment of a method for joining steel strips according to the present invention, and a lap welder for joining the ends of a preceding steel strip and a succeeding steel strip in a continuous treatment line of the steel strip, FIG. 2 shows an embodiment of a method for joining steel strips according to the present invention, and shows the circumferential speed of the electrode wheel and the temperature of the welded portion (welding of the overlapped portion). FIG. 3 is a graph showing an example of the relationship between the electrode ring diameter and the electrode wheel peripheral speed according to the present invention. FIG. 4 is a steel strip width direction of the comparative example. Welding temperature chart [Fig. 5] Steel strip width direction welding temperature chart of the present invention example [Explanation of symbols]
1a Upper electrode wheel 1b Lower electrode wheel 2a Upper swaging roll 2b Lower swaging roll 3 Air cylinder 4 Air cylinder 5 Leading steel strip 6 Subsequent steel strip 7 Overlapping part 8 Support frame

Claims (1)

鋼帯の連続処理ラインにおいて定回転型の電極輪回転モーターを用いた溶接機により先行鋼帯と後行鋼帯の端部どうしを重ね合わせ溶接により接合する方法において、最小の電極輪使用可能径で使用する際の加圧時の電極輪周速が溶接速度よりも大きくなるように、前記電極輪回転モーターの回転数を溶接前に設定することを特徴とする連続処理ラインにおける鋼帯の接合方法。The smallest electrode wheel usable diameter in the method of joining the ends of the preceding steel strip and the succeeding steel strip by overlap welding with a welding machine using a constant rotation type electrode wheel rotation motor in a continuous treatment line of steel strip Joining steel strips in a continuous processing line, characterized in that the rotational speed of the electrode wheel rotation motor is set before welding so that the circumferential speed of the electrode wheel during pressurization is higher than the welding speed. Method.
JP2001264112A 2001-08-31 2001-08-31 Steel strip joining method in continuous processing line Expired - Fee Related JP3760821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001264112A JP3760821B2 (en) 2001-08-31 2001-08-31 Steel strip joining method in continuous processing line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001264112A JP3760821B2 (en) 2001-08-31 2001-08-31 Steel strip joining method in continuous processing line

Publications (2)

Publication Number Publication Date
JP2003071567A JP2003071567A (en) 2003-03-11
JP3760821B2 true JP3760821B2 (en) 2006-03-29

Family

ID=19090768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001264112A Expired - Fee Related JP3760821B2 (en) 2001-08-31 2001-08-31 Steel strip joining method in continuous processing line

Country Status (1)

Country Link
JP (1) JP3760821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655954B (en) * 2009-12-15 2016-01-27 普锐特冶金技术日本有限公司 Rolled material production equipment and cold rolling process

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297859B1 (en) * 2008-07-11 2013-08-19 미쯔비시 히다찌 세이떼쯔 기까이 가부시끼가이샤 Method and apparatus for bonding metal plates
EP2322308A4 (en) * 2008-07-11 2014-06-11 Mitsubishi Hitachi Metals Mash seam welding method and equipment
RU2466837C2 (en) * 2008-07-11 2012-11-20 Мицубиси-Хитачи Металз Машинери, Инк. Method and device for mash seam welding
CN103586607A (en) * 2013-11-22 2014-02-19 重庆川东减震制造有限公司 Friction-disk driving mechanism of rolling welder
CN108723622A (en) * 2018-05-31 2018-11-02 山西太钢不锈钢精密带钢有限公司 A kind of welding method of precise stainless steel strip material
CN113823924B (en) * 2021-08-31 2024-03-29 广东电网有限责任公司 Take depth demand recognition function's earth bar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655954B (en) * 2009-12-15 2016-01-27 普锐特冶金技术日本有限公司 Rolled material production equipment and cold rolling process

Also Published As

Publication number Publication date
JP2003071567A (en) 2003-03-11

Similar Documents

Publication Publication Date Title
EP2329909B1 (en) Method and apparatus for bonding metal plates
JP4500883B2 (en) Mash seam welding method and apparatus
JP3760821B2 (en) Steel strip joining method in continuous processing line
WO2018181397A1 (en) Welding determination device for belt-shaped sheets, and welding determination method
JP2007069234A (en) Method and device for monitoring passage of sheet on thick steel plate straightening line
JP6483933B2 (en) Welding judgment device and welding judgment method for strip plate
JP4370628B2 (en) Thickening method for lap weld joints
JPH06134613A (en) Removing method for inside bead of welded steel pipe and device therefor
JP2878992B2 (en) Seam welding method for thin steel sheet
JPH05161915A (en) Manufacture of spirally welded pipe
JP3781128B2 (en) Pressure welding equipment
JP2000051907A (en) Hot pressure-welding method and device therefor
JPS59215286A (en) Pressure welding method of composite material
JPS61238483A (en) Press-welding method for composite material
JPH03106589A (en) Method and device for joining metallic strips
SU1530382A1 (en) Method of pressure welding
JP2002292410A (en) Removing method for joined protruding portion of hot- rolled blooms
JPS63286202A (en) Method for preventing edge crack of rolled stock
JP3491703B2 (en) Rolled material joining equipment
KR19980042955U (en) Welded Surface Processing Equipment
JPH10277607A (en) Continuous hot-rolling equipment for steel stock
JPS60130482A (en) Crushing and thinning method of lap weld zone of thin steel strip
JPS611489A (en) Method and equipment for joining sheet bar
JP2002292495A (en) Cutting device for hot billet
JP2019181516A (en) Thickness reducing method of welded joint part of metal strip and welding facility of metal strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees