JP3760127B2 - Robot joint support structure - Google Patents

Robot joint support structure Download PDF

Info

Publication number
JP3760127B2
JP3760127B2 JP2001344440A JP2001344440A JP3760127B2 JP 3760127 B2 JP3760127 B2 JP 3760127B2 JP 2001344440 A JP2001344440 A JP 2001344440A JP 2001344440 A JP2001344440 A JP 2001344440A JP 3760127 B2 JP3760127 B2 JP 3760127B2
Authority
JP
Japan
Prior art keywords
bearing
gear
support structure
joint support
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001344440A
Other languages
Japanese (ja)
Other versions
JP2003145475A (en
Inventor
敦夫 池口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosiden Corp
Original Assignee
Hosiden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosiden Corp filed Critical Hosiden Corp
Priority to JP2001344440A priority Critical patent/JP3760127B2/en
Publication of JP2003145475A publication Critical patent/JP2003145475A/en
Application granted granted Critical
Publication of JP3760127B2 publication Critical patent/JP3760127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Toys (AREA)
  • Manipulator (AREA)
  • Mounting Of Bearings Or Others (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ロボットの関節部支持構造、たとえば動物ロボットの前後の脚などの関節部に採用されるロボットの関節部支持構造に関する。
【0002】
【従来の技術】
動物ロボットにおいて、たとえば前後の脚を動かせるためには、脚に設けた関節部に回動軸を配備し、その回動軸にモータの回転を伝達させるという手段を採用することができる。この場合、回動軸を軸受で支持する必要がある。そこで、従来は、軸受としてベアリングを採用していた。
【0003】
【発明が解決しようとする課題】
しかしながら、軸受にベアリングを採用して関節部を形成すると、ベアリングが高価であるためにコスト高になるという問題があるだけでなく、脚を形作る筐体へのベアリングの組込み精度や回動軸などの組込み精度にも高精度が要求されるほか、必要部品の成形や関節部の組立てにも熟練を要するという問題があった。
【0004】
本発明は以上の問題に鑑みてなされたものであり、回動軸を支持する軸受に安価な筒体を用いることを基本として、軸受や回動軸の組込みにそれほど高い精度が要求されないロボットの関節部支持構造を提供することを目的とする。
【0005】
また、本発明は、軸受の塵埃からの保護が図られ、併せて、回動軸に回転を伝達するための歯車の取付けやその歯車に対する回動軸の取付け、さらには関節部の組立てを容易に行うことのできるロボットの関節部支持構造を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係るロボットの関節部支持構造は、2つの部材が回動軸により相対揺動可能に連結され、その回動軸に回転伝達用の歯車が取り付けられている。
【0007】
そして、上記回動軸に相対摺動回転自在に外嵌合された筒体でなる軸受が、2つの上記部材のうちの一方側部材に具備されてその軸受の高さ寸法よりも長い深さ寸法を有する凹入部の内部に収容保持されていると共に、上記歯車に同心状に具備された環状凸部とその環状凸部の外側に位置する環状の当り面とのうちの上記環状凸部が上記軸受の収容箇所よりも外側で上記凹入部に摺動回転自在に嵌合されて、上記当り面がその凹入部の開口の周囲に具備された環状の受面に摺動回転自在に重ね合わされている。
【0008】
この構成であれば、筒体でなる軸受が一方側部材の凹入部の内部に収容保持されることによって位置決めされ、そのように位置決めされた軸受によって回動軸が摺動回転自在に支えられる。したがって、軸受に高価なベアリングを用いる必要がなくなる。また、歯車の環状凸部が嵌合されることによって開口が塞がれた凹入部の内部に筒体でなる軸受が収容保持されているので、歯車の環状凸部が凹入部を密閉し、かつ、歯車の当り面が凹入部の開口の周囲の環状の受面に重なり合うことによって凹入部の内部への塵埃の侵入が防止される。そのため、回動軸と軸受との摺動箇所に塵埃が侵入して回動軸の回動動作の円滑性が損なわれるという事態が起こりにくい。
【0009】
本発明では、上記軸受が上記凹入部に圧入状態で収容保持され、かつ、その軸受の上記高さ寸法よりも、上記環状凸部の端面と上記凹入部の底面との対向間隔寸法が長くなっていることが望ましい。これによれば、歯車の環状凸部の端面と軸受との間に隙間を形成して歯車の環状凸部が軸受と擦れ合わないようにすることが可能であり、そうしておくことによって、歯車の回転が回動軸に円滑に伝達されるようになる。また、軸受を収容保持している凹入部の開口が歯車の環状凸部によって塞がれているので、軸受が回動軸に対して軸方向に位置ずれするような事態が起こったとしても、その軸受が凹入部から離脱してしまうというトラブルは起こり得ず、たとえ軸受が回動軸に対して軸方向に位置ずれしても軸受としての機能が損なわれない。
【0010】
本発明では、上記軸受と、上記受面及び上記凹入部を有する上記一方側部材と、上記環状凸部及び上記当り面を有する上記歯車とのそれぞれが合成樹脂成形体でなることが望ましい。このように軸受、一方側部材、歯車などを合成樹脂成形体で製作しておくと、それらの部品が安価になり、コストダウンを促進しやすい。
【0011】
本発明では、上記一方側部材が、互いに結合されて歯車箱を形成する第1及び第2のケースに分割された偏平な筐体でなり、上記軸受を収容保持している上記凹入部が第1及び第2の上記各ケースのそれぞれに具備され、それらの各凹入部に、上記歯車の軸方向両端のそれぞれに同心状に具備された上記環状凸部が摺動回転自在に各別に嵌合されていると共に、上記各凹入部の開口の周囲に具備された上記受面に、上記各環状凸部の外側に位置する上記当り面が摺動回転自在に各別に重ね合わされているという構成を採用することが望ましい。
【0012】
これによれば、たとえば歯車を配備した第1ケースに対して第2ケースを結合するという手順で偏平な筐体を組み立てることが可能になる。その場合、特に、第1ケースの凹入部に軸受を嵌め込んだ後、その凹入部に歯車の片側の環状凸部を嵌合して片側の当り面をその凹入部の開口の周囲の受面に重ね合わせると、歯車が第1ケースに対して位置決めされるので、その第1ケースに第2ケースを結合する組立て作業を容易に行うことができ、しかも、第1ケースに第2ケースを結合する組立て作業を行う際には、第2ケースの凹入部を歯車の他側の環状凸部に嵌合して他側の当り面にその凹入部の開口の周囲の受面を重ね合わせるということが行われるので、第1ケースに第2ケースを位置合わせする作業が容易になる。
【0013】
本発明では、第1及び第2のケースのうちの少なくとも一方側に具備されている上記凹入部が、その一方側のケースに設けられた筒部の内部空間によって形成され、上記歯車の軸方向片側面に、その筒部に外嵌合された環状リブが備わっているという構成を採用することが望ましい。これによれば、一方側のケースに歯車を配備するときに、歯車の環状凸部と環状リブとによって形作られた環状の凹所に、凹入部を形成している筒部を嵌め込むという作業を通じて歯車を一方側のケースの適正位置に配備することができる。したがって、一方側のケースに対する歯車の配備を容易に行うことが可能になる。この作用は、上記環状リブが上記筒部の外側に遊嵌合されている、という構成を採用することによっていっそう顕著に発揮される。
【0014】
本発明では、上記回動軸が、上記凹入部と同心状に2つの上記部材に具備された孔部に貫挿されたまっすぐな軸体でなることが望ましい。
【0015】
これによれば、2つの部材の孔部に対して回動軸を貫挿することによって、それら2つの部材が連結されると共に、一方側部材に組み込まれている歯車や軸受に回動軸を挿通させることができる。
【0016】
【発明の実施の形態】
図1は本発明を適用した動物ロボットの概略部分側面図、図2は同ロボットのモジュール10と前側の脚部120とを示した概略側面図、図3は図2のIII矢視図である。
【0017】
図1のように、本発明に係るロボットは、構体100を有し、それは、胴体110に、図示省略した首部や頭部のほか、前後の脚部120,130が、前後に揺動することができるように取り付けられている。また、それらの脚部120,130には関節部121,122,131,132があり、これらの関節部121,122,131,132の作用で、動物の脚と同様の動きが行われるようになっている。なお、このロボットは内蔵した電池を動力源として動作する。
【0018】
胴体110は複数のモジュールを組み合わせることによって形作られていて、図1にはそれらのモジュールの1つを符号10で示してある。そして、図1又は図2のように、このモジュール10に軸体20を介して前側の脚部120の付け根側部分を形成している部材である筐体30が取り付けられている。さらに、この筐体30に関節部121を介して脚部120の他の部分を形成している他の部材であるアーム部材123が連結され、さらに、このアーム部材123に脚先部分を形成している先端部材124が関節部122を介して連結されている。後側の脚部130も前側の脚部120とほゞ同じ構成になっている。
【0019】
上記筐体30は歯車箱を形成していて、その筐体30の内部に後述する歯車列が配備されている。また、この筐体30の外側にカバー30aがねじ止めされていて、筐体30とカバー30aとによって囲まれた内部空間に配線基板などの電気制御部品が配備されている。
【0020】
さらに、図3に見られるように、筐体30は、モジュール10側の第1ケース40と、その第1ケース40に結合された第2ケース60とに分割されていると共に、両ケース40,60を結合することによって偏平に形作られている。
【0021】
図4は歯車箱としての筐体30の内部に配備された歯車列を筐体30の片側ケースを形成している第2ケース60と共に示している。同図のように、この歯車列は、モータMの出力歯車81と、この出力歯車81に噛み合わされた複数の中間歯車82…と、これらの中間歯車82…を介して上記出力歯車81の回転が減速して伝達される最終歯車90とを備えていて、最終歯車90(以下単に「歯車90」という)が図2などに示した関節部121に組み込まれている。
【0022】
図5は歯車90を片側から見た平面図、図6は歯車90を他側から見た平面図、図7は図5のVII−VII線に沿う部分の概略断面図である。
【0023】
この歯車90は合成樹脂の一体成形体でなり、略半周部分に欠歯部91を有していると共に、その欠歯部91の外周部分と有歯部92の外周部分とには、歯車90の軸方向片側又は他側に突き出た環状リブ93,94がそれぞれ備わっている。また、歯車90の中央部には、軸方向他側に突き出た筒状のボス部95が一体に備わっている。なお、このボス部95には、径小な円形の孔部96aと欠円部を有する径大な孔部96bとが同心に備わっていると共に、このボス部95の軸方向端面に、円形の環状凸部97とその環状凸部97の外側に位置する環状の当り面98aとが同心状に備わっている。これに対し、歯車90の軸方向片側に、上記環状凸部97と同心に位置する環状凸部99が備わっている。なお、図示例において、上記環状凸部99はその周方向等間隔おきの3箇所が一定幅に亘って欠除されている。
【0024】
上記歯車90が組み付けられる第1及び第2の各ケース40,60も合成樹脂で一体成形されていて、それらの各ケース40,60のそれぞれに、内向きに突設された円筒状の筒部41,61の内部空間によって形成されてなる凹入部が備わっている。そして、それらの各筒部41,61の内部に、筒体でなる軸受71,75が圧入状態で収容保持されていると共に、各ケース40,60には、筒部41,61と同心状に円形孔42,62が備わっている。上記各軸受71,75も合成樹脂成形体でなる。ここで、軸受71を内部に収容保持している第1ケース40の筒部41の深さ寸法(筒部41の高さ寸法)は、軸受71の高さ寸法(軸長)よりも長くなっている。そのため、筒部41は、その筒部41の根元位置まで圧入されている軸受71よりも突き出ている。これと同様に、軸受75を内部に収容保持している第2ケース60の筒部61の深さ寸法(筒部61の高さ寸法)は、軸受75の高さ寸法(軸長)よりも長くなっている。そのため、筒部61は、その筒部61の根元位置まで圧入されている軸受75よりも突き出ている。また、上記した筒部41の深さ寸法は、軸受71の高さ寸法と上記した歯車90に設けられている環状凸部97の高さ寸法とを合わせた寸法よりも少し長くなっている。同様に、上記した筒部61の深さ寸法は、軸受75の高さ寸法と上記した歯車90に設けられている環状凸部99の高さ寸法とを合わせた寸法よりも少し長くなっている。
【0025】
図8は歯車90の組付け箇所の構造を示した断面図、図9は関節部支持構造を示した断面図である。
【0026】
図9において、50は回動軸である。この回動軸50は、第2ケース60の筒部61に収容保持されている軸受75に摺動回転自在に嵌合可能な径大軸部51と、歯車90の欠円部を有する径大な孔部96bに嵌合されてその歯車90の相対回転を阻止する欠円軸部52と、歯車の径小な孔部96aと第1ケース40の筒部41に収容保持されている軸受71に嵌合可能な径小軸部53とを同心状に有するまっすぐな軸体でなり、その径大軸部51側の端部に係合片54が固定され、径小軸部53側の端部に係合溝55が形成されている。
【0027】
図2で説明したアーム部材123の基部には、図9に示されている二股状に分岐した取付片部125,126が連設されていて、一方側の取付片部125に、上記回動軸50の径小軸部53が挿通される孔部127が具備され、他方側の取付片部126に、上記回動軸50の径大軸部51が挿通される孔部128と上記回動軸50の係合片54を係合状態で収容する凹所129とが具備されている。また、二股状に分岐している取付片部125,126は、図9のように筐体30の外側に相対回動自在に嵌め込まれる構成になっている。
【0028】
次に、図2などで説明した関節部121を組み立てる手順の一例を図8及び図9を参照して説明する。
【0029】
第1ケース40が結合されていない第2ケース60の筒部61の内部に、その筒部61の根元部分に達するまで軸受75を圧入して収容保持させることにより、筒部61を軸受75の上方へ突出させておく。この状態で、歯車90の環状凸部99を、軸受75の収容箇所よりも外側で筒部61に嵌合することによって、当り面98bを筒部61の端面によって形成されている受面63に重ね合わせる。この作業は、環状凸部99を筒部61に嵌合させるだけの作業であるため容易に行うことができ、しかも、筒部61に環状凸部99を嵌合させることによって、歯車90が軸受75に対して同心状に位置決めされる。この実施形態では、歯車90に上記環状凸部99に加えて径大な環状リブ93を具備させてあり、その環状リブ93が筒部61に遊嵌合可能になっていて、環状凸部99を筒部61に嵌合させる際に環状リブ93の内側に筒部61を嵌め込むだけで、筒部61に対し環状凸部99がほゞ位置合わせされた状態になるので、そのようにすることによって、環状凸部99を筒部61に嵌合させる作業をきわめて容易に行うことができるようになるという利点がある。この利点は、図4に示したように、歯車90が中間歯車82の下側に配備されるために筒部61が見えなくなるという状況の下で歯車90の組込みを行う場合に特に有益である。
【0030】
こうして歯車90を第2ケース60の内側に配備した後、第1ケース40を第2ケース60に重ね合わせる作業を行うけれども、その作業に先立って、第1ケース40の筒部41の内部に、その筒部41の根元部分に達するまで軸受71を圧入して収容保持させておくことにより、筒部41を軸受71よりも突出させておく。第1ケース40を第2ケース60に重ね合わせる作業では、第1ケース40の筒部41を、第2ケース60の内側に上記のように配備されている歯車90の環状凸部97に筒部41を外嵌合させて筒部41の端面によって形成されている受面43に当り面98aを重ね合わせる。このようにすると、歯車90を介して第1ケース40が第2ケース60に対して位置合わせされるので、第1及び第2のケース40,60が確実に重ね合わされる。なお、第1及び第2のケース40,60はねじ止めなどの手段で結合されて筐体30を形成する。
【0031】
第1及び第2のケース40,60を結合することによって筐体30を形成した後、図9のようにアーム部材123の二股状の取付片部125,126を筐体30に嵌め込むと共に、それらの取付片部125,126の孔部127,128を、第1及び第2の各ケース40,60の円形孔42,62に合わせる。そして、回動軸50を孔部128、円形孔62、軸受75、歯車90の孔部96b及び孔部96a、軸受71、円形孔42、孔部127の順に挿通させることによって、その回動軸50の径小軸部53を孔部96a、軸受71、円形孔42、孔部127に挿通させ、欠円軸部52を孔部96bに嵌合させ、径大軸部51を孔部128、円形孔62、軸受75に挿通させる。また、回動軸50の係合片54を取付片部126の凹所129に嵌め込むと共に、回動軸50の係合溝55に割りワッシャでなる止め具57を嵌め込んで回動軸50の抜け出しを阻止しておく。これにより、回動軸50が2つの軸受71,75に摺動回転自在に支持され、歯車90が回動軸50に回転不能な状態に固定され、筐体30とアーム部材123とが回動軸50によって相対揺動可能に連結される。
【0032】
図9に示した構造を備えた関節部121によると、歯車90に伝達されたモータM(図4参照)の回転が回動軸50と取付片部125,126とを介してアーム部材(図2参照)に伝達されるので、筐体30とアーム部材123とが相対揺動する。そして、このような動作が行われる過程で、軸受71や軸受75が筒部41や筒部61の内部で軸線方向に位置ずれしたとしても、軸受71については、その位置ずれの範囲が、筒部41の底面(凹入部の底面)と環状凸部97の端面との間の範囲に限られ、軸受75については、その位置ずれの範囲が、筒部61の底面(凹入部の底面)と環状凸部99の端面との間の範囲に限られるため、それらの軸受71,75が筒部41,61から離脱してしまうというトラブルが起こり得ない。しかも、軸受71,75がたとえ位置ずれしたとしても、回動軸50は軸受71,75によって摺動回転自在に支持されたままであるので、軸受71,75の位置ずれによって軸受71,75の機能が損なわれることはない。また、それぞれの軸受71,75は、環状凸部97,99によって開口が塞がれた筒部41,61の内部に収容保持されているため、軸受71,75と回動軸50との摺動部分に塵埃が侵入して軸受71,75の機能が損なわれるという事態も起こりにくい。さらに、軸受71,75が筒部41,61の根元部分のところに圧入されている正常な状態では、軸受71,75と歯車90の環状凸部97,99との間に隙間が形成されるため、両者が擦れ合って回動軸50の円滑な回動が損なわれることはない。
【0033】
この実施形態では、動物ロボットの関節部分に本発明を適用した事例を説明したけれども、本発明は、動物ロボット以外のロボット、たとえば人間を模したロボットや植物を模したロボットの関節部分にも適用することが可能である。
【0034】
【発明の効果】
以上のように、本発明によれば、回動軸を支持する軸受に安価な筒体を用いることができるのでコストダウンを図りやすくなる。また、軸受に筒体を用いたので、軸受や回動軸の組込みにそれほど高い精度が要求されなくなり、そのことが、製作コストの低減に役立つ。さらに、軸受の塵埃からの保護が図られ、併せて、回動軸に回転を伝達するための歯車の取付けやその歯車に対する回動軸の取付け、さらには関節部の組立てを容易に行うことができるようになる。
【図面の簡単な説明】
【図1】本発明を適用した動物ロボットの概略部分側面図である。
【図2】同ロボットのモジュールと脚部とを示した概略側面図である。
【図3】図2のIII矢視図である。
【図4】歯車列を示した説明図である。
【図5】歯車を片側から見た平面図である。
【図6】歯車を他側から見た平面図である。
【図7】図5のVII−VII線に沿う部分の概略断面図である。
【図8】歯車の組付け箇所の構造を示した断面図である。
【図9】関節部支持構造を示した断面図である。
【符号の説明】
30 筐体(一方側部材)
40 第1ケース
41,61 筒部(凹入部)
42,62,127,128 孔部
43,63 受面
50 回動軸
60 第2ケース
71,75 軸受
90 歯車
93 環状リブ
97,99 環状凸部
98a,98b 当り面
121 関節部
123 アーム部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joint support structure for a robot, for example, a joint support structure for a robot employed in joints such as front and rear legs of an animal robot.
[0002]
[Prior art]
In an animal robot, for example, in order to move the front and rear legs, it is possible to employ a means in which a rotation shaft is provided at a joint provided on the leg and the rotation of the motor is transmitted to the rotation shaft. In this case, it is necessary to support the rotating shaft with a bearing. Therefore, conventionally, a bearing has been adopted as a bearing.
[0003]
[Problems to be solved by the invention]
However, adopting a bearing as a bearing to form a joint not only raises the cost of the bearing due to its high cost, but also includes the accuracy of assembly of the bearing into the casing that forms the legs, the rotation axis, etc. In addition to the high accuracy required for assembly, there is a problem that skill is required for molding of required parts and assembly of joints.
[0004]
The present invention has been made in view of the above problems, and based on the use of an inexpensive cylinder for the bearing that supports the rotating shaft, the robot that does not require such a high degree of accuracy for the incorporation of the bearing and the rotating shaft. It is an object to provide a joint support structure.
[0005]
Further, the present invention protects the bearing from dust, and at the same time, it is easy to attach a gear for transmitting rotation to the rotating shaft, attach the rotating shaft to the gear, and further assemble the joint portion. It is an object of the present invention to provide a joint support structure for a robot that can be performed in a simple manner.
[0006]
[Means for Solving the Problems]
In the joint support structure for a robot according to the present invention, two members are connected to each other so as to be relatively swingable by a rotation shaft, and a rotation transmission gear is attached to the rotation shaft.
[0007]
And the bearing which consists of a cylindrical body externally fitted by the said rotation axis so that relative sliding rotation is possible is comprised in the one side member of two said members, and the depth longer than the height dimension of the bearing The annular convex portion of the annular convex portion concentrically provided in the gear and the annular contact surface located outside the annular convex portion is accommodated and held inside the concave portion having a dimension. It is fitted to the recessed portion so as to be slidable and rotatable outside the bearing receiving location, and the contact surface is slidably and rotatably superimposed on an annular receiving surface provided around the opening of the recessed portion. ing.
[0008]
With this configuration, the cylindrical bearing is positioned by being housed and held in the recessed portion of the one-side member, and the rotating shaft is supported by the bearing positioned in such a manner as to be slidably rotatable. Therefore, it is not necessary to use an expensive bearing. Further, since the bearing made of a cylindrical body is accommodated and held inside the recessed portion whose opening is closed by fitting the annular convex portion of the gear, the annular convex portion of the gear seals the recessed portion, In addition, the contact surface of the gear overlaps with the annular receiving surface around the opening of the recessed portion, thereby preventing dust from entering the recessed portion. Therefore, it is difficult for a situation in which dust enters the sliding portion between the rotating shaft and the bearing to impair the smoothness of the rotating operation of the rotating shaft.
[0009]
In the present invention, the bearing is housed and held in the recessed portion in a press-fitted state, and the facing distance between the end surface of the annular convex portion and the bottom surface of the recessed portion is longer than the height of the bearing. It is desirable that According to this, it is possible to form a gap between the end face of the annular convex portion of the gear and the bearing so that the annular convex portion of the gear does not rub against the bearing. The rotation of the gear is smoothly transmitted to the rotating shaft. In addition, since the opening of the recessed portion that accommodates and holds the bearing is blocked by the annular convex portion of the gear, even if a situation occurs in which the bearing is displaced in the axial direction with respect to the rotating shaft, The trouble that the bearing is detached from the recessed portion cannot occur, and even if the bearing is displaced in the axial direction with respect to the rotating shaft, the function as the bearing is not impaired.
[0010]
In the present invention, each of the bearing, the one-side member having the receiving surface and the recessed portion, and the gear having the annular convex portion and the contact surface is preferably made of a synthetic resin molded body. If the bearing, the one side member, the gear, and the like are made of a synthetic resin molded body in this way, those parts become inexpensive and it is easy to promote cost reduction.
[0011]
In the present invention, the one side member is a flat casing divided into first and second cases that are coupled to each other to form a gear box, and the recessed portion that accommodates and holds the bearing is the first. Each of the first and second cases is provided in each of the cases, and the annular protrusions provided concentrically at both ends in the axial direction of the gear are respectively fitted to the respective recessed portions so as to be slidably rotatable. In addition, the contact surface located outside the annular convex portions is slidably and separately superimposed on the receiving surface provided around the openings of the concave portions. It is desirable to adopt.
[0012]
According to this, it becomes possible to assemble a flat housing by the procedure of joining the second case to the first case provided with a gear, for example. In that case, in particular, after the bearing is fitted into the recessed portion of the first case, the annular convex portion on one side of the gear is fitted into the recessed portion, and the contact surface on one side is the receiving surface around the opening of the recessed portion. Since the gear is positioned with respect to the first case, the assembling work for coupling the second case to the first case can be easily performed, and the second case is coupled to the first case. When the assembly work to be performed, the recessed portion of the second case is fitted to the annular convex portion on the other side of the gear, and the receiving surface around the opening of the recessed portion is overlapped with the contact surface on the other side. Therefore, the operation of aligning the second case with the first case is facilitated.
[0013]
In the present invention, the recessed portion provided on at least one side of the first and second cases is formed by the internal space of the cylindrical portion provided in the case on the one side, and the axial direction of the gear It is desirable to adopt a configuration in which one side surface is provided with an annular rib that is externally fitted to the cylindrical portion. According to this, when the gear is arranged in the case on one side, the operation of fitting the cylindrical portion forming the recessed portion into the annular recess formed by the annular convex portion and the annular rib of the gear. Through which the gear can be deployed in the proper position on the case on one side. Therefore, it is possible to easily dispose the gear to the case on one side. This effect is more remarkably exhibited by adopting a configuration in which the annular rib is loosely fitted to the outside of the cylindrical portion.
[0014]
In the present invention, it is desirable that the pivot shaft is a straight shaft body that is inserted through holes provided in the two members concentrically with the recessed portion.
[0015]
According to this, by inserting the rotation shaft into the hole portions of the two members, the two members are connected, and the rotation shaft is connected to the gear or the bearing incorporated in the one side member. It can be inserted.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
1 is a schematic partial side view of an animal robot to which the present invention is applied, FIG. 2 is a schematic side view showing a module 10 and a front leg 120 of the robot, and FIG. 3 is a view taken in the direction of arrow III in FIG. .
[0017]
As shown in FIG. 1, the robot according to the present invention has a structure 100, in which a front and rear legs 120 and 130 are swung back and forth in the body 110 in addition to a neck and a head (not shown). It is attached to be able to. In addition, there are joint portions 121, 122, 131, 132 in the leg portions 120, 130 so that the movement of the joint portions 121, 122, 131, 132 is the same as that of the animal leg. It has become. This robot operates using a built-in battery as a power source.
[0018]
The fuselage 110 is formed by combining a plurality of modules, and one of these modules is indicated at 10 in FIG. As shown in FIG. 1 or FIG. 2, a housing 30, which is a member forming a base side portion of the front leg portion 120, is attached to the module 10 via the shaft body 20. Furthermore, an arm member 123, which is another member forming another part of the leg part 120, is connected to the housing 30 via the joint part 121, and further, a leg tip part is formed on the arm member 123. The tip member 124 is connected through the joint 122. The rear leg 130 has substantially the same configuration as the front leg 120.
[0019]
The housing 30 forms a gear box, and a gear train, which will be described later, is provided inside the housing 30. Further, a cover 30a is screwed to the outside of the housing 30, and an electric control component such as a wiring board is disposed in an internal space surrounded by the housing 30 and the cover 30a.
[0020]
Further, as seen in FIG. 3, the housing 30 is divided into a first case 40 on the module 10 side and a second case 60 coupled to the first case 40. Flattened by joining 60.
[0021]
FIG. 4 shows a gear train arranged inside the housing 30 as a gear box, together with a second case 60 forming a case on one side of the housing 30. As shown in the figure, this gear train includes an output gear 81 of the motor M, a plurality of intermediate gears 82 meshed with the output gear 81, and the rotation of the output gear 81 via these intermediate gears 82. The final gear 90 is transmitted at a reduced speed, and the final gear 90 (hereinafter simply referred to as “gear 90”) is incorporated in the joint portion 121 shown in FIG.
[0022]
5 is a plan view of the gear 90 as seen from one side, FIG. 6 is a plan view of the gear 90 as seen from the other side, and FIG. 7 is a schematic cross-sectional view of a portion along the line VII-VII in FIG.
[0023]
This gear 90 is an integrally molded body of synthetic resin, and has a toothless portion 91 in a substantially half-circumferential portion, and the gear 90 is provided between the outer peripheral portion of the toothless portion 91 and the outer peripheral portion of the toothed portion 92. Are provided with annular ribs 93 and 94 projecting on one side or the other side in the axial direction. In addition, a cylindrical boss portion 95 protruding to the other side in the axial direction is integrally provided at the center portion of the gear 90. The boss 95 is provided with a small-diameter circular hole 96a and a large-diameter hole 96b having a notch, and a circular end on the axial end surface of the boss 95. An annular protrusion 97 and an annular contact surface 98a located outside the annular protrusion 97 are provided concentrically. On the other hand, an annular convex portion 99 that is concentric with the annular convex portion 97 is provided on one axial side of the gear 90. Note that, in the illustrated example, the annular convex portion 99 has three portions spaced apart at equal intervals in the circumferential direction, and is removed over a certain width.
[0024]
The first and second cases 40, 60 to which the gear 90 is assembled are also integrally formed of synthetic resin, and cylindrical cases projecting inwardly from the cases 40, 60, respectively. A recessed portion formed by the internal spaces 41 and 61 is provided. The cylindrical bearings 71 and 75 are accommodated and held in a press-fitted state inside the cylindrical portions 41 and 61, and the cases 40 and 60 are concentric with the cylindrical portions 41 and 61. Circular holes 42 and 62 are provided. The bearings 71 and 75 are also made of a synthetic resin molding. Here, the depth dimension (height dimension of the cylinder part 41) of the cylindrical part 41 of the first case 40 that accommodates and holds the bearing 71 therein is longer than the height dimension (axial length) of the bearing 71. ing. Therefore, the cylinder portion 41 protrudes from the bearing 71 that is press-fitted to the root position of the cylinder portion 41. Similarly, the depth dimension of the cylindrical portion 61 (the height dimension of the cylindrical portion 61) of the second case 60 that accommodates and holds the bearing 75 therein is larger than the height dimension (axial length) of the bearing 75. It is getting longer. Therefore, the cylindrical portion 61 protrudes beyond the bearing 75 that is press-fitted to the root position of the cylindrical portion 61. Further, the depth dimension of the cylindrical portion 41 is slightly longer than the dimension obtained by combining the height dimension of the bearing 71 and the height dimension of the annular convex portion 97 provided on the gear 90 described above. Similarly, the depth dimension of the cylindrical portion 61 is slightly longer than the dimension obtained by combining the height dimension of the bearing 75 and the height dimension of the annular convex portion 99 provided in the gear 90 described above. .
[0025]
FIG. 8 is a cross-sectional view showing the structure of the assembly location of the gear 90, and FIG. 9 is a cross-sectional view showing the joint support structure.
[0026]
In FIG. 9, 50 is a rotation axis. The rotating shaft 50 has a large-diameter shaft portion 51 that can be slidably and rotatably fitted to a bearing 75 that is accommodated and held in the cylindrical portion 61 of the second case 60, and a large-diameter portion that has a missing circular portion of the gear 90. A non-circular shaft portion 52 that is fitted in the hollow portion 96b to prevent relative rotation of the gear 90, a small diameter hole portion 96a of the gear, and a bearing 71 that is housed and held in the cylindrical portion 41 of the first case 40. The small-diameter shaft portion 53 is a straight shaft body having a concentric shape, and an engagement piece 54 is fixed to an end portion on the large-diameter shaft portion 51 side. An engaging groove 55 is formed in the portion.
[0027]
The bifurcated attachment pieces 125 and 126 shown in FIG. 9 are connected to the base of the arm member 123 described with reference to FIG. 2, and the above-described rotation is made to the attachment piece 125 on one side. A hole 127 through which the small-diameter shaft portion 53 of the shaft 50 is inserted is provided, and the hole 128 through which the large-diameter shaft portion 51 of the rotation shaft 50 is inserted and the rotation are inserted into the attachment piece 126 on the other side. A recess 129 for receiving the engaging piece 54 of the shaft 50 in an engaged state is provided. Further, the attachment pieces 125 and 126 branched in a bifurcated shape are configured to be fitted to the outside of the housing 30 so as to be relatively rotatable as shown in FIG.
[0028]
Next, an example of a procedure for assembling the joint part 121 described in FIG. 2 and the like will be described with reference to FIGS.
[0029]
The cylindrical portion 61 of the bearing 75 is accommodated by press-fitting and holding the bearing 75 in the cylindrical portion 61 of the second case 60 to which the first case 40 is not joined until the base portion of the cylindrical portion 61 is reached. Project upward. In this state, the contact surface 98b is formed on the receiving surface 63 formed by the end surface of the cylindrical portion 61 by fitting the annular convex portion 99 of the gear 90 to the cylindrical portion 61 outside the housing location of the bearing 75. Overlapping. This operation can be easily performed because it is only an operation for fitting the annular convex portion 99 to the cylindrical portion 61. Moreover, by fitting the annular convex portion 99 to the cylindrical portion 61, the gear 90 is a bearing. It is positioned concentrically with respect to 75. In this embodiment, the gear 90 is provided with an annular rib 93 having a large diameter in addition to the annular protrusion 99, and the annular rib 93 can be loosely fitted to the cylindrical portion 61. When the cylindrical portion 61 is fitted into the cylindrical portion 61, the annular convex portion 99 is almost aligned with the cylindrical portion 61 simply by fitting the cylindrical portion 61 inside the annular rib 93. Thus, there is an advantage that the operation of fitting the annular convex portion 99 to the cylindrical portion 61 can be performed very easily. This advantage is particularly beneficial when the gear 90 is assembled in a situation where the cylindrical portion 61 becomes invisible because the gear 90 is disposed below the intermediate gear 82 as shown in FIG. .
[0030]
Thus, after the gear 90 is arranged inside the second case 60, the first case 40 is superposed on the second case 60. Prior to the work, the inside of the cylindrical portion 41 of the first case 40, The cylindrical portion 41 is protruded from the bearing 71 by press-fitting and holding the bearing 71 until reaching the base portion of the cylindrical portion 41. In the operation of superimposing the first case 40 on the second case 60, the cylindrical portion 41 of the first case 40 is formed on the annular convex portion 97 of the gear 90 disposed as described above inside the second case 60. 41 is fitted outside and the contact surface 98a is overlapped with the receiving surface 43 formed by the end surface of the cylindrical portion 41. If it does in this way, since the 1st case 40 is aligned with respect to the 2nd case 60 via gear 90, the 1st and 2nd cases 40 and 60 are piled up certainly. The first and second cases 40 and 60 are joined by means such as screwing to form the housing 30.
[0031]
After the case 30 is formed by joining the first and second cases 40 and 60, the bifurcated attachment pieces 125 and 126 of the arm member 123 are fitted into the case 30 as shown in FIG. The holes 127 and 128 of the attachment pieces 125 and 126 are aligned with the circular holes 42 and 62 of the first and second cases 40 and 60, respectively. The rotation shaft 50 is inserted through the hole 128, the circular hole 62, the bearing 75, the hole 96 b and the hole 96 a of the gear 90, the bearing 71, the circular hole 42, and the hole 127 in this order, thereby rotating the rotation shaft 50. The small-diameter shaft portion 53 of 50 is inserted into the hole portion 96a, the bearing 71, the circular hole 42, and the hole portion 127, the cut-out circular shaft portion 52 is fitted into the hole portion 96b, and the large-diameter shaft portion 51 is inserted into the hole portion 128, The circular hole 62 and the bearing 75 are inserted. In addition, the engaging piece 54 of the rotating shaft 50 is fitted into the recess 129 of the mounting piece 126, and the stopper 57 made of a split washer is fitted into the engaging groove 55 of the rotating shaft 50. Prevent the escape of. As a result, the rotation shaft 50 is supported by the two bearings 71 and 75 so as to be slidably rotatable, the gear 90 is fixed to the rotation shaft 50 in a non-rotatable state, and the housing 30 and the arm member 123 are rotated. The shaft 50 is connected so as to be relatively swingable.
[0032]
According to the joint portion 121 having the structure shown in FIG. 9, the rotation of the motor M (see FIG. 4) transmitted to the gear 90 is transmitted through the rotation shaft 50 and the attachment pieces 125 and 126 to the arm member (see FIG. 9). 2), the casing 30 and the arm member 123 are relatively swung. And even if the bearing 71 and the bearing 75 are displaced in the axial direction inside the cylindrical portion 41 and the cylindrical portion 61 in the process in which such an operation is performed, the range of the positional deviation of the bearing 71 is the cylinder. It is limited to the range between the bottom surface of the portion 41 (the bottom surface of the recessed portion) and the end surface of the annular convex portion 97, and the bearing 75 has a range of positional deviation between the bottom surface of the cylindrical portion 61 (the bottom surface of the recessed portion). Since it is limited to the range between the end surface of the annular convex part 99, the trouble that those bearings 71 and 75 will detach | leave from the cylinder parts 41 and 61 cannot occur. Moreover, even if the bearings 71 and 75 are displaced, the rotation shaft 50 remains supported by the bearings 71 and 75 so as to be slidably rotatable. Will not be damaged. Further, since the bearings 71 and 75 are accommodated and held in the cylindrical portions 41 and 61 whose openings are closed by the annular convex portions 97 and 99, the sliding between the bearings 71 and 75 and the rotary shaft 50 is retained. A situation in which dust enters the moving part and the functions of the bearings 71 and 75 are impaired is unlikely to occur. Further, in a normal state where the bearings 71 and 75 are press-fitted at the base portions of the cylindrical portions 41 and 61, a gap is formed between the bearings 71 and 75 and the annular convex portions 97 and 99 of the gear 90. Therefore, the two do not rub against each other and the smooth rotation of the rotation shaft 50 is not impaired.
[0033]
In this embodiment, an example in which the present invention is applied to a joint portion of an animal robot has been described. However, the present invention is also applied to a joint portion of a robot other than an animal robot, for example, a robot imitating a human being or a robot imitating a plant. Is possible.
[0034]
【The invention's effect】
As described above, according to the present invention, an inexpensive cylinder can be used for the bearing that supports the rotating shaft, so that the cost can be easily reduced. Further, since a cylindrical body is used for the bearing, so high accuracy is not required for the incorporation of the bearing and the rotating shaft, which helps to reduce the manufacturing cost. Further, the bearing is protected from dust, and at the same time, the gear for transmitting the rotation to the rotating shaft, the mounting of the rotating shaft to the gear, and the assembly of the joint portion can be easily performed. become able to.
[Brief description of the drawings]
FIG. 1 is a schematic partial side view of an animal robot to which the present invention is applied.
FIG. 2 is a schematic side view showing a module and legs of the robot.
FIG. 3 is a view taken in the direction of arrow III in FIG.
FIG. 4 is an explanatory diagram showing a gear train.
FIG. 5 is a plan view of the gear viewed from one side.
FIG. 6 is a plan view of the gear viewed from the other side.
7 is a schematic cross-sectional view of a portion taken along line VII-VII in FIG.
FIG. 8 is a cross-sectional view showing the structure of the assembly position of the gear.
FIG. 9 is a cross-sectional view showing a joint support structure.
[Explanation of symbols]
30 Housing (one side member)
40 First case 41, 61 Tube portion (recessed portion)
42, 62, 127, 128 Hole 43, 63 Receiving surface 50 Rotating shaft 60 Second case 71, 75 Bearing 90 Gear 93 Annular rib 97, 99 Annular convex part 98a, 98b Contact surface 121 Joint part 123 Arm member

Claims (7)

2つの部材が回動軸により相対揺動可能に連結され、その回動軸に回転伝達用の歯車が取り付けられているロボットの関節部支持構造であって、
上記回動軸に相対摺動回転自在に外嵌合された筒体でなる軸受が、2つの上記部材のうちの一方側部材に具備されてその軸受の高さ寸法よりも長い深さ寸法を有する凹入部の内部に収容保持されていると共に、上記歯車に同心状に具備された環状凸部とその環状凸部の外側に位置する環状の当り面とのうちの上記環状凸部が上記軸受の収容箇所よりも外側で上記凹入部に摺動回転自在に嵌合されて、上記当り面がその凹入部の開口の周囲に具備された環状の受面に摺動回転自在に重ね合わされていることを特徴とするロボットの関節部支持構造。
A joint support structure for a robot in which two members are connected to each other by a rotation shaft so as to be relatively swingable, and a rotation transmission gear is attached to the rotation shaft.
A cylindrical bearing externally fitted to the rotating shaft so as to be relatively slidable and rotatable is provided on one of the two members and has a depth dimension longer than the height dimension of the bearing. The annular convex portion of the annular convex portion concentrically provided on the gear and the annular contact surface located outside the annular convex portion is accommodated and held in the concave portion having the bearing. Is fitted to the recessed portion so as to be slidable and rotatable outside the receiving portion, and the contact surface is slidably and rotatably superimposed on an annular receiving surface provided around the opening of the recessed portion. A robot joint support structure characterized by the above.
上記軸受が上記凹入部に圧入状態で収容保持され、かつ、その軸受の上記高さ寸法よりも、上記環状凸部の端面と上記凹入部の底面との対向間隔寸法が長くなっている請求項1に記載したロボットの関節部支持構造。The bearing is housed and held in the recessed portion in a press-fit state, and the facing distance between the end surface of the annular convex portion and the bottom surface of the recessed portion is longer than the height of the bearing. 1. The joint support structure for a robot according to 1. 上記軸受と、上記受面及び上記凹入部を有する上記一方側部材と、上記環状凸部及び上記当り面を有する上記歯車とのそれぞれが合成樹脂成形体でなる請求項1又は請求項2に記載したロボットの関節部支持構造。The said bearing, the said one side member which has the said receiving surface and the said recessed part, and each of the said gearwheel which has the said cyclic | annular convex part and the said contact surface consist of a synthetic resin molding. The joint support structure of the robot. 上記一方側部材が、互いに結合されて歯車箱を形成する第1及び第2のケースに分割された偏平な筐体でなり、上記軸受を収容保持している上記凹入部が第1及び第2の上記各ケースのそれぞれに具備され、それらの各凹入部に、上記歯車の軸方向両端のそれぞれに同心状に具備された上記環状凸部が摺動回転自在に各別に嵌合されていると共に、上記各凹入部の開口の周囲に具備された上記受面に、上記各環状凸部の外側に位置する上記当り面が摺動回転自在に各別に重ね合わされている請求項1ないし請求項3のいずれか1項に記載したロボットの関節部支持構造。The one side member is a flat casing divided into first and second cases that are coupled to each other to form a gear box, and the recessed portion that houses and holds the bearing is the first and second cases. The annular projections provided concentrically on the respective axial ends of the gears are respectively fitted to the respective recessed portions so as to be slidably rotatable. 4. The contact surface located outside the annular convex portions is slidably and separately superimposed on the receiving surface provided around the opening of each concave portion. The joint support structure for a robot according to any one of the above. 第1及び第2のケースのうちの少なくとも一方側に具備されている上記凹入部が、その一方側のケースに設けられた筒部の内部空間によって形成され、上記歯車の軸方向片側面に、その筒部に外嵌合された環状リブが備わっている請求項4に記載したロボットの関節部支持構造。The recessed portion provided on at least one side of the first and second cases is formed by an internal space of a cylindrical portion provided in the case on the one side, and on one side surface in the axial direction of the gear, 5. The joint support structure for a robot according to claim 4, further comprising an annular rib fitted to the cylindrical portion. 上記環状リブが上記筒部の外側に遊嵌合されている請求項5に記載したロボットの関節部支持構造。The joint support structure for a robot according to claim 5, wherein the annular rib is loosely fitted to the outside of the cylindrical portion. 上記回動軸が、上記凹入部と同心状に2つの上記部材に具備された孔部に貫挿されたまっすぐな軸体でなる請求項1ないし請求項6のいずれか1項に記載したロボットの関節部支持構造。The robot according to any one of claims 1 to 6, wherein the rotation shaft is a straight shaft that is inserted through holes provided in the two members concentrically with the recessed portion. The joint support structure.
JP2001344440A 2001-11-09 2001-11-09 Robot joint support structure Expired - Fee Related JP3760127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001344440A JP3760127B2 (en) 2001-11-09 2001-11-09 Robot joint support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001344440A JP3760127B2 (en) 2001-11-09 2001-11-09 Robot joint support structure

Publications (2)

Publication Number Publication Date
JP2003145475A JP2003145475A (en) 2003-05-20
JP3760127B2 true JP3760127B2 (en) 2006-03-29

Family

ID=19157970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001344440A Expired - Fee Related JP3760127B2 (en) 2001-11-09 2001-11-09 Robot joint support structure

Country Status (1)

Country Link
JP (1) JP3760127B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3532985B2 (en) * 1995-01-17 2004-05-31 ブリヂストンサイクル株式会社 Bicycle belt transmission
JP3035062U (en) * 1996-07-17 1997-03-11 株式会社東京ユニーク Small toy electric four-wheel vehicle
JPH1177560A (en) * 1997-09-03 1999-03-23 Sony Corp Articulated robot and position teaching method of articulated robot
JP2001178332A (en) * 1999-12-24 2001-07-03 Shimano Inc Bearing seal structure of reel having bilateral bearing

Also Published As

Publication number Publication date
JP2003145475A (en) 2003-05-20

Similar Documents

Publication Publication Date Title
KR102067920B1 (en) Rotary Actuators and Robots
JP5327724B2 (en) Rotating electric machine, robot, manufacturing method of rotating electric machine, hollow shaft
US20140060236A1 (en) Multiple joints robot having cover on end effector attachment
KR101774227B1 (en) Fastening method for fastening driven member to wave gear device unit, and wave gear device unit
JP2008167585A (en) Electric motor with reduction gear
US9322464B2 (en) Hollow drive gear reduction mechanism
JP3760127B2 (en) Robot joint support structure
JP2010036611A (en) Wheel bearing device
JP2010151155A (en) Idler gear support structure
JP6148448B2 (en) Actuator
JP4531439B2 (en) Cup type wave gear device
JP4855909B2 (en) Rotating electric machine
KR20200000252U (en) Robot arm joint device
CN214187190U (en) Steering wheel and have robot joint and robot of this steering wheel
JP2008005576A (en) Geared motor and geared motor for robot
JP2018105373A (en) Speed reducer, articulation device and robot arm structure
US20160334003A1 (en) Gap adjustment member, method to assemble gap adjustment member, and transmission
JP2008223866A (en) Final reduction gear for vehicle
JP7395712B2 (en) Actuator manufacturing method and actuator
JP2006207697A (en) Oil seal structure for reducer
JP2006256492A (en) Roll connector
JP2020041587A (en) Speed reduction mechanism and motor with speed reducer
JP2008185139A (en) Vehicular differential case, differential gear device and hybrid differential gear device equipped with it, and assembling method of vehicular differential case
JP2000317852A (en) L type driver attachment
JP3197995U (en) Positioning structure of electric retractable unit in electric retractable visual recognition device for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees