JP3759483B2 - Radiation noise reduction device in engine exhaust system - Google Patents

Radiation noise reduction device in engine exhaust system Download PDF

Info

Publication number
JP3759483B2
JP3759483B2 JP2002278486A JP2002278486A JP3759483B2 JP 3759483 B2 JP3759483 B2 JP 3759483B2 JP 2002278486 A JP2002278486 A JP 2002278486A JP 2002278486 A JP2002278486 A JP 2002278486A JP 3759483 B2 JP3759483 B2 JP 3759483B2
Authority
JP
Japan
Prior art keywords
enormous
exhaust
tube
exhaust pipe
radiated sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002278486A
Other languages
Japanese (ja)
Other versions
JP2004116342A (en
Inventor
雅人 桜井
博史 中川
徹 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Sankei Giken Kogyo Co Ltd
Original Assignee
Honda Motor Co Ltd
Sankei Giken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Sankei Giken Kogyo Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002278486A priority Critical patent/JP3759483B2/en
Publication of JP2004116342A publication Critical patent/JP2004116342A/en
Application granted granted Critical
Publication of JP3759483B2 publication Critical patent/JP3759483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Silencers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンの排気系において、そこに設けられるフレキシブルチューブ、触媒コンバータ、主、副消音器等の機能部品から発する放射音を低減するための放射音低減装置に関する。
【0002】
【従来の技術】
上記消音器等の機能部品が設けられるエンジンの排気系においては、それら消音器等の各上流側の排気管内で排気の圧力脈動により生じた排気管内音の衝撃波成分が成長して、その消音器等の内部をパルス状に加振し、これにより消音器等の壁面が加振されて壁面周囲の空気を振動させると、不快な高周波成分を含む放射音が発生することが、従来より知られている。
【0003】
そして、斯かる放射音を低減するための技術手段が既に提案されている(例えば特許文献1を参照。)。
【0004】
【特許文献1】
特許第2744896号公報
【0005】
【発明が解決しようとする課題】
ところで、従来の上記放射音低減技術では、消音器等の外筒にグラスウール等の吸音材を特別に巻装したり、或いはその外筒を、内部に多数の隔壁を有する複雑な二重管構造としたりするものであった。
【0006】
しかしながら、前者のものでは、吸音材の使用に伴うコスト増や重量増が問題となる上、その吸音材が早期に劣化する等の問題があり、一方、後者のものでは、消音器外筒の製作加工が面倒で製造コストが嵩み、量産性が悪い等の問題がある。
【0007】
本発明はかかる実情に鑑みてなされたものであり、軽量且つ低コストで上記放射音の発生を効果的に低減できるようにした、構造簡単なエンジンの排気系における放射音低減装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
前記目的を達成するために、請求項1の発明は、排気管内を流れる排気の圧力脈動により生じた衝撃波で壁面が加振されると放射音を生じる放射音発生部が、排気管の途中又は下流端に存するエンジンの排気系において、排気管の、前記放射音発生部よりも上流部、その上流部での前記衝撃波の成長を抑えて該放射音発生部からの前記放射音の発生を低減するための膨大管部を形成し、前記膨大管部は、軸方向長さが内径よりも短い膨大筒部と、その膨大筒部の上、下流端をそれぞれ絞るように該上、下流端にそれぞれ連設された接続筒部とを一体に有して、内部に膨脹室を備えており、その上流側の接続筒部の内周には、前記膨大筒部より小径に形成され且つ下流端部が前記膨脹室内にその中間部まで突入した内管が嵌合、接続されると共に、該下流端部の外周と前記膨大筒部の内周との間に環状空隙が形成されることを特徴とする。この特徴によれば、上記膨大管部の内部において排気通路断面積を急激に増大変化させて、放射音発生部よりも上流側での前記衝撃波の成長を抑制できるため、その放射音発生部からの前記放射音の発生を効果的に低減することができる。
【0009】
尚、本発明において、「放射音発生部」とは、エンジンの排気系に設けられて上記放射音の発生が問題となるフレキシブルチューブ、触媒コンバータ、主、副消音器等の機能部品が相当する。また本発明の「放射音」には、排気管のテールエンドからの排気の吐出音は含まれない。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0011】
本実施例は、本発明を直列四気筒エンジンを備えた車両に実施した場合であって、図1は、エンジンE及びその排気系Exの要部を示す側面図、図2は、図1の2矢視拡大図、図3は、図2の3−3線拡大断面図、図4は、図3の4−4線断面図、図5は、排気の圧力比と膨大管部の開口断面積比との関係を示すグラフ、図6は、フレキシブルチューブ内に衝撃波が入力された際の管内圧力の時系列圧力波形変化を示すグラフ、図7は、フレキシブルチューブからの放射音の周波数分布の一例を示すグラフ、図8は、膨大管部の配設部位を変更した別の実施例を示す図1対応図である。
【0012】
図1において、車両Vの車体フレーム1上には、前後のエンジンマウントを介して、その車両Vの走行用のエンジンEが横置きに搭載されている。このエンジンEは、四サイクルの直列四気筒エンジンであって、その後側(図1の右側)には、4つの排気ポート2が並列して開口され、これらの排気ポート2に本発明に従う排気系Exが接続される。
【0013】
前記排気系Exは、前記排気ポート2に上流端が一体に接続されるエキゾーストマニホールド3と、その下流端に接続される排気管4とを備えている。
【0014】
その排気管4は、上流側の第1排気管部4Aと、下流側の第2排気管部4Bとを備えており、エキゾーストマニホールド3と第1排気管部4Aとの間には球面ジョイントJが介在され、また第1排気管部4Aと第2排気管部4Bとの間にはフレキシブルチューブ5が介在され、さらに第2排気管部4Bの途中には、触媒コンバータ6と副消音器(図示せず)と主消音器(図示せず)とがこの順序で互いに間隔をおいて直列に介装されている。
【0015】
次に図2、3を併せて参照して、排気管4の構造を説明する。第1排気管部4Aは、中空の二重管よりなる耐熱剛性材(例えば鋳鉄)製の第1排気管部本体10と、その上流端に接続される耐熱剛性材(例えばステンレス)製の膨大管部11とで構成される。
【0016】
その膨大管部11は、その軸線方向中央部に位置する膨大筒部11mと、この膨大筒部11mの両端に一体に連なる各々先細りテーパ状の接続筒部11a,11bとを備えていて、その内部空間が膨脹室Cとなっている。上流側の接続筒部11aの先端部、即ち膨大管部11の入口端は、球面ジョイントJの後述する第2接続フランジf2の下流端に全周に亘って気密に嵌合接続(溶接)される。また下流側の接続筒部11bの先端部、即ち膨大管部11の出口端は、第1排気管部本体10の上流端に同じく全周に亘って気密に嵌合接続(溶接)される。
【0017】
前記膨大管部11には、上流側接続筒部11aの先端部の内径と略等径の、即ち膨大筒部11mと比べ十分に小径の円筒管よりなる内管12が内装される。この内管12は、膨大管部11の内部で排気通路断面積を急激に増大させるための通路断面積変化手段として機能するものであって、図示例ではその上流端が膨大管部11の上流側接続筒部11aの先端部に全周に亘って気密に嵌合接続(溶接)される。
【0018】
そしてその内管12の下流端部12dは膨脹室C内に、膨大筒部11mの略中央領域まで突入しており、その内管12の突入部外周面と、膨大管部11(特に膨大筒部11m及び上流側接続筒部11a)の内周面との間には環状の空隙sが介在している。
【0019】
而して膨大管部11は、放射音発生部としてのフレキシブルチューブ5よりも上流側の排気管4(即ち第1排気管部4A)に形成されるものであって、本発明の膨大管部を構成している。
【0020】
ところで、排気系Exは、前記球面ジョイントJとフレキシブルチューブ5との併設により、車両Vの走行、特にその急発進、急加速、急減速などの走行により、エンジンEが大きくローリング振動すなわちローリング変位した際に、この変位を効果的に吸収して、エンジンEのローリング変位に起因する車両振動を可及的に低減することができるものであって、以下に、排気管4より上流側の排気系Exの構成を具体的に説明する。
【0021】
図2、3に明瞭に示すように、エキゾーストマニホールド3の4本の分配管3aは、それらの上流端がエンジンEの4つの排気ポート2にそれぞれ接続されてエルボ状に湾曲され、下流側に向かって漸次集合しつつ、前記エンジンEの後面に隣接して下向きに延びており、それらの下流端部が下向きに開口して、その下流端部は、一つの排気集合部3bに一体に接続されている。そして、この排気集合部3bは、図1に示すように、エンジンEの後面に近いところで、前記球面ジョイントJを介して前記第1排気管部4Aの上流端(図示例では膨大管部11の上流端)に接続される。
【0022】
図3、4に示すように、前記球面ジョイントJは、排気マニホールド側のジョイント半体を構成する第1接続フランジf1と、排気管側のジョイント半体を構成する第2接続フランジf2と、それら両フランジf1,f2間に気密に挟持されるガスケットGとを備える。このガスケットGは、カーボン等の耐熱材により形成されて、その中央に排ガス流通用の開口Gaを有すると共にその一側面にその開口を囲む球面部Gbを有している。そして、このガスケットGは、その平坦な他側面Gcが、前記第1接続フランジf1に接触され、また前記球面部Gbは、第2接続フランジf2に形成した球面状の座面に摺動自在に接触される。第1,第2接続フランジf1,f2の相互間は、複数組のボルト・ナット7によりバネ8を介して弾発的に連結されている。
【0023】
前記球面ジョイントJの第1接続フランジf1の中央部には、前記エキゾーストマニホールド3の下流端の排気集合部3bが気密に嵌合接続(溶接)される。また第2接続フランジf2の中央部には、第1の排気管部4Aの、上向きに開口する上流端(膨大管部11の上流端)が一体に連通接続されている。したがって、エキゾーストマニホールド3を流れる排ガスは、球面ジョイントJを通って第1排気管部4Aに流れる。
【0024】
前記球面ジョイントJの第1接続フランジf1は、ステー9を介してエンジンEの後面に着脱可能に固着されている。従ってエンジンEが、前記ローリング変位をするときには、第1接続フランジf1に対してガスケットGを介して第2接続フランジf2が回転変位する。
【0025】
前述のように、上流端が前記球面ジョイントJに接続される第1排気管部4Aの排気管部本体10は、エンジンE側に向かって凸に湾曲する湾曲部を有して、その上流側半部がエンジンEに対して下向きに延び、且つその下流側半部がエンジンEに対して後方に延びており、側面視でエルボ状に形成されている。そして、第1排気管部4Aの、後方に向けて開放される下流端には、前記フレキシブルチューブ5の前端が全周に亘って気密に嵌合接続(溶接)されている。
【0026】
このフレキシブルチューブ5は、前後方向に伸縮可能な蛇腹状に形成されるものであって、その伸縮変形により、エンジンEのローリング変位のうち主として前後方向の成分を吸収する。フレキシブルチューブ5の蛇腹状の壁面5wの外周には、図示例では金属メッシュの保護ブレード15が巻装されるが、この保護ブレードは省略してもよい。尚、前記フレキシブルチューブ5は、従来公知のものが採用されるので、これ以上の詳細な説明を省略する。
【0027】
前記フレキシブルチューブ5の下流端に接続される第2排気管部4Bは、車両Vの前後方向に略水平に延長されており、その途中には、触媒コンバータ5が接続され、さらにその触媒コンバータ5より下流側の第2排気管部4Bには、図示しない副消音器及び主消音器が接続され、その主消音器の出口側には、大気に開口するテールパイプ(図示せず)が連通接続される。
【0028】
尚、図示例では、第2排気管部4Bの上流端部が弾性支持手段14を介して車両Vの車体に支持されている。
【0029】
次に、この実施例の作用について説明する。
【0030】
エンジンEの運転により発生する排気ガスは、エキゾーストマニホールド3、球面ジョイントJ、第1排気管部4A、フレキシブルチューブ5、第2排気管部4Bの上流部、触媒コンバータ6、第2排気管部4Bの下流部および図示しない副消音器及び主消音器を通り、その間に、HC、COなどの有害成分が浄化されると共に排気音が消音されて、大気に放出される。
【0031】
ところで、車両Vの走行、特にその急発進時、急加速時、急減速時などには、エンジンEは、前述のようにローリング変位するが、このローリング変位は、前記球面ジョイントJの第1、第2接続フランジf1,f2の相対的な回転変位により効果的に吸収される。即ち、この球面ジョイントJはエンジンEに近接した位置でエキゾーストマニホールド3と第1排気管部4Aとの間に配置されるので、この球面ジョイントJはエンジンEのローリング軸に可及的に近づけて配置されることになり、エンジンEが大きくローリング変位した場合にも、球面ジョイントJの少ない回転変位により、その大きなローリング変位を確実に吸収でき、その変位がフレキシブルチューブ5に伝達されるのを防止できる。従ってそのフレキシブルチューブ5の長さは、車両Vの通常の走行時に発生する、前記ローリング変位の前後方向の変位成分を吸収すれば足りる程度の比較的短い長さに設定可能となり、コスト節減と耐久性向上が図られる。
【0032】
また排気管4の前記膨大管部11は、排気の圧力脈動により生じた排気管内音の衝撃波で壁面が加振されると放射音を生じる放射音発生部としてのフレキシブルチューブ5より上流側に位置している。そして、この膨大管部11の内部において排気が内管12の下流端部12dより膨脹室C内に流出する過程で、排気通路断面積を急激に増大変化させて排気を急膨脹させ、前記衝撃波を減衰させることができ、これにより、該チューブ5より上流側での前記衝撃波の成長が効果的に抑えられて、該チューブ5からの前記放射音の発生が効果的に低減される。
【0033】
このような膨大管部11の特設による放射音の低減効果は、本発明者が行なった実験により確認された。ここで膨大管部11の直上流の排気圧力(入口側の圧力)に対する、放射音発生部としてのフレキシブルチューブ5の直上流の排気圧力(出口側の圧力)の圧力比は、排気管内音の衝撃波の強さを表す指標となるものであって、その圧力比が小さい程、衝撃波が小さいことを示している。
【0034】
そこで内管12の内径をAとし、膨大管部11の膨大筒部11mの内径をBとした場合に、(B/A)2 で表される開口断面積比(所謂M比と呼ばれる)と、上記圧力比との関係を実機により確認すると、図5のようなグラフが得られた。このグラフによれば、圧力比は開口断面積比が大きくなるほど低下し、開口断面積比が1〜1.5の範囲では最大であった。この結果から、開口断面積比が大きい、即ち膨大管部11における排気通路断面積の急増変化比率が大きいほど圧力比が低下、即ち衝撃波が低減されて、放射音の低減効果が良好であることが確認された。尚、前記グラフにおいて、プロットaは従来例に対応するものであってA、B共に48.6ミリであり、またプロットbはAが48.6ミリでBが60ミリであり、またプロットcはAが48.6ミリでBが70ミリであり、さらにプロットdはAが48.6ミリでBが90ミリである。
【0035】
また図6は、上記各プロット条件において、フレキシブルチューブ5内に衝撃波が入力された際の管内圧力の時系列圧力波形変化を示しており、さらに図7は、プロットa,cの条件でのフレキシブルチューブ5からの放射音の周波数分布(エンジン回転数は4000rpm )を示している。これらのグラフからも、膨大管部11の特設により排気管内音の衝撃波が低減されて、放射音の低減効果が良好であることが判る。
【0036】
以上のような膨大管部11の特設によるフレキシブルチューブ5の放射音の低減効果は、放射音発生部すなわちフレキシブルチューブ5から膨大管部11までの排気通路長さが長過ぎると悪化することが実験で確認された。これは、その排気通路長さが所定限界長さを超えると、その間で前記衝撃波が再度大きく成長して放射音発生部を加振するためと考えられる。また、前記排気通路長さが所定限界長さ以下であれば、その長短に関係なく膨大管部による放射音の低減効果が十分得られることも実験により確認された。
【0037】
図8には、膨大管部を前記実施例とは別の部位に配置した実施例が示される。例えば、図8の(A)では、膨大管部11が放射音発生部としてのフレキシブルチューブ5の直上流に配設されており、この配置では、フレキシブルチューブ5及び他の放射音発生部としての触媒コンバータ6からの各放射音の低減に有効である。
【0038】
また図8の(B)では、膨大管部11が放射音発生部としてのフレキシブルチューブ5の直下流(即ち触媒コンバータ6の直上流)に配設されており、この配置では、触媒コンバータ6からの放射音の低減に有効であるが、フレキシブルチューブ5からの放射音の低減には有効ではない。
【0039】
また、触媒コンバータ6下流に位置する図示しない消音器からの放射音を低減するためには、該消音器から上流側に膨大管部を設けるようにし、その際には、該消音器と膨大管部との間の排気通路長さが前記所定限界長さを超えないようにする。
【0040】
以上、本発明の一実施例について説明したが、本発明はその実施例に限定されることなく、本発明の範囲内で種々の実施例が可能である。
【0041】
たとえば、前記実施例では、本発明にかかる排気系における放射音低減装置を直列四気筒の四サイクルエンジンに実施した場合を説明したが、これを他の型式のエンジンにも実施できることは勿論である。
【0042】
【発明の効果】
以上のように本発明によれば、排気管内を流れる排気の圧力脈動により生じた衝撃波で壁面が加振されると放射音を生じる放射音発生部が、排気管の途中又は下流端に存するエンジンの排気系において、排気管の、放射音発生部よりも上流部に、その上流部での前記衝撃波の成長を抑えて該放射音発生部からの前記放射音の発生を低減するための膨大管部を形成し、その膨大管部は、軸方向長さが内径よりも短い膨大筒部と、その膨大筒部の上、下流端をそれぞれ絞るように該上、下流端にそれぞれ連設された接続筒部とを一体に有して、内部に膨脹室を備えており、その上流側の接続筒部の内周には、前記膨大筒部より小径に形成され且つ下流端部が前記膨脹室内にその中間部まで突入した内管が嵌合、接続されると共に、該下流端部の外周と前記膨大筒部の内周との間に環状空隙が形成されるので、上記膨大管部の内部において排気通路断面積を急激に増大変化させて、放射音発生部よりも上流側での前記衝撃波の成長を抑制でき、これにより、その放射音発生部からの前記放射音の発生を効果的に低減できる。しかも放射音発生部よりも上流側の排気管に上記膨大管部を設けるだけの比較的簡単な構造で前記効果が得られ、放射音発生部たる消音器等の機能部品の周壁を特別に改造したりグラスウール等の吸音材を特別に用いる必要はないことから、放射音低減装置の特設によるコスト増と重量増を極力抑えることができ、またその放射音低減効果が長期に亘り有効に発揮される。
【図面の簡単な説明】
【図1】 エンジンE及びその排気系Exの要部を示す側面図
【図2】 図1の2矢視拡大図
【図3】 図2の3−3線拡大断面図
【図4】 図3の4−4線断面図
【図5】 排気の圧力比と膨大管部の開口断面積比との関係を示すグラフ
【図6】 フレキシブルチューブ内に衝撃波が入力された際の管内圧力の時系列圧力波形変化を示すグラフ
【図7】 フレキシブルチューブからの放射音の周波数分布の一例を示すグラフ
【図8】 膨大管部の配設部位を変更した別の実施例を示す図1対応図
【符号の説明】
4・・・・排気管
4A・・・第1排気管部(上流部)
4B・・・第2排気管部
5・・・・フレキシブルチューブ(放射音発生部)
6・・・・触媒コンバータ(放射音発生部)
11・・・膨大管部
11a・・上流側の接続筒部
11b・・下流側の接続筒部
11m・・膨大筒部
12・・・内管(通路断面積変化手段)
12d・・下流端部
C・・・・膨脹室
E・・・・エンジン
Ex・・・排気系
s・・・・環状空隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radiated sound reducing device for reducing radiated sound emitted from functional parts such as a flexible tube, a catalytic converter, a main, and a sub silencer provided in an exhaust system of an engine.
[0002]
[Prior art]
In the exhaust system of an engine provided with functional parts such as the silencer, the shock wave component of the sound in the exhaust pipe generated by the pressure pulsation of the exhaust grows in each upstream exhaust pipe such as the silencer. It has been conventionally known that when a wall such as a silencer is vibrated in a pulsed manner and the air around the wall is vibrated, a radiated sound including an unpleasant high-frequency component is generated. ing.
[0003]
And the technical means for reducing such a radiated sound has already been proposed (for example, refer patent document 1).
[0004]
[Patent Document 1]
Japanese Patent No. 2744896
[Problems to be solved by the invention]
By the way, in the conventional radiation noise reduction technology, a sound absorption material such as glass wool is specially wound around an outer cylinder of a silencer or the like, or the outer cylinder has a complicated double tube structure having a large number of partition walls inside. It was something to do.
[0006]
However, in the former, there are problems such as an increase in cost and weight associated with the use of the sound absorbing material, and the sound absorbing material is deteriorated at an early stage. There are problems such as cumbersome manufacturing and high manufacturing costs and poor mass productivity.
[0007]
The present invention has been made in view of such circumstances, and provides a radiated sound reduction device in an exhaust system of an engine having a simple structure that can effectively reduce the generation of the radiated sound at a light weight and at a low cost. It is an object.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is characterized in that a radiated sound generating section that generates a radiated sound when a wall surface is vibrated by a shock wave generated by pressure pulsation of exhaust flowing in the exhaust pipe is provided in the middle of the exhaust pipe or in the exhaust system of the engine located downstream end of the exhaust pipe, the upstream portion than the radiated sound generating unit, the radiation sound generation from the radiation sound generating unit to suppress the growth of the shock wave at the upstream portion Forming an enormous tube portion for reducing the enlarging tube portion, the axial length of the enormous tube portion being shorter than the inner diameter, and the upper and downstream ends so that the upper and downstream ends of the enormous tube portion are respectively squeezed Each of which is integrally provided with an expansion chamber, and is provided with an expansion chamber inside thereof, and is formed on the inner periphery of the upstream connection cylinder portion with a diameter smaller than that of the enormous cylinder portion and on the downstream side. When an inner pipe whose end has entered the middle of the expansion chamber is fitted and connected In, wherein the annular space is formed between the inner periphery of the outer peripheral and the enormous tubular portion of the downstream end. According to this feature, the exceptionally wide pipe section rapidly increases changing the exhaust passage cross-sectional area in the interior of, since it is possible to suppress the growth of the shock wave on the upstream side of the radiant sound generating unit, from the radiated sound generator Ru can be reduced in generation of the sound radiated effectively.
[0009]
In the present invention, the “radiant sound generator” corresponds to functional parts such as a flexible tube, a catalytic converter, a main, and a sub silencer that are provided in the exhaust system of the engine and in which the generation of the radiated sound is a problem. . Further, the “radiated sound” of the present invention does not include the discharge sound of exhaust from the tail end of the exhaust pipe.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on the embodiments of the present invention shown in the accompanying drawings.
[0011]
In this embodiment, the present invention is applied to a vehicle equipped with an in-line four-cylinder engine. FIG. 1 is a side view showing the main part of the engine E and its exhaust system Ex, and FIG. 2 is an enlarged view of FIG. 3, FIG. 3 is an enlarged sectional view taken along line 3-3 in FIG. 2, FIG. 4 is a sectional view taken along line 4-4 in FIG. 3, and FIG. FIG. 6 is a graph showing the relationship with the area ratio, FIG. 6 is a graph showing a time-series pressure waveform change of the pressure inside the tube when a shock wave is input into the flexible tube, and FIG. 7 is a frequency distribution of the sound radiated from the flexible tube. FIG. 8 is a graph corresponding to FIG. 1 showing another embodiment in which the arrangement portion of the enormous tube portion is changed.
[0012]
In FIG. 1, a traveling engine E for a vehicle V is mounted horizontally on a vehicle body frame 1 of the vehicle V via front and rear engine mounts. The engine E is a four-cycle in-line four-cylinder engine, and four exhaust ports 2 are opened in parallel on the rear side (right side in FIG. 1), and the exhaust system according to the present invention is connected to these exhaust ports 2. Ex is connected.
[0013]
The exhaust system Ex includes an exhaust manifold 3 whose upstream end is integrally connected to the exhaust port 2 and an exhaust pipe 4 connected to its downstream end.
[0014]
The exhaust pipe 4 includes a first exhaust pipe portion 4A on the upstream side and a second exhaust pipe portion 4B on the downstream side, and a spherical joint J is provided between the exhaust manifold 3 and the first exhaust pipe portion 4A. And a flexible tube 5 is interposed between the first exhaust pipe portion 4A and the second exhaust pipe portion 4B. Further, in the middle of the second exhaust pipe portion 4B, a catalytic converter 6 and a sub silencer ( A main silencer (not shown) and a main silencer (not shown) are interposed in series in this order with a space therebetween.
[0015]
Next, the structure of the exhaust pipe 4 will be described with reference to FIGS. The first exhaust pipe portion 4A includes a first exhaust pipe portion main body 10 made of a heat-resistant rigid material (for example, cast iron) made of a hollow double tube and an enormous amount of heat-resistant rigid material (for example, stainless steel) connected to the upstream end thereof. It is comprised with the pipe part 11. FIG.
[0016]
The enormous tube portion 11 includes an enormous tube portion 11m located in the central portion in the axial direction, and tapered tapered connecting tube portions 11a and 11b integrally connected to both ends of the enormous tube portion 11m. The internal space is an expansion chamber C. The distal end portion of the upstream connecting tube portion 11a, that is, the inlet end of the enormous tube portion 11 is fitted and welded (welded) over the entire circumference to the downstream end of a second connection flange f2 (described later) of the spherical joint J. The The downstream end of the connecting tube portion 11b on the downstream side, that is, the outlet end of the enormous tube portion 11, is also fitted and connected (welded) to the upstream end of the first exhaust pipe portion body 10 over the entire circumference.
[0017]
The enormous tube portion 11 is internally provided with an inner tube 12 made of a cylindrical tube that is substantially the same diameter as the tip end of the upstream connecting tube portion 11a, that is, a sufficiently small diameter compared with the enormous tube portion 11m. The inner pipe 12 functions as a passage cross-sectional area changing means for abruptly increasing the exhaust passage cross-sectional area inside the enormous pipe portion 11, and its upstream end is upstream of the enormous pipe portion 11 in the illustrated example. It is fitted and connected (welded) to the tip of the side connecting cylinder 11a in an airtight manner over the entire circumference.
[0018]
The downstream end 12d of the inner pipe 12 enters the expansion chamber C up to a substantially central region of the enormous cylinder part 11m, and the outer peripheral surface of the inner pipe 12 and the enormous pipe part 11 (particularly the enormous cylinder part 11). An annular gap s is interposed between the portion 11m and the inner peripheral surface of the upstream connecting cylinder portion 11a).
[0019]
Thus, the huge pipe portion 11 is formed in the exhaust pipe 4 (that is, the first exhaust pipe portion 4A) on the upstream side of the flexible tube 5 as the radiated sound generating portion, and the huge pipe portion of the present invention. Is configured.
[0020]
By the way, in the exhaust system Ex, when the spherical joint J and the flexible tube 5 are provided side by side, the engine E is largely subjected to rolling vibration, that is, rolling displacement, due to traveling of the vehicle V, particularly traveling such as sudden start, sudden acceleration, and sudden deceleration. In this case, the displacement can be effectively absorbed to reduce the vehicle vibration caused by the rolling displacement of the engine E as much as possible. An exhaust system upstream of the exhaust pipe 4 will be described below. The configuration of Ex will be specifically described.
[0021]
As clearly shown in FIGS. 2 and 3, the four distribution pipes 3 a of the exhaust manifold 3 are curved in an elbow shape with their upstream ends connected to the four exhaust ports 2 of the engine E, respectively. Ascending gradually toward the rear, the engine E extends downwardly adjacent to the rear surface thereof, and its downstream end opens downward, and its downstream end is integrally connected to one exhaust collecting part 3b. Has been. As shown in FIG. 1, the exhaust collecting portion 3b is located near the rear surface of the engine E, and is connected to the upstream end of the first exhaust pipe portion 4A via the spherical joint J (in the illustrated example, the enlarged pipe portion 11). Connected to the upstream end).
[0022]
As shown in FIGS. 3 and 4, the spherical joint J includes a first connection flange f1 constituting a joint half on the exhaust manifold side, a second connection flange f2 constituting a joint half on the exhaust pipe side, and And a gasket G sandwiched between the flanges f1 and f2. The gasket G is formed of a heat-resistant material such as carbon, and has an opening Ga for exhaust gas circulation at the center and a spherical portion Gb surrounding the opening on one side surface. The gasket G has a flat other side surface Gc in contact with the first connection flange f1, and the spherical surface portion Gb is slidable on a spherical seating surface formed on the second connection flange f2. Touched. The first and second connection flanges f1 and f2 are elastically connected via a spring 8 by a plurality of sets of bolts and nuts 7.
[0023]
An exhaust collecting portion 3b at the downstream end of the exhaust manifold 3 is fitted and connected (welded) in an airtight manner to the center portion of the first connection flange f1 of the spherical joint J. In addition, an upstream end (upstream end of the enormous pipe portion 11) of the first exhaust pipe portion 4A that opens upward is integrally connected to the center portion of the second connection flange f2. Therefore, the exhaust gas flowing through the exhaust manifold 3 flows through the spherical joint J to the first exhaust pipe portion 4A.
[0024]
The first connection flange f <b> 1 of the spherical joint J is detachably fixed to the rear surface of the engine E via the stay 9. Therefore, when the engine E performs the rolling displacement, the second connection flange f2 is rotationally displaced via the gasket G with respect to the first connection flange f1.
[0025]
As described above, the exhaust pipe body 10 of the first exhaust pipe portion 4A, the upstream end of which is connected to the spherical joint J, has a curved portion that curves convex toward the engine E side, and the upstream side thereof. A half portion extends downward with respect to the engine E, and a downstream half portion thereof extends rearward with respect to the engine E, and is formed in an elbow shape in a side view. The front end of the flexible tube 5 is fitted and connected (welded) over the entire circumference to the downstream end of the first exhaust pipe portion 4A that opens toward the rear.
[0026]
The flexible tube 5 is formed in a bellows shape that can be expanded and contracted in the front-rear direction, and absorbs mainly the component in the front-rear direction among the rolling displacement of the engine E by the expansion and contraction. In the illustrated example, a protective blade 15 made of a metal mesh is wound around the outer periphery of the bellows-shaped wall surface 5w of the flexible tube 5, but this protective blade may be omitted. In addition, since the conventionally well-known thing is employ | adopted for the said flexible tube 5, the detailed description beyond this is abbreviate | omitted.
[0027]
The second exhaust pipe portion 4B connected to the downstream end of the flexible tube 5 extends substantially horizontally in the front-rear direction of the vehicle V. In the middle of the second exhaust pipe portion 4B, the catalytic converter 5 is connected. A sub silencer and a main silencer (not shown) are connected to the second exhaust pipe portion 4B on the downstream side, and a tail pipe (not shown) that opens to the atmosphere is connected to the outlet side of the main silencer. Is done.
[0028]
In the illustrated example, the upstream end portion of the second exhaust pipe portion 4B is supported by the vehicle body of the vehicle V via the elastic support means 14.
[0029]
Next, the operation of this embodiment will be described.
[0030]
The exhaust gas generated by the operation of the engine E is the exhaust manifold 3, the spherical joint J, the first exhaust pipe portion 4A, the flexible tube 5, the upstream portion of the second exhaust pipe portion 4B, the catalytic converter 6, and the second exhaust pipe portion 4B. , And a sub silencer and a main silencer (not shown), while harmful components such as HC and CO are purified and exhaust sound is silenced and released to the atmosphere.
[0031]
By the way, when the vehicle V travels, particularly when it suddenly starts, suddenly accelerates, or suddenly decelerates, the engine E undergoes rolling displacement as described above, and this rolling displacement is caused by the first, It is effectively absorbed by the relative rotational displacement of the second connection flanges f1, f2. That is, since the spherical joint J is disposed between the exhaust manifold 3 and the first exhaust pipe portion 4A at a position close to the engine E, the spherical joint J is as close as possible to the rolling shaft of the engine E. Even when the engine E undergoes a large rolling displacement, the small rotational displacement of the spherical joint J can reliably absorb the large rolling displacement and prevent the displacement from being transmitted to the flexible tube 5. it can. Accordingly, the length of the flexible tube 5 can be set to a relatively short length that is sufficient to absorb the displacement component in the front-rear direction of the rolling displacement that occurs during normal travel of the vehicle V, thereby reducing cost and durability. Improvement is achieved.
[0032]
Further, the enormous pipe portion 11 of the exhaust pipe 4 is located upstream of the flexible tube 5 as a radiated sound generating portion that generates a radiated sound when the wall surface is vibrated by a shock wave of the sound in the exhaust pipe generated by the pressure pulsation of the exhaust. is doing. Then, in the process of exhaust gas flowing into the expansion chamber C from the downstream end 12d of the inner tube 12 inside the enormous tube unit 11, the exhaust passage is rapidly increased and the exhaust gas is rapidly expanded, and the shock wave Thus, the growth of the shock wave on the upstream side of the tube 5 is effectively suppressed, and the generation of the radiated sound from the tube 5 is effectively reduced.
[0033]
Such a reduction effect of the radiated sound by the special provision of the enormous tube portion 11 has been confirmed by an experiment conducted by the present inventors. Here, the pressure ratio of the exhaust pressure (exit side pressure) immediately upstream of the flexible tube 5 as the radiated sound generating unit to the exhaust pressure (inlet side pressure) immediately upstream of the enormous pipe portion 11 is the sound pressure in the exhaust pipe. This is an index representing the strength of the shock wave, and the smaller the pressure ratio, the smaller the shock wave.
[0034]
Therefore, when the inner diameter of the inner tube 12 is A and the inner diameter of the enlarged tube portion 11m of the enlarged tube portion 11 is B, the opening cross-sectional area ratio (so-called M ratio) represented by (B / A) 2 When the relationship with the pressure ratio was confirmed with an actual machine, a graph as shown in FIG. 5 was obtained. According to this graph, the pressure ratio decreased as the opening cross-sectional area ratio increased, and was maximum in the range of the opening cross-sectional area ratio of 1 to 1.5. From this result, the pressure ratio decreases, that is, the shock wave is reduced, and the effect of reducing the radiated sound is better as the opening cross-sectional area ratio is larger, that is, the sudden increase change ratio of the exhaust passage cross-sectional area in the huge pipe portion 11 is larger. Was confirmed. In the graph, plot a corresponds to the conventional example, both A and B are 48.6 mm, plot b is 48.6 mm and B is 60 mm, and plot c is 48.6 mm in A. B is 70 mm, and plot d is 48.6 mm for A and 90 mm for B.
[0035]
FIG. 6 shows a time-series pressure waveform change of the pressure in the tube when a shock wave is inputted into the flexible tube 5 under the above plot conditions. Further, FIG. 7 shows the flexible under the conditions of plots a and c. The frequency distribution of the radiated sound from the tube 5 (engine speed is 4000 rpm) is shown. From these graphs, it can be seen that the shock wave of the sound in the exhaust pipe is reduced by the special provision of the enormous pipe portion 11, and the effect of reducing the radiated sound is good.
[0036]
The experiment described that the effect of reducing the radiated sound of the flexible tube 5 due to the special provision of the enormous tube portion 11 as described above is deteriorated if the length of the exhaust passage from the radiated sound generating portion, that is, the flexible tube 5 to the enormous tube portion 11 is too long. It was confirmed in. This is considered to be because when the exhaust passage length exceeds a predetermined limit length, the shock wave grows again during that time and vibrates the radiated sound generating portion. Further, it has been confirmed by experiments that if the exhaust passage length is equal to or shorter than a predetermined limit length, the effect of reducing the radiated sound by the huge pipe portion can be sufficiently obtained regardless of the length.
[0037]
FIG. 8 shows an embodiment in which the enormous tube portion is arranged at a site different from the above embodiment. For example, in FIG. 8A, the enormous tube portion 11 is disposed immediately upstream of the flexible tube 5 as the radiated sound generating portion, and in this arrangement, the flexible tube 5 and other radiated sound generating portions are used. This is effective for reducing each radiated sound from the catalytic converter 6.
[0038]
In FIG. 8B, the enormous tube portion 11 is disposed immediately downstream of the flexible tube 5 serving as a radiated sound generating portion (that is, immediately upstream of the catalytic converter 6). However, it is not effective in reducing the radiated sound from the flexible tube 5.
[0039]
Further, in order to reduce the radiated sound from a silencer (not shown) located downstream of the catalytic converter 6, a huge pipe portion is provided on the upstream side from the silencer. In this case, the silencer and the huge pipe are provided. The length of the exhaust passage between the parts does not exceed the predetermined limit length.
[0040]
As mentioned above, although one Example of this invention was described, this invention is not limited to the Example, A various Example is possible within the scope of the present invention.
[0041]
For example, in the above-described embodiment, the case where the radiated sound reduction device in the exhaust system according to the present invention is implemented in an in-line four-cylinder four-cycle engine has been described, but it is needless to say that this can be implemented in other types of engines. .
[0042]
【The invention's effect】
As described above, according to the present invention, the engine in which the radiated sound generating portion that generates the radiated sound when the wall surface is vibrated by the shock wave generated by the pressure pulsation of the exhaust flowing in the exhaust pipe exists in the middle or downstream end of the exhaust pipe. In the exhaust system of the present invention, an enormous tube for reducing the generation of the radiated sound from the radiated sound generating unit by suppressing the growth of the shock wave in the upstream part of the exhaust pipe upstream of the radiated sound generating unit The enormous tube portion is connected to the upper and downstream ends so as to constrict the upper and downstream ends of the enormous cylinder portion whose axial length is shorter than the inner diameter, and the enlarging tube portion, respectively. The connecting cylinder part is integrally provided, and an expansion chamber is provided inside. The connecting cylinder part on the upstream side of the connecting cylinder part is formed to have a smaller diameter than the enormous cylinder part, and the downstream end is the expansion chamber. The inner pipe that has penetrated to the middle part is fitted and connected to the outer end of the downstream end. The annular gap is formed between the inner periphery of the large cylindrical portion and, the inside of the large tube portion sharply increases changing the exhaust passage cross-sectional area, wherein the upstream side of the radiant sound generator The growth of the shock wave can be suppressed , whereby the generation of the radiated sound from the radiated sound generating unit can be effectively reduced. In addition, the above-mentioned effect can be obtained with a relatively simple structure in which the huge pipe part is provided in the exhaust pipe upstream of the radiated sound generating part, and the peripheral wall of a functional part such as a silencer as the radiant sound generating part is specially modified. There is no need to use a special sound absorbing material such as glass wool, so the increase in cost and weight due to the special installation of the radiated sound reduction device can be suppressed as much as possible, and the radiated sound reduction effect is effectively demonstrated over a long period of time. The
[Brief description of the drawings]
1 is a side view showing an essential part of an engine E and its exhaust system Ex. FIG. 2 is an enlarged view taken along arrow 2 in FIG. 1. FIG. 3 is an enlarged sectional view taken along line 3-3 in FIG. Fig. 5 is a cross-sectional view taken along line 4-4. Fig. 5 is a graph showing the relationship between the exhaust pressure ratio and the opening cross-sectional area ratio of the enormous tube. Fig. 6 Time series of pipe pressure when a shock wave is input into the flexible tube. Graph showing pressure waveform change [FIG. 7] Graph showing an example of frequency distribution of radiated sound from flexible tube [FIG. 8] FIG. 1 corresponding to FIG. Explanation of]
4 .... exhaust pipe 4A ... first exhaust pipe part (upstream part)
4B ... 2nd exhaust pipe part 5 ... Flexible tube (radiation sound generation part)
6 ... Catalyst converter (radiated sound generator)
11... Enlarged pipe part 11a... Upstream connecting cylinder part 11b... Downstream connecting cylinder part 11m... Enlarged cylinder part 12.
12d ... downstream end C ... expansion chamber E ... engine Ex ... exhaust system s ... annular gap

Claims (1)

排気管(4)内を流れる排気の圧力脈動により生じた衝撃波で壁面が加振されると放射音を生じる放射音発生部(5,6)が、排気管(4)の途中又は下流端に存するエンジンの排気系において、
前記排気管(4)の、前記放射音発生部(5,6)よりも上流部(4A)、その上流部(4A)での前記衝撃波の成長を抑えて該放射音発生部(5,6)からの前記放射音の発生を低減するための膨大管部(11)を形成し
前記膨大管部(11)は、軸方向長さが内径(B)よりも短い膨大筒部(11m)と、その膨大筒部(11m)の上、下流端をそれぞれ絞るように該上、下流端にそれぞれ連設された接続筒部(11a,11b)とを一体に有して、内部に膨脹室(C)を備えており、
その上流側の接続筒部(11a)の内周には、前記膨大筒部(11m)より小径に形成され且つ下流端部(12d)が前記膨脹室(C)内にその中間部まで突入した内管(12)が嵌合、接続されると共に、該下流端部(12d)の外周と前記膨大筒部(11m)の内周との間に環状空隙(s)が形成されることを特徴とする、エンジンの排気系における放射音低減装置。
When the wall surface is vibrated by a shock wave generated by pressure pulsation of the exhaust gas flowing in the exhaust pipe (4), a radiated sound generating portion (5, 6) is generated in the middle or downstream end of the exhaust pipe (4). In the existing engine exhaust system,
The exhaust pipe (4), wherein the upstream portion than radiated sound generator (5, 6) (4A), the upstream portion and the suppressing the growth of the shock wave the radiated sound generator in (4A) (5, large tube portion for reducing the occurrence of the sound radiated from 6) (11) is formed,
The enormous tube portion (11) has an axial length that is shorter than the inner diameter (B), and the upper and downstream sides of the enormous tube portion (11m) and the upper and downstream ends of the enormous tube portion (11m). It has integrally connecting tube portions (11a, 11b) connected to the ends respectively, and has an expansion chamber (C) inside,
On the inner periphery of the upstream connecting tube portion (11a), the downstream tube portion (12d) has a diameter smaller than that of the enormous tube portion (11m) and enters the expansion chamber (C) to the middle portion thereof. The inner tube (12) is fitted and connected, and an annular gap (s) is formed between the outer periphery of the downstream end (12d) and the inner periphery of the enormous cylinder portion (11m). that, radiated sound reducing equipment in the exhaust system of the engine.
JP2002278486A 2002-09-25 2002-09-25 Radiation noise reduction device in engine exhaust system Expired - Fee Related JP3759483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278486A JP3759483B2 (en) 2002-09-25 2002-09-25 Radiation noise reduction device in engine exhaust system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278486A JP3759483B2 (en) 2002-09-25 2002-09-25 Radiation noise reduction device in engine exhaust system

Publications (2)

Publication Number Publication Date
JP2004116342A JP2004116342A (en) 2004-04-15
JP3759483B2 true JP3759483B2 (en) 2006-03-22

Family

ID=32273751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278486A Expired - Fee Related JP3759483B2 (en) 2002-09-25 2002-09-25 Radiation noise reduction device in engine exhaust system

Country Status (1)

Country Link
JP (1) JP3759483B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853808U (en) * 1981-10-09 1983-04-12 坂本工業株式会社 Exhaust pipe with muffler
JPH04292518A (en) * 1991-03-20 1992-10-16 Nissan Shatai Co Ltd Muffling device
JPH1119021A (en) * 1997-07-02 1999-01-26 Matsushita Electric Ind Co Ltd Dishwasher

Also Published As

Publication number Publication date
JP2004116342A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP2971341B2 (en) Vehicle exhaust system
US6595319B1 (en) Muffler
US7552797B2 (en) Vehicular exhaust system
JP2005084693A (en) Sound absorption device
JP4943886B2 (en) Engine exhaust system
US4540064A (en) Noise and vibration reducing apparatus for use in exhaust system of engine
JP5282825B2 (en) Exhaust pipe parts and exhaust system for internal combustion engine
US20010045322A1 (en) Perforated end pipe of silencer unit
US2047442A (en) Muffler
JP2008138608A (en) Vehicular muffler
US4225011A (en) Method and device for silencing the exhaust noise of internal combustion engines
JP3759483B2 (en) Radiation noise reduction device in engine exhaust system
US4149611A (en) Device for silencing the exhaust noise of internal combustion engines
JP2010031852A (en) Motorcycle
JPS5857017A (en) Exhaust system of automobile
JP3725108B2 (en) Joint structure in engine exhaust system
US2403403A (en) Muffler
CN110056420A (en) The vehicle frame with acoustic voiume for exhaust system
CN109555585A (en) The method and apparatus reduced for realizing the encapsulated space in vehicle exhaust system
JPS63977Y2 (en)
CN217682031U (en) Air filter for reducing BPF noise of supercharger
JPH08185189A (en) Silencing system of active noise control system
WO2024095371A1 (en) Muffling device for engine
JP3802861B2 (en) Catalyst cover holding structure
JP2011236785A (en) Sound absorber for internal combustion engine, and muffler with the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees