JP3760488B2 - Low melting point high strength titanium alloy and casting - Google Patents

Low melting point high strength titanium alloy and casting Download PDF

Info

Publication number
JP3760488B2
JP3760488B2 JP23920895A JP23920895A JP3760488B2 JP 3760488 B2 JP3760488 B2 JP 3760488B2 JP 23920895 A JP23920895 A JP 23920895A JP 23920895 A JP23920895 A JP 23920895A JP 3760488 B2 JP3760488 B2 JP 3760488B2
Authority
JP
Japan
Prior art keywords
melting point
casting
titanium alloy
titanium
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23920895A
Other languages
Japanese (ja)
Other versions
JPH0959732A (en
Inventor
道彦 藤根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP23920895A priority Critical patent/JP3760488B2/en
Publication of JPH0959732A publication Critical patent/JPH0959732A/en
Application granted granted Critical
Publication of JP3760488B2 publication Critical patent/JP3760488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dental Preparations (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は歯科用鋳造品等として好適な低融点高強度チタン合金及び鋳造物に関する。
【0002】
【従来の技術】
歯科用の義歯床,クラウン,ブリッジ等の金属材料として、従来コバルト−クロム合金が用いられている。
これに対し近時チタンが、機械的性質に優れ、軽量であり、生体との馴染みが良く、また耐食性が良いなどの特長を有していることから歯科用の材料として注目されている。
【0003】
しかしながらチタンは一方で融点が1670℃と高融点であり、義歯床等を鋳造する際の鋳造温度が高くなる問題がある。
しかもチタンは高温度での活性が高く、従って鋳造時にチタンが鋳造型となる耐火材の酸素と反応してチタンの酸化物を形成し、硬く、脆く、また伸びが少なくなって、歯科用材料としての適正が損なわれてしまうといった固有の問題がある。
【0004】
図1はTiO2や各種酸化物の標準生成自由エネルギー、つまり酸化物の安定度を比較して示したものであって、図示のようにチタンは酸化物を生成し易い。
而してチタンは図2に示しているように酸化物形成によって、即ち酸素を含有することによって且つその酸素含有量が多くなるにつれて硬度が硬く、強度が強くなる一方、伸びが低下し、歯科用の義歯床やクラウン,インレー等の鋳造品の加工性を低下させる。
【0005】
【課題を解決するための手段】
本願の発明はこのような課題を解決するためになされたものである。
而して本願の発明は、チタン合金組成を重量%でCr:16〜40%を含有するとともに、Cu,Fe,Mn,Pd,Si,Snの1種又は2種以上を、Cu:1〜(36.8−1.05[Cr])%,Fe:1〜7%,Mn:1〜9%,Pd:0.2〜15%,Si:0.6〜1.5%,Sn:1〜8%の範囲で含有し、残部がTi及び不可避的不純物からなる組成とすることを特徴とする。
【0006】
【作用】
以上のように本発明は、TiにCrを16〜40重量%の範囲で含有させ、更にCu,Fe,Mn,Pd,Si,Sn等を第三成分として適正量で含有させたものである。
【0007】
而してTiにCrを含有させた場合、その含有量とともに物理的性質が変化し、とりわけその融点がCrの含有量の増加とともに効果的に低下する。
図3はCr含有による物理的性質の変化を示したもので、この図からCrの含有量の増加とともに融点が連続的に低下すること、とりわけCrを16%以上含有させることによって融点が1550℃以下に低下することが分かる。
【0008】
尚、Crを40%を超えて含有させた場合、融点はCr含有量の増加ほどには低下せず、逆に含有量が一定以上多くなると却って融点が上昇傾向に転ずる。
【0009】
而してチタン合金の融点が低下した場合、これを耐火材製の鋳造型を用いて鋳造したとき、低い温度での鋳造が可能となって、その鋳造の際にチタン中に酸素が取り込まれるのを抑制することができる。
【0010】
図4はチタン合金の融点と酸素含有量との関係を表わしたもので、図示のように融点が下がるにつれて酸素含有量は効果的に減少している。
【0011】
即ち、チタン合金の融点が低下することによって、これを歯科用の材料として用いたとき加工性が良く、また良好な表面肌が得られるようになる(酸素含有量が多いと表面肌が荒れるようになる)。
【0012】
本発明は、上記のように第三成分としてCu,Fe,Mn,Pd,Si,Snを含有させることを特徴としている。
これら一群の元素はαTi,βTi相に固溶してマトリックス相を固溶強化する元素であり、これら元素を第三成分として合金化することにより、チタン合金の強度を効果的に高め得ることが確認された。
尚、添加すべき第三成分を選択する場合においてその望ましい順位はCu,Pd,Sn,Fe,Mn,Siの順である。
【0013】
次に本発明における各成分の限定理由を以下に具体的に説明する。
Cr:16〜40%
Cr含有量が低いと、延性は良いが融点が高くなってしまい、低融点チタン合金としてのメリットがなくなってしまう。そこでTi−Cr合金の融点が1550℃である16%を下限とした。
一方、Cr含有量を増大していくと硬さが増大し、高強度化が図れるが、延性も低減してしまう。特に40%を超えると著しい脆化が認められたので、上限を40%とした。望ましくは20〜30%である。
【0014】
Cu:1〜(36.8−1.05[Cr])%
Cuが1%未満では高強度化は期待できない。Cu添加量を増していくと硬さが大きくなり、強度も向上する。図5に示すように延性のあるCu含有量の範囲はCr含有量に依存していることが分かった。そこでCuの上限値は36.8−1.05[Cr wt%]から計算される値とした。
【0015】
Fe:1〜7%
Feの含有量1%未満では高強度化の効果がほとんどなくなり、また7%を超えると硬さが著しく大きくなり、延性がほとんどなくなってしまう。望ましくは2〜5%である。
【0016】
Mn:1〜9%
Mnの含有量1%未満では高強度の効果がほとんどなくなり、また9%を超えると硬さが著しく大きくなり、延性がなくなってしまう。望ましくは2〜7%である。
【0017】
Pd:0.2〜15%
Pdはチタンの耐食性を向上させる合金として知られているが、0.2%未満では高強度化は期待できない。
一方、15%を超えると合金の延性がなくなるという問題がある。望ましくは1〜10%である。
【0018】
Si:0.6〜1.5%
Siは0.6%以上の添加で強度が向上する。但し多量に添加すると延性が低下するため、1.5%以下とした。
【0019】
Sn:1〜8%
Snの含有量1%未満では高強度の効果がほとんどなくなり、また8%を超えると硬さが著しく大きくなり、延性がなくなってしまう。望ましくは2〜6.5%である。
【0020】
【実施例】
次に本発明の実施例を以下に詳述する。
表1に示す各種組成のチタン合金を純チタン,金属クロム及びCu,Fe,Mn等の材料を適量に配合した約150gの原料を用いてアルゴン雰囲気中,水冷銅ルツボ中でアーク溶解した。
尚、組成の均一化を図るためにボタンインゴットを裏返して溶解する操作を4回繰り返して実施した。
この条件及び手順でインゴットを製造し、これより試験片を作成してビッカース硬さ測定及び常温圧縮試験を行なった。
ここでビッカース硬さ測定は、樹脂に埋め込んだ試験片の一面を鏡面研磨して荷重300gで微小硬度計を用いて測定した。
また常温圧縮試験は4mmφ(直径)×7mm(高さHo)の試験片を用いて油圧式万能試験機を用いて歪速度[数1]の条件で行なった。
結果が表1に併せて示してある。
【0021】
【数1】

Figure 0003760488
【0022】
【表1】
Figure 0003760488
【0023】
この結果から、Crを本発明の範囲内で含有させ、また第三成分としてのCu,Fe,Mn,Pd,Si,Snを含有させることによってチタン合金の融点を効果的に低下させ、また強度を高め得ることが分かる。
【0024】
以上本発明の実施例を詳述したがこれはあくまで一例示であり、本発明はその主旨を逸脱しない範囲において、種々変更を加えた態様で実施可能である。
【0025】
【発明の効果】
上記のように本発明によれば、チタン合金の融点を低下させて鋳造時における酸化反応を抑制でき、以て加工性の良好なチタン鋳造品を得ることができるとともに、強度においても優れたチタン鋳造品を得ることができる。
【図面の簡単な説明】
【図1】TiO2を含む各種酸化物の標準生成自由エネルギーを比較して示す図である。
【図2】チタンにおける酸素含有量と物理的性質の関係を表す図である。
【図3】チタンにクロムを合金化した場合のクロム含有量と合金融点を含む物理的性質の変化の関係を表す図である。
【図4】チタン合金の融点と酸素含有量との関係を示す図である。
【図5】チタン−クロム合金に銅を添加した場合の延性の評価を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-melting-point high-strength titanium alloy suitable for dental castings and the like, and a casting.
[0002]
[Prior art]
Cobalt-chromium alloys have been conventionally used as metal materials for dental denture bases, crowns, bridges and the like.
On the other hand, titanium has recently attracted attention as a dental material because of its excellent mechanical properties, light weight, good familiarity with living organisms, and good corrosion resistance.
[0003]
However, titanium, on the other hand, has a high melting point of 1670 ° C., and there is a problem that the casting temperature when casting a denture base or the like becomes high.
Moreover, titanium is highly active at high temperatures, and therefore, titanium reacts with oxygen in the refractory material that becomes a casting mold during casting to form titanium oxide, which is hard, brittle, and less stretched. There is an inherent problem that the suitability of the system is impaired.
[0004]
FIG. 1 shows a comparison of the standard free energy of formation of TiO 2 and various oxides, that is, the stability of the oxide. Titanium tends to generate an oxide as shown in the figure.
Thus, as shown in FIG. 2, titanium is hardened and strengthened as a result of oxide formation, that is, by containing oxygen and as its oxygen content increases, while elongation decreases, This lowers the workability of cast products such as denture bases, crowns, and inlays.
[0005]
[Means for Solving the Problems]
The invention of the present application has been made to solve such problems.
Thus, the invention of the present application contains the titanium alloy composition in Cr: 16 to 40% by weight, and at least one of Cu, Fe, Mn, Pd, Si, Sn, Cu: 1 to (36.8-1.05 [Cr])%, Fe: 1-7%, Mn: 1-9%, Pd: 0.2-15%, Si: 0.6-1.5%, Sn: It is contained in the range of 1 to 8%, and the balance is made of Ti and inevitable impurities .
[0006]
[Action]
As described above, the present invention contains Ti in a range of 16 to 40% by weight and further contains Cu, Fe, Mn, Pd, Si, Sn and the like as a third component in an appropriate amount. .
[0007]
Thus, when Cr is contained in Ti, physical properties change with the content thereof, and in particular, the melting point thereof is effectively lowered with an increase in the Cr content.
FIG. 3 shows the change in physical properties due to the Cr content. From this figure, the melting point continuously decreases with increasing Cr content, in particular, the melting point becomes 1550 ° C. by containing 16% or more of Cr. It turns out that it falls below.
[0008]
In addition, when Cr is contained exceeding 40%, the melting point does not decrease as the Cr content increases, and conversely, when the content increases beyond a certain level, the melting point tends to increase.
[0009]
Thus, when the melting point of the titanium alloy is lowered, when it is cast using a casting mold made of a refractory material, casting at a low temperature becomes possible, and oxygen is taken into titanium during the casting. Can be suppressed.
[0010]
FIG. 4 shows the relationship between the melting point of the titanium alloy and the oxygen content. As shown in the figure, the oxygen content effectively decreases as the melting point decreases.
[0011]
That is, when the melting point of the titanium alloy is lowered, when it is used as a dental material, the workability is good and a good surface skin can be obtained (the surface skin becomes rough when the oxygen content is high). become).
[0012]
As described above, the present invention is characterized by containing Cu, Fe, Mn, Pd, Si, and Sn as the third component.
These groups of elements are elements that solid-solution strengthen the matrix phase by dissolving in the αTi and βTi phases. By alloying these elements as a third component, the strength of the titanium alloy can be effectively increased. confirmed.
When selecting the third component to be added, the desirable order is Cu, Pd, Sn, Fe, Mn, and Si.
[0013]
Next, the reasons for limiting each component in the present invention will be specifically described below.
Cr: 16-40%
If the Cr content is low, the ductility is good, but the melting point becomes high, and the merit as a low melting point titanium alloy is lost. Therefore, 16% where the melting point of the Ti—Cr alloy is 1550 ° C. is set as the lower limit.
On the other hand, when the Cr content is increased, the hardness increases and the strength can be increased, but the ductility is also reduced. In particular, when it exceeds 40%, significant embrittlement was observed, so the upper limit was made 40%. Desirably, it is 20 to 30%.
[0014]
Cu: 1 to (36.8-1.05 [Cr])%
If Cu is less than 1%, high strength cannot be expected. Increasing the amount of Cu added increases hardness and improves strength. As shown in FIG. 5, it was found that the range of the ductile Cu content depends on the Cr content. Therefore, the upper limit value of Cu is a value calculated from 36.8-1.05 [Cr wt%].
[0015]
Fe: 1-7%
If the Fe content is less than 1%, the effect of increasing the strength is almost lost, and if it exceeds 7%, the hardness is remarkably increased and the ductility is almost lost. Desirably, it is 2 to 5%.
[0016]
Mn: 1-9%
If the Mn content is less than 1%, the effect of high strength is almost lost, and if it exceeds 9%, the hardness is remarkably increased and the ductility is lost. Desirably, it is 2 to 7%.
[0017]
Pd: 0.2 to 15%
Pd is known as an alloy that improves the corrosion resistance of titanium, but if it is less than 0.2%, high strength cannot be expected.
On the other hand, if it exceeds 15%, there is a problem that the ductility of the alloy is lost. Desirably, it is 1 to 10%.
[0018]
Si: 0.6 to 1.5%
The strength of Si is improved by adding 0.6% or more. However, if added in a large amount, the ductility decreases, so the content was made 1.5% or less.
[0019]
Sn: 1-8%
If the Sn content is less than 1%, the effect of high strength is almost lost, and if it exceeds 8%, the hardness is remarkably increased and the ductility is lost. Desirably, it is 2 to 6.5%.
[0020]
【Example】
Next, examples of the present invention will be described in detail below.
Titanium alloys having various compositions shown in Table 1 were arc-dissolved in a water-cooled copper crucible in an argon atmosphere using about 150 g of raw materials in which pure titanium, metallic chromium, and materials such as Cu, Fe, and Mn were blended in appropriate amounts.
In order to make the composition uniform, the button ingot was turned over and melted four times.
An ingot was manufactured under these conditions and procedures, a test piece was prepared from the ingot, and a Vickers hardness measurement and a room temperature compression test were performed.
Here, the Vickers hardness was measured by mirror-polishing one surface of the test piece embedded in the resin and using a micro hardness tester with a load of 300 g.
The room temperature compression test was conducted using a test piece of 4 mmφ (diameter) × 7 mm (height Ho) using a hydraulic universal testing machine under the condition of strain rate [Equation 1].
The results are also shown in Table 1.
[0021]
[Expression 1]
Figure 0003760488
[0022]
[Table 1]
Figure 0003760488
[0023]
From this result, Cr is contained within the scope of the present invention, and Cu, Fe, Mn, Pd, Si, Sn as the third component is effectively reduced, and the melting point of the titanium alloy is effectively reduced. It can be seen that can be increased.
[0024]
Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the gist of the present invention.
[0025]
【The invention's effect】
As described above, according to the present invention, the melting point of the titanium alloy can be lowered to suppress the oxidation reaction during casting, so that a titanium cast product with good workability can be obtained, and titanium excellent in strength can also be obtained. A cast product can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a comparison of standard free energies of formation of various oxides containing TiO 2 .
FIG. 2 is a graph showing the relationship between oxygen content and physical properties in titanium.
FIG. 3 is a diagram showing the relationship between changes in physical properties including chromium content and alloy melting point when chromium is alloyed with titanium.
FIG. 4 is a diagram showing the relationship between the melting point and the oxygen content of a titanium alloy.
FIG. 5 is a diagram showing an evaluation of ductility when copper is added to a titanium-chromium alloy.

Claims (2)

重量%でCr:16〜40%を含有するとともに、Cu,Fe,Mn,Pd,Si,Snの1種又は2種以上を
Cu:1〜(36.8−1.05[Cr])%
Fe:1〜7%
Mn:1〜9%
Pd:0.2〜15%
Si:0.6〜1.5%
Sn:1〜8%
の範囲で含有し、残部がTi及び不可避的不純物からなることを特徴とする低融点高強度チタン合金。
In addition to containing Cr: 16-40% by weight%, one or more of Cu, Fe, Mn, Pd, Si, Sn is Cu: 1- (36.8-1.05 [Cr])%
Fe: 1-7%
Mn: 1-9%
Pd: 0.2 to 15%
Si: 0.6 to 1.5%
Sn: 1-8%
A low-melting-point, high-strength titanium alloy, characterized in that the remainder is comprised of Ti and inevitable impurities .
請求項1記載のチタン合金を用いた歯科用の義歯床,クラウン,ブリッジ,インレー等の鋳造物。A casting of a dental denture base, crown, bridge, inlay or the like using the titanium alloy according to claim 1.
JP23920895A 1995-08-23 1995-08-23 Low melting point high strength titanium alloy and casting Expired - Fee Related JP3760488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23920895A JP3760488B2 (en) 1995-08-23 1995-08-23 Low melting point high strength titanium alloy and casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23920895A JP3760488B2 (en) 1995-08-23 1995-08-23 Low melting point high strength titanium alloy and casting

Publications (2)

Publication Number Publication Date
JPH0959732A JPH0959732A (en) 1997-03-04
JP3760488B2 true JP3760488B2 (en) 2006-03-29

Family

ID=17041354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23920895A Expired - Fee Related JP3760488B2 (en) 1995-08-23 1995-08-23 Low melting point high strength titanium alloy and casting

Country Status (1)

Country Link
JP (1) JP3760488B2 (en)

Also Published As

Publication number Publication date
JPH0959732A (en) 1997-03-04

Similar Documents

Publication Publication Date Title
CA1331294C (en) Gold colored palladium-indium alloys
JP2543982B2 (en) Titanium-aluminum alloy modified with manganese and niobium
US4556534A (en) Nickel based casting alloy
US4459263A (en) Cobalt-chromium dental alloys containing ruthenium and aluminum
JPH0730419B2 (en) Chromium and silicon modified .GAMMA.-titanium-aluminum alloys and methods for their production
JP2001254131A (en) Base metal alloy and its use
US4210447A (en) Dental restorations using castings of non-precious metals
US4530664A (en) Cobalt-chromium alloys
JPS61295348A (en) Material for welding dental ceramic material
CA1071440A (en) Low intrinsic value alloys
JP2569712B2 (en) Ti-A ▲ -based metal compound cast alloy with excellent high temperature oxidation resistance
US6572815B1 (en) Titanium having improved castability
US20050158693A1 (en) Dental alloys
JP3760488B2 (en) Low melting point high strength titanium alloy and casting
US4483821A (en) Cobalt-chromium dental alloys
JP3420815B2 (en) Oxidation and corrosion resistant alloys based on doped iron aluminide and their use
US4243412A (en) Dental alloy
JP2000144287A (en) Titanium alloy for living body excellent in wear resistance
US3574610A (en) Dental gold alloy
US4569825A (en) Palladium dental alloy
US3756809A (en) Chromium cobalt alloy
JPH11199955A (en) Titanium alloy for casting, excellent in impact resistance
JP4470658B2 (en) Ultra-low melt and ultra-low shrinkage gold alloy especially suitable for dental use
US2072910A (en) Alloy
KR100598819B1 (en) nonvaluable metal alloy for dental prosthesis

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees