JP3760512B2 - Yarn tension detection sensor - Google Patents

Yarn tension detection sensor Download PDF

Info

Publication number
JP3760512B2
JP3760512B2 JP18061896A JP18061896A JP3760512B2 JP 3760512 B2 JP3760512 B2 JP 3760512B2 JP 18061896 A JP18061896 A JP 18061896A JP 18061896 A JP18061896 A JP 18061896A JP 3760512 B2 JP3760512 B2 JP 3760512B2
Authority
JP
Japan
Prior art keywords
yarn
magnet
lever
tension
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18061896A
Other languages
Japanese (ja)
Other versions
JPH1026570A (en
Inventor
陽一 前田
友春 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP18061896A priority Critical patent/JP3760512B2/en
Publication of JPH1026570A publication Critical patent/JPH1026570A/en
Application granted granted Critical
Publication of JP3760512B2 publication Critical patent/JP3760512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/20Sensing or detecting means using electric elements
    • B65H2553/22Magnetic detectors, e.g. Hall detectors

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Tension Adjustment In Filamentary Materials (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、糸張力検知センサ、特に、紡績機において、糸の巻き取り時の糸張力を検知する糸張力検知センサに関する。
【0002】
【従来の技術】
従来、この種の糸張力検知センサとしては、ポテンショメータを使用したもの、あるいは、特公平6−29814号公報に記載のものが知られている。該公報記載の糸張力検知センサは、2個の固定糸案内の間に設けられ、かつ、糸の走行によって糸の走行方向に対して直角に作用を受ける可動糸案内を備え、この可動糸案内に糸を掛ける構造をしている。具体的には、可動糸案内は、一端がハウジングに固定されているバネ板の開放側先端部に取り付けられている。この可動糸案内の下に磁石が取り付けられ、糸が掛けられた状態で磁石がホール効果センサに対向するように設定されている。そして、糸の巻き取り時の糸張力に応じて上下に移動する磁石からの磁束密度の変化を、ホール効果センサにて検知し、糸張力を測定していた。
【0003】
【発明が解決しようとする課題】
しかしながら、前記ポテンショメータを使用したものでは、数種類のベアリングで軸受を構成しているため、大型化すると共にコストが高く付いていた。また、回転体の接触にブラシを用いているため、耐久性に欠けていた。
一方、前記公報記載の糸張力検知センサは、可動糸案内及び磁石がバネ板の開放側先端部に取り付けられているため、糸の走行速度が速くなるとバネ板が異常振動して、磁石の上下移動が糸の張力に追従できなくなり、磁石のジャンピングや糸絡み、糸切れが生じ、精度よく糸張力を測定することができないという問題があった。
【0004】
そこで、本発明の目的は、小型で耐久性がよく、しかも糸の走行速度が速くても精度よく糸張力を測定することができる糸張力検知センサを提供することにある。
【0005】
【課題を解決するための手段と作用】
以上の目的を達成するため、本発明に係る糸張力検知センサは、定位置に固定された耐摩耗性軸部材と、この軸部材の外周面の略半周部分に係合して回転自在な剛性体からなるレバー部材と、このレバー部材の両端部に係合して該レバー部材を弾性的に保持する弾性部材と、前記レバー部材に回転自在に装着した糸案内部材と、前記レバー部材に回転中心から若干偏心して設けた磁石と、この磁石に対向して定位置に設けた磁気抵抗素子とを備えている。
【0006】
即ち、本発明は、剛性体レバー部材を耐摩耗性軸部材に弾性的に押し付けて回転自在に保持し、このレバー部材に糸の走行をガイドする糸案内部材と磁石を取り付けた。糸案内部材に糸の張力が作用しないとき、レバー部材は弾性部材によってバランスを保持され、所定の角度で静止している。この静止状態での回転角度を0゜とする。糸が高速で走行すると、糸の張力によって糸案内部材を介してレバー部材が一方向への回転力を受け、軸部材を支点として若干回転する。レバー部材と共に磁石も一体的に回転し、定位置に固定された磁気抵抗素子に作用する磁石の磁束密度が変化する。
【0007】
糸の走行張力はレバー部材/磁石の回転角度に基づいて磁気抵抗素子への磁束密度の変化として作用し、磁束密度の変化が磁気抵抗素子によって抵抗(電圧)変化として検知される。これにて、糸の張力が磁気抵抗素子の電圧変化として測定されることになる。
【0008】
【発明の実施の形態】
以下、本発明に係る糸張力検知センサの実施形態について添付図面を参照して説明する。
図1、図2において、糸張力検知センサは、概略、第1固定板1、第2固定板10、可動レバー15、可動糸案内ローラ19、コイルばね21〜24、磁石25、磁気抵抗素子30にて構成されている。
【0009】
第1固定板1には支持ブロック2が固定され、該支持ブロック2には耐摩耗性材料(例えば、セラミック)からなる軸部3が設けられている。さらに、第1固定板1にはブロック5,6を介して固定糸案内ローラ7,8が回転自在に装着されている。
可動レバー15は、剛性体からなり、一側面に形成した半円形状の凹部16が前記軸部3に係合している。この可動レバー15は4本のコイルばね21〜24を一対ずつ両端部に互いに対向させて圧縮状態で設けることによって弾性的に保持されている。
【0010】
可動糸案内ローラ19は可動レバー15の一端部に回転自在に装着されている。糸40は前記固定糸案内ローラ7から可動糸案内ローラ19及び固定糸案内ローラ8へ張り渡され、矢印a方向へ走行する。なお、これらのローラ7,8,19は耐摩耗性材料によって製作されている。
糸40に張力がかけられていないとき、前記可動レバー15はコイルばね21〜24それぞれのばね力によってバランスを保持し、図1に示す角度で静止している。このとき可動レバー15の回転角度θを0゜とする。
【0011】
磁石25は、矩形状をなし、可動レバー15の一側面にブロック26を介して取り付けられている。磁石25の取り付け位置は軸部3から若干偏心した位置である。
磁気抵抗素子30は、第2固定板10に前記磁石25と対向するように取り付けられている。具体的には、図3,図4に示すように、一対の磁気抵抗体MR1,MR2を軸部3を中心に対称に配置したもので、可動レバー15が前述のようにバランスを保って回転角度θが0゜のとき、磁石25は磁気抵抗体MR1,MR2に対して直交状態で、かつ、均等な面積で対向している(図3参照)。この磁気抵抗体MR1,MR2は、電気的に互いに直列に接続され、MR1の一端は電源端子31に接続され、MR2の一端はグランド端子32に接続されている。さらに、MR1,MR2の中継線には出力端子33が接続されている。
【0012】
次に、以上の構成からなる糸張力検知センサの動作について説明する。
糸案内ローラ7,19,8に糸40が掛けられ、糸40が矢印a方向に、例えば1200m/minの高速で走行すると、糸40の張力によって可動糸案内ローラ19が矢印b方向の力を受け、可動レバー15が軸部3を支点として矢印c方向に回転する。可動レバー19は、4本のコイルばね21〜24で弾性的に保持されているため、糸40の張力とコイルばね21〜24の弾性力が釣り合った角度θまで回転する。この可動レバー15の回転と共に磁石25も回転し(図4参照)、磁石25から磁気抵抗素子30へ作用する磁束密度が変化する。この磁束密度の変化が出力端子33から電圧変化として検知される。
【0013】
このように、糸40の張力を可動レバー15の回転力に変換させることによって、糸40が高速で走行しても、可動レバー15を糸40の張力に応じてスムーズに追随させることができ、磁石25もスムーズに動作することになる。従って、磁石25がジャンピングしたり、糸絡みや糸切れが生じるおそれはなく、精度よく糸張力を測定することができる。特に、本実施形態では、耐摩耗性軸部3に可動レバー15をコイルばね21〜24の弾性力のバランスで回転自在に保持しているため、可動レバー15の保持にベアリング等のコストがかかる大型部品を用いる必要はなく、コンパクトな構成で安価に製造できる。
【0014】
ここで、磁気抵抗素子30による糸張力の検知に関して具体的に説明する。
磁気抵抗体MR1及びMR2の抵抗値をそれぞれR1,R2、電源端子31に入力される電源電圧をVINとすると、出力端子33の出力電圧VOUTは以下の(1)式にて表される。
OUT={R2/(R1+R2)}×VIN ……(1)
【0015】
本実施形態では、糸40に張力がかかっていない(糸張力が0g)状態のとき、図3に示すように、可動レバー15の回転角度θは0゜であり、磁気抵抗体MR1,MR2がそれぞれ等しい面積で磁石25に対向するように設定されている。従って、糸40に張力がかかっていない状態の磁気抵抗体MR1,MR2の抵抗値は、R1=R2=R0となり、前記(1)式より、磁気抵抗素子30の出力電圧VOUT0は、以下の(2)式となる。
OUT0=VIN/2 ……(2)
【0016】
次に、糸40が高速で走行することにより、糸40に50gの張力がかかると、可動糸案内ローラ19が矢印b方向の力を受け、コイルばね21〜24の弾性力と釣り合う位置まで可動レバー15がスムーズに回転する。本実施形態では、張力50gでの釣り合い位置を可動レバー15の回転角度θが5゜になる位置とした。図4に示すように、可動レバー15の回転と共に磁石25が回転し、磁気抵抗体MR1と磁石25の対向面積が減少し、磁気抵抗体MR2と磁石25の対向面積が増加する。従って、磁石25から磁気抵抗体MR1への磁束密度は小さくなり、磁気抵抗体MR2への磁束密度は大きくなる。つまり、磁気抵抗体MR1の抵抗値R1はR0−ΔRとなり、磁気抵抗体MR2の抵抗値R2はR0+ΔRとなる。この結果、前記(1)式より、磁気抵抗素子30の出力電圧VOUT5は、以下の(3)式となる。なお、本実施形態では可動レバー15の回転角度1゜に対して出力電圧VOUTが14mV高くなるように設定した。
OUT5=(VIN/2)+(VIN・ΔR/2R0) ……(3)
【0017】
さらに、糸40にかかる張力が100gになると、可動レバー15はさらに矢印c方向にコイルばね21〜24の弾性力と釣り合う位置まで回転する。本実施形態では、張力100gでの釣り合い位置を可動レバー15の回転角度が10゜になる位置とした。この場合、磁気抵抗体MR1と磁石25の対向面積はさらに減少し、磁気抵抗体MR2と磁石25の対向面積がさらに増加する。磁気抵抗体MR1の抵抗値R1はR0−2ΔRとなり、磁気抵抗体MR2の抵抗値R2はR0+2ΔRとなる。この結果、前記(1)式より、磁気抵抗素子30の出力電圧VOUT10は、以下の(4)式となる。
OUT10=(VIN/2)+(VIN・ΔR/R0) ……(4)
【0018】
図5は可動レバー15の回転角度と磁気抵抗素子30の出力電圧の関係を示すグラフである。こうして、糸40の張力を磁気抵抗素子30の出力電圧VOUTの変化として測定することができる。
【0019】
なお、本発明に係る糸張力検知センサは前記実施形態に限定するものではなく、その要旨の範囲内で種々に変更することができる。
特に、磁石や磁気抵抗体の形状は、仕様に合わせて種々の形状のものが用いられる。また、可動レバーの形状も同様であり、コイルばねに関しては引張り状態で可動レバーを保持してもよい。
【0020】
【発明の効果】
以上の説明で明らかなように、本発明によれば、剛性体からなるレバー部材を弾性部材のバランスによって耐摩耗性軸部材に回転自在に係合/保持させたため、レバー部材に取り付けた糸案内部材から作用する糸張力によってレバー部材及び磁石がスムーズに回転し、磁石のジャンピングや糸絡み、糸切れが生じることなく、磁気抵抗素子の出力電圧の変化として張力を精度よく検知できる。しかも、レバー部材をベアリングで支持する必要はなくコンパクトに構成でき、コストの低減を達成できる。また、ブラシを使用することもなく、軸部材に耐摩耗性材料を使用しているため、耐久性にも優れている。
【図面の簡単な説明】
【図1】本発明の一実施形態である糸張力検知センサを示す平面図。
【図2】前記糸張力検知センサを示す側面図。
【図3】前記糸張力検知センサにおいて磁気抵抗素子と磁石との位置関係を示す説明図、可動レバーの回転角度が0゜の場合である。
【図4】前記糸張力検知センサにおいて磁気抵抗素子と磁石との位置関係を示す説明図、可動レバーが一定量回転した場合である。
【図5】可動レバーの回転角度と磁気抵抗素子の出力電圧との関係を示すグラフ。
【符号の説明】
3…耐摩耗性軸部
15…可動レバー
19…可動糸案内ローラ
21〜24…コイルばね
25…磁石
30…磁気抵抗素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a yarn tension detection sensor, and more particularly to a yarn tension detection sensor for detecting a yarn tension at the time of winding a yarn in a spinning machine.
[0002]
[Prior art]
Conventionally, as this type of yarn tension detection sensor, one using a potentiometer or one described in Japanese Patent Publication No. 6-29814 is known. The yarn tension detection sensor described in the publication includes a movable yarn guide that is provided between two fixed yarn guides and that is acted on at right angles to the traveling direction of the yarn by the traveling of the yarn. It has a structure to hang a thread on. Specifically, the movable yarn guide is attached to the open end portion of the spring plate, one end of which is fixed to the housing. A magnet is attached under the movable yarn guide, and the magnet is set to face the Hall effect sensor in a state where the yarn is hung. And the change of the magnetic flux density from the magnet which moves up and down according to the yarn tension at the time of winding the yarn is detected by the Hall effect sensor, and the yarn tension is measured.
[0003]
[Problems to be solved by the invention]
However, in the case of using the potentiometer, since the bearing is constituted by several types of bearings, the size is increased and the cost is high. Moreover, since the brush was used for the contact of the rotating body, the durability was lacking.
On the other hand, in the yarn tension detection sensor described in the above publication, since the movable yarn guide and the magnet are attached to the open end of the spring plate, when the yarn traveling speed increases, the spring plate abnormally vibrates, There was a problem that the movement could not follow the tension of the thread, and the jumping of the magnet, the entanglement of the thread and the thread breakage occurred, and the thread tension could not be measured accurately.
[0004]
SUMMARY OF THE INVENTION An object of the present invention is to provide a yarn tension detection sensor that is small and durable, and that can accurately measure the yarn tension even when the yarn traveling speed is high.
[0005]
[Means and Actions for Solving the Problems]
In order to achieve the above object, a yarn tension detection sensor according to the present invention has a wear-resistant shaft member fixed at a fixed position and a rigid rigidity that engages with a substantially half circumferential portion of the outer peripheral surface of the shaft member. A lever member made of a body, an elastic member that engages with both ends of the lever member to elastically hold the lever member, a thread guide member that is rotatably mounted on the lever member, and a rotating member that rotates on the lever member A magnet provided with a slight eccentricity from the center and a magnetoresistive element provided at a fixed position facing the magnet are provided.
[0006]
That is, according to the present invention, the rigid body lever member is elastically pressed against the wear-resistant shaft member and held rotatably, and a thread guide member and a magnet for guiding the traveling of the thread are attached to the lever member. When the yarn tension does not act on the yarn guide member, the lever member is kept balanced by the elastic member and is stationary at a predetermined angle. The rotation angle in the stationary state is 0 °. When the yarn travels at a high speed, the lever member receives a rotational force in one direction via the yarn guide member due to the tension of the yarn, and slightly rotates about the shaft member as a fulcrum. The magnet rotates together with the lever member, and the magnetic flux density of the magnet acting on the magnetoresistive element fixed at a fixed position changes.
[0007]
The running tension of the yarn acts as a change in the magnetic flux density to the magnetoresistive element based on the rotation angle of the lever member / magnet, and the change in the magnetic flux density is detected as a change in resistance (voltage) by the magnetoresistive element. Thus, the tension of the yarn is measured as a voltage change of the magnetoresistive element.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a yarn tension detection sensor according to the present invention will be described with reference to the accompanying drawings.
In FIG. 1 and FIG. 2, the yarn tension detection sensor generally includes a first fixed plate 1, a second fixed plate 10, a movable lever 15, a movable yarn guide roller 19, coil springs 21 to 24, a magnet 25, and a magnetoresistive element 30. It is composed of.
[0009]
A support block 2 is fixed to the first fixing plate 1, and a shaft portion 3 made of an abrasion resistant material (for example, ceramic) is provided on the support block 2. Further, fixed yarn guide rollers 7 and 8 are rotatably mounted on the first fixed plate 1 via blocks 5 and 6.
The movable lever 15 is made of a rigid body, and a semicircular recess 16 formed on one side surface is engaged with the shaft portion 3. The movable lever 15 is elastically held by providing four coil springs 21 to 24 in a compressed state with the coil springs 21 to 24 facing each other at both ends.
[0010]
The movable yarn guide roller 19 is rotatably attached to one end of the movable lever 15. The yarn 40 is stretched from the fixed yarn guide roller 7 to the movable yarn guide roller 19 and the fixed yarn guide roller 8, and travels in the direction of arrow a. These rollers 7, 8, and 19 are made of a wear-resistant material.
When no tension is applied to the yarn 40, the movable lever 15 maintains a balance by the spring force of each of the coil springs 21 to 24 and is stationary at the angle shown in FIG. At this time, the rotation angle θ of the movable lever 15 is set to 0 °.
[0011]
The magnet 25 has a rectangular shape and is attached to one side of the movable lever 15 via a block 26. The attachment position of the magnet 25 is a position slightly decentered from the shaft portion 3.
The magnetoresistive element 30 is attached to the second fixed plate 10 so as to face the magnet 25. Specifically, as shown in FIGS. 3 and 4, a pair of magnetoresistive elements MR1 and MR2 are arranged symmetrically about the shaft portion 3, and the movable lever 15 rotates in a balanced manner as described above. When the angle θ is 0 °, the magnet 25 is orthogonal to the magnetoresistors MR1 and MR2 and is opposed with a uniform area (see FIG. 3). The magnetoresistors MR1 and MR2 are electrically connected in series with each other, one end of MR1 is connected to the power supply terminal 31, and one end of MR2 is connected to the ground terminal 32. Further, an output terminal 33 is connected to the relay lines of MR1 and MR2.
[0012]
Next, the operation of the yarn tension detection sensor having the above configuration will be described.
When the yarn 40 is hung on the yarn guide rollers 7, 19, and 8 and the yarn 40 travels in the direction of arrow a, for example, at a high speed of 1200 m / min, the movable yarn guide roller 19 applies the force in the direction of arrow b due to the tension of the yarn 40. The movable lever 15 is rotated in the direction of arrow c with the shaft portion 3 as a fulcrum. Since the movable lever 19 is elastically held by the four coil springs 21 to 24, the movable lever 19 rotates to an angle θ that balances the tension of the yarn 40 and the elastic force of the coil springs 21 to 24. The magnet 25 also rotates with the rotation of the movable lever 15 (see FIG. 4), and the magnetic flux density acting on the magnetoresistive element 30 from the magnet 25 changes. This change in magnetic flux density is detected as a voltage change from the output terminal 33.
[0013]
In this way, by converting the tension of the thread 40 into the rotational force of the movable lever 15, even when the thread 40 travels at a high speed, the movable lever 15 can smoothly follow the tension of the thread 40. The magnet 25 also operates smoothly. Therefore, there is no possibility that the magnet 25 jumps, yarn entanglement or thread breakage occurs, and the yarn tension can be accurately measured. In particular, in this embodiment, since the movable lever 15 is rotatably held by the balance of the elastic force of the coil springs 21 to 24 on the wear-resistant shaft portion 3, the cost of a bearing or the like is required to hold the movable lever 15. There is no need to use large parts, and it can be manufactured inexpensively with a compact configuration.
[0014]
Here, the detection of the yarn tension by the magnetoresistive element 30 will be specifically described.
When the resistance values of the magnetoresistors MR1 and MR2 are R 1 and R 2 , and the power supply voltage input to the power supply terminal 31 is V IN , the output voltage V OUT of the output terminal 33 is expressed by the following equation (1). Is done.
V OUT = {R 2 / (R 1 + R 2 )} × V IN (1)
[0015]
In the present embodiment, when the yarn 40 is not tensioned (yarn tension is 0 g), as shown in FIG. 3, the rotation angle θ of the movable lever 15 is 0 °, and the magnetoresistors MR1 and MR2 are They are set to face the magnet 25 with the same area. Accordingly, the resistance values of the magnetoresistive elements MR1 and MR2 in a state where no tension is applied to the yarn 40 are R 1 = R 2 = R 0 , and the output voltage V OUT0 of the magnetoresistive element 30 is expressed by the above equation (1). The following equation (2) is obtained.
V OUT0 = V IN / 2 (2)
[0016]
Next, when the yarn 40 travels at a high speed and 50 g of tension is applied to the yarn 40, the movable yarn guide roller 19 receives a force in the direction of the arrow b and moves to a position that balances with the elastic force of the coil springs 21 to 24. The lever 15 rotates smoothly. In the present embodiment, the balance position at a tension of 50 g is set to a position where the rotation angle θ of the movable lever 15 is 5 °. As shown in FIG. 4, the magnet 25 rotates with the rotation of the movable lever 15, the facing area between the magnetoresistive MR1 and the magnet 25 decreases, and the facing area between the magnetoresistive MR2 and the magnet 25 increases. Therefore, the magnetic flux density from the magnet 25 to the magnetoresistive element MR1 decreases, and the magnetic flux density to the magnetoresistive element MR2 increases. That is, the resistance value R 1 of the magnetoresistor MR1 is R 0 −ΔR, and the resistance value R 2 of the magnetoresistor MR2 is R 0 + ΔR. As a result, from the equation (1), the output voltage V OUT5 of the magnetoresistive element 30 is expressed by the following equation (3). In the present embodiment, the output voltage V OUT is set to be 14 mV higher than the rotation angle of the movable lever 15 of 1 °.
V OUT5 = (V IN / 2) + (V IN · ΔR / 2R 0 ) (3)
[0017]
Further, when the tension applied to the thread 40 reaches 100 g, the movable lever 15 further rotates in the direction of the arrow c to a position that balances with the elastic force of the coil springs 21 to 24. In the present embodiment, the balance position at a tension of 100 g is the position at which the rotation angle of the movable lever 15 is 10 °. In this case, the facing area between the magnetoresistive MR1 and the magnet 25 is further reduced, and the facing area between the magnetoresistive MR2 and the magnet 25 is further increased. The resistance value R 1 of the magnetoresistor MR1 is R 0 −2ΔR, and the resistance value R 2 of the magnetoresistor MR2 is R 0 + 2ΔR. As a result, from the equation (1), the output voltage V OUT10 of the magnetoresistive element 30 is expressed by the following equation (4).
V OUT10 = (V IN / 2) + (V IN · ΔR / R 0 ) (4)
[0018]
FIG. 5 is a graph showing the relationship between the rotation angle of the movable lever 15 and the output voltage of the magnetoresistive element 30. Thus, the tension of the yarn 40 can be measured as a change in the output voltage V OUT of the magnetoresistive element 30.
[0019]
The yarn tension detection sensor according to the present invention is not limited to the above embodiment, and can be variously modified within the scope of the gist thereof.
Particularly, magnets and magnetoresistors are used in various shapes according to specifications. The shape of the movable lever is the same, and the movable lever may be held in a tension state with respect to the coil spring.
[0020]
【The invention's effect】
As apparent from the above description, according to the present invention, since the lever member made of a rigid body is rotatably engaged / held with the wear-resistant shaft member by the balance of the elastic member, the yarn guide attached to the lever member The lever member and the magnet rotate smoothly by the thread tension acting from the member, and the tension can be accurately detected as a change in the output voltage of the magnetoresistive element without causing the magnet jumping, thread entanglement or thread breakage. In addition, it is not necessary to support the lever member with a bearing, so that the lever member can be configured compactly, and cost reduction can be achieved. Further, since a wear-resistant material is used for the shaft member without using a brush, the durability is excellent.
[Brief description of the drawings]
FIG. 1 is a plan view showing a yarn tension detection sensor according to an embodiment of the present invention.
FIG. 2 is a side view showing the yarn tension detection sensor.
FIG. 3 is an explanatory diagram showing a positional relationship between a magnetoresistive element and a magnet in the yarn tension detection sensor, and shows a case where the rotation angle of the movable lever is 0 °.
FIG. 4 is an explanatory diagram showing a positional relationship between a magnetoresistive element and a magnet in the yarn tension detection sensor, and shows a case where a movable lever rotates by a certain amount.
FIG. 5 is a graph showing the relationship between the rotation angle of the movable lever and the output voltage of the magnetoresistive element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 3 ... Wear-resistant shaft part 15 ... Movable lever 19 ... Movable thread guide rollers 21-24 ... Coil spring 25 ... Magnet 30 ... Magnetoresistive element

Claims (1)

定位置に固定された耐摩耗性軸部材と、
前記軸部材の外周面の略半周部分に係合して回転自在な剛性体からなるレバー部材と、
前記レバー部材の両端部に係合して該レバー部材を弾性的に保持する弾性部材と、
前記レバー部材に回転自在に装着した糸案内部材と、
前記レバー部材に回転中心から若干偏心して設けた磁石と、
前記磁石に対向して定位置に設けた磁気抵抗素子と、
を備えたことを特徴とする糸張力検知センサ。
A wear-resistant shaft member fixed in place;
A lever member made of a rigid body that engages with a substantially half-circumferential portion of the outer peripheral surface of the shaft member and is rotatable;
An elastic member that engages both ends of the lever member and elastically holds the lever member;
A thread guide member rotatably mounted on the lever member;
A magnet provided at the lever member with a slight eccentricity from the center of rotation;
A magnetoresistive element provided at a fixed position facing the magnet;
A yarn tension detection sensor comprising:
JP18061896A 1996-07-10 1996-07-10 Yarn tension detection sensor Expired - Fee Related JP3760512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18061896A JP3760512B2 (en) 1996-07-10 1996-07-10 Yarn tension detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18061896A JP3760512B2 (en) 1996-07-10 1996-07-10 Yarn tension detection sensor

Publications (2)

Publication Number Publication Date
JPH1026570A JPH1026570A (en) 1998-01-27
JP3760512B2 true JP3760512B2 (en) 2006-03-29

Family

ID=16086376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18061896A Expired - Fee Related JP3760512B2 (en) 1996-07-10 1996-07-10 Yarn tension detection sensor

Country Status (1)

Country Link
JP (1) JP3760512B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246964A (en) * 1985-08-21 1987-02-28 黒崎窯業株式会社 Anticorrosive silicon carbide composite sintered body
JP7281159B2 (en) * 2018-09-06 2023-05-25 国立大学法人東北大学 Power and information communication control device and complex network system
JP6857753B1 (en) * 2020-01-15 2021-04-14 日本化薬株式会社 Circuit abnormality diagnostic device, current generator, deployable body injection device for flying object, airbag device for flying object, and cutting device for flying object

Also Published As

Publication number Publication date
JPH1026570A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
EP0959328B1 (en) Low profile non-contacting position sensor
US4646387A (en) Arrangement for continuously determining the density of a web of fiber sliver
BR102014021314A2 (en) magnetic sheet detection device
JPH0629814B2 (en) Device for measuring the thread tension of the thread
JP3760512B2 (en) Yarn tension detection sensor
JP2007522466A (en) Magnetic angular position sensor
JP2786744B2 (en) Paper thickness detector
JPH07215589A (en) Tension adjusting device
JPH1030969A (en) Sensor for detecting thread tension
JP2002039712A (en) Coupling structure of non-contact type rotary sensor and pivoting shaft
US5208532A (en) Throttle position sensor adapted to maintain a fixed position relative to a shaft centerline
JPH1030970A (en) Sensor for detecting thread tension
JP2002310819A (en) Torque sensor
JPH1019701A (en) Sensor for detecting string tension
JPH0743288B2 (en) Torque sensor
US4627583A (en) Winding equipment
JP4729193B2 (en) Torque sensor
JP5170044B2 (en) Inspection method and inspection apparatus for permanent magnet encoder
JP2002039792A (en) Magnetic-type encoder and printing device to use the same
JPH10197372A (en) Thread tension sensor
JPH11100180A (en) Elevator position detecting device
JP3041484U (en) Fishing reel
JP2868709B2 (en) Wire tension control device for winding machine
JPS6139727Y2 (en)
KR100985934B1 (en) Magnetic position sensor for detecting rotation angle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees