JP3759219B2 - insulator - Google Patents

insulator Download PDF

Info

Publication number
JP3759219B2
JP3759219B2 JP02088996A JP2088996A JP3759219B2 JP 3759219 B2 JP3759219 B2 JP 3759219B2 JP 02088996 A JP02088996 A JP 02088996A JP 2088996 A JP2088996 A JP 2088996A JP 3759219 B2 JP3759219 B2 JP 3759219B2
Authority
JP
Japan
Prior art keywords
insulator
pin
leakage current
shield case
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02088996A
Other languages
Japanese (ja)
Other versions
JPH09213148A (en
Inventor
和彦 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Steel Co Ltd
Original Assignee
Tohoku Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Steel Co Ltd filed Critical Tohoku Steel Co Ltd
Priority to JP02088996A priority Critical patent/JP3759219B2/en
Publication of JPH09213148A publication Critical patent/JPH09213148A/en
Application granted granted Critical
Publication of JP3759219B2 publication Critical patent/JP3759219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1245Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of line insulators or spacers, e.g. ceramic overhead line cap insulators; of insulators in HV bushings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Insulators (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、低圧、高圧、特別高圧の架空送配電系において、電線を電柱や鉄塔等の支持物に絶縁して支持するのに用いる碍子、より詳しくは、漏洩電流を測定し得るようにした碍子に関するものである。
【0002】
【従来の技術】
従来の碍子として、例えば、図3に示すようなものが知られている。この碍子21は、ピン碍子を示すもので、磁器22と、この磁器22を図示しない支持物に固定するための鉄よりなるピン23とを有する。磁器22には、架空電線を支持する凹状の支持部分22aが形成されており、また、高圧用の場合には、その下端部分22bに赤色うわ薬が塗布されるようになっている。
【0003】
このような碍子は、架空送配電系において、電線を電柱や鉄塔等の支持物に絶縁して支持するのに広く用いられているが、特に、海岸に近い所に設置される場合には、塩害などの碍子汚損による漏洩電流が、大きな問題となっている。すなわち、碍子の表面汚損が進むと漏洩電流が増大して、電力が損失するばかりでなく、絶縁耐力が低下して大規模な地絡事故が発生するおそれがある。この碍子の塩汚損には、台風による急速汚損と、季節風時を含む常時累積汚損とがあるが、どちらも、地域や季節によって大きく異なるため、時間と汚損の度合とを一概に決めることができない。
【0004】
そこで、従来は、地域毎に、例えば過去数年間のデータをもとに碍子の汚損の進行度合いを予測し、その予測結果に基づいて放水等により碍子を定期的に洗浄するようにしている。
【0005】
【発明が解決しようとする課題】
しかしながら、過去の膨大なデータから碍子の汚損の進行度合いを予測するのは、きわめて面倒かつ困難である。また、汚損の度合いを予測しても、鉄塔、電柱等の設置場所は、おのずと自然環境が異なることから、汚損が予想よりも早く進行して、漏洩電流が予想される期間よりも早く規定値に達したり、あるいは汚損の進行が予想よりも遅い場合があり、碍子を効率よく洗浄できなかった。
【0006】
この発明は、このような従来の問題点に着目してなされたもので、碍子の汚損の度合いを簡単かつ正確に知ることができ、したがって碍子を効率よく洗浄でき、漏洩電流による電力損失を有効に低減できると共に、大規模な地絡事故の発生を未然に防止できるよう適切に構成した碍子を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、この発明は、支持物に固定するためのピンを有し、電線を絶縁して支持する碍子において、
前記ピンを非磁性金属をもって構成すると共に、該ピンの周囲に漏洩電流を測定するための変流器を設けたことを特徴とするものである。
【0008】
前記変流器は、高透磁率磁性材料からなるシールドケースで覆うのが、電線が発する交流磁界から変流器を磁気シールドする点で好ましい。
【0009】
前記シールドケースは、電線の支持部分から遠い側において碍子のピンに固定し、支持部分に近い側においては、前記ピンに電気的にも、空間的にも接触しないよう構成するのが、漏洩電流を正確に測定する点で好ましい。
【0010】
【発明の実施の形態】
以下、この発明の実施の形態について、図面を参照して説明する。
図1は、この発明の一実施形態を示すものである。図1において、架空電線1a,1bは、それぞれ碍子2に絶縁支持され、これら碍子2は腕金3を介して支持物4に固定されている。
【0011】
碍子2は、図2に詳細に示すように、磁器5と、この磁器5を腕金3に取り付けるためのピン6とを有する。磁器5には、架空電線を支持する凹状の支持部分5aを形成し、また、高圧用の場合には、その下端部分5bに赤色うわ薬を塗布する。ピン6は、非磁性金属、例えば、SUS304をもって形成し、その周囲には、高透磁率磁性材料からなるシールドケース7に収容して変流器8を設ける。シールドケース7は、磁器5の電線の支持部分5aから遠い側においてピン6に固定し、支持部分5aに近い側においては、ピン6に電気的にも、空間的にも接触しない構造とする。
【0012】
ここで、例えば、架空電線1aを支持している碍子2の磁器5の表面が塩害等により汚損すると、腕金3が図示しない接地線を介して接地されている場合は、架空電線1aから、磁器5の表面、ピン6、腕金3および接地線を通して漏洩電流が流れ、支持物4が鉄塔の場合には、架空電線1aから、磁器5の表面、ピン6、腕金3および支持物4を通して漏洩電流が流れることになる。また、支持物4がコンクリート等の絶縁物からなり、腕金3も接地されていない場合には、架空電線1b側の碍子2の汚損の進み具合にもよるが、架空電線1a,1b間で、それぞれの碍子2の磁器5の表面、ピン6および腕金3を通して漏洩電流が流れることになる。
【0013】
この実施形態では、上述したように碍子2の磁器5の表面およびピン6を通して流れる漏洩電流を変流器8で測定して、信号線9を経て支持物4に取り付けたデータ記録装置10に記憶する。データ記録装置10には、例えば、A/Dコンバータ、マイクロプロセッサ、メモリを設け、漏洩電流の大きさに対応して変流器8から出力される電圧信号を、A/Dコンバータでディジタル信号に変換してメモリに記憶するようにする。
【0014】
このように、漏洩電流をデータ記録装置10に記録することにより、例えば、メモリとして、ICメモリーカードやフロッピディスク等の記憶媒体を用いた場合は、ある一定期間記憶したのち、記録媒体のみを回収して事務所等の解析装置で解析することが可能となる。また、バックアップ用バッテリ付きのメモリを用いた場合には、データ記録装置10を本体ごと回収して解析することが可能となる。あるいは、データ記録装置10に通信機能を持たせた場合には、遠隔地の情報を逐一管理事務所等で観測することが可能となる。
【0015】
上述したように、この実施形態では、碍子2のピン6を非磁性金属であるSUS304で形成しているので、これを磁性金属で形成する場合に比べて、碍子2に支持された架空電線を流れる電流によって発生する磁界の影響を受けることなく、漏洩電流を正確に測定することが可能となる。
【0016】
ここで、本発明者は、図1に示した実施形態において、架空電線1a,1bに2000〔A〕の電流を流して、漏洩電流を測定する実験と、碍子として、ピンが鉄で形成されている図3に示した従来の碍子に変流器を組み込んだものを用いて、同様にして漏洩電流を測定する実験とを行った。なお、各実験において、碍子は汚損されていないものを用いた。
【0017】
その結果、前者の図1に示す実施形態における実験では、漏洩電流は、測定系のノイズ以下で観測されなかった。これに対して、後者の従来の碍子に変流器を組み込んだ実験では、約200〔mA〕のみせかけの漏洩電流が観測された。すなわち、碍子のピンを磁性金属で形成すると、これによって架空電線を流れる電流により発生する磁界が増幅されるため、変流器の出力が漏洩電流よりも大きくなって、正確な測定ができなくなる。
【0018】
また、上述した実施形態では、変流器8を高透磁率磁性材料からなるシールドケース7で覆うようにしている。このように、変流器8を磁気シールドすれば、碍子2に支持された架空電線を流れる電流が作る磁界のノイズを大幅に低減することができる。本発明者による実験によれば、シールドケース7を設けると、これを設けない場合に比べて、ノイズレベルを10倍近く低くできることが確認できた。
【0019】
しかも、シールドケース7は、上述したように、磁器5の電線の支持部分5aから遠い側においてピン6に固定し、支持部分5aに近い側においては、ピン6に電気的にも、空間的にも接触しない構造としているので、漏洩電流を変流器8の中心部のピン6を経て有効に流すことができると共に、ピン6とシールドケース7とを電気的に共通アースとすることができる。したがって、ノイズレベルを大幅に低下できるので、ノイズに強く、正確な測定が可能となる。すなわち、シールドケース7を、磁器5に近い側と遠い側との両側でピン6に固定すると、漏洩電流はシールドケース7の表面を流れ易くなり、変流器8の中心部のピン6には流れにくくなるため、正確な測定ができなくなる。また、両側をピン6から電気的に浮かせて支持すると、アースが共通でないために、シールドケース7の電位が上昇して、電界によるノイズが増加することになる。
【0020】
なお、この発明は、上述した実施形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、上述した実施形態では、ピン碍子を示したが、支持物に固定するためのピンを有する他の碍子、例えば、ラインポスト碍子や中実碍子等にも、この発明を有効に適用することができる。また、上述した実施形態では、ピン6をステンレス系の非磁性金属で形成したが、ステンレス系以外の他の非磁性金属で形成することもでき、これにより同様の効果を得ることができる。さらに、シールドケース7は、支持する電線からの磁界の影響が少ない場合には、これを省略することができる。
【0021】
【発明の効果】
この発明によれば、電力の架空送配電線における漏洩電流をモニタすることができるので、碍子の汚損の度合いを簡単かつ正確に知ることができ、これにより碍子を効率よく洗浄することができる。したがって、漏洩電流による電力損失を有効に低減できると共に、大規模な地絡事故の発生を未然に防止することができる。
【図面の簡単な説明】
【図1】この発明の一実施形態を示す図である。
【図2】図1に示す碍子を一部断面で示す外観図である。
【図3】従来の碍子を一部断面で示す外観図である。
【符号の説明】
1a 架空電線
1b 架空電線
2 碍子
3 腕金
4 支持物
5 磁器
5a 支持部分
6 ピン
7 シールドケース
8 変流器
9 信号線
10 データ記録装置
[0001]
BACKGROUND OF THE INVENTION
The present invention is an insulator used to insulate and support an electric wire on a support such as a power pole or a steel tower in a low-voltage, high-voltage, extra-high-voltage aerial transmission and distribution system, and more specifically, a leakage current can be measured. It is about Choshi.
[0002]
[Prior art]
As a conventional insulator, for example, the one shown in FIG. 3 is known. This insulator 21 shows a pin insulator, and has a porcelain 22 and a pin 23 made of iron for fixing the porcelain 22 to a support (not shown). The porcelain 22 is formed with a concave support portion 22a for supporting the overhead electric wire. In the case of high pressure, a red glaze is applied to the lower end portion 22b.
[0003]
Such insulators are widely used in an aerial transmission and distribution system to insulate and support electric wires with support such as utility poles and steel towers, especially when installed near the coast, Leakage current due to salt pollution such as salt damage is a major problem. That is, as the surface contamination of the insulator progresses, the leakage current increases and power is lost, and the dielectric strength is reduced, which may cause a large-scale ground fault. There are two types of salt fouling of eggplant: rapid fouling due to typhoons and constant cumulative fouling, including during seasonal winds. However, since both differ greatly depending on the region and season, the time and degree of fouling cannot be determined. .
[0004]
In view of this, conventionally, for example, the degree of progress of the fouling of the insulator is predicted based on the data for the past several years for each region, and the insulator is regularly washed by water discharge or the like based on the prediction result.
[0005]
[Problems to be solved by the invention]
However, it is extremely troublesome and difficult to predict the degree of progress of eggplant contamination from a large amount of past data. In addition, even if the degree of pollution is predicted, the installation location of towers, utility poles, etc. is naturally different from the natural environment, so the pollution progresses faster than expected and the specified value is earlier than the period in which leakage current is expected. Or the progress of fouling may be slower than expected, and the insulator could not be cleaned efficiently.
[0006]
The present invention has been made paying attention to such a conventional problem, and can easily and accurately know the degree of contamination of the insulator, so that the insulator can be efficiently cleaned, and the power loss due to leakage current is effective. It is an object of the present invention to provide an insulator that is appropriately configured so that the occurrence of a large-scale ground fault can be prevented.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has a pin for fixing to a support, and insulates and supports an electric wire,
The pin is made of a non-magnetic metal, and a current transformer for measuring leakage current is provided around the pin.
[0008]
The current transformer is preferably covered with a shield case made of a high magnetic permeability magnetic material from the viewpoint of magnetically shielding the current transformer from an AC magnetic field generated by the electric wire.
[0009]
The shield case is fixed to the insulator pin on the side far from the support portion of the electric wire, and on the side close to the support portion, it is configured not to contact the pin electrically or spatially. Is preferable in that it is accurately measured.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an embodiment of the present invention. In FIG. 1, the overhead electric wires 1 a and 1 b are insulated and supported by an insulator 2, and these insulators 2 are fixed to a support 4 via an arm metal 3.
[0011]
As shown in detail in FIG. 2, the insulator 2 includes a porcelain 5 and a pin 6 for attaching the porcelain 5 to the armrest 3. The porcelain 5 is formed with a concave support portion 5a for supporting the overhead electric wire, and in the case of high pressure, a red glaze is applied to the lower end portion 5b. The pin 6 is formed of a nonmagnetic metal, for example, SUS304, and a current transformer 8 is provided around the pin 6 in a shield case 7 made of a high magnetic permeability magnetic material. The shield case 7 is fixed to the pin 6 on the side of the porcelain 5 far from the support portion 5a of the electric wire, and does not contact the pin 6 electrically or spatially on the side close to the support portion 5a.
[0012]
Here, for example, when the surface of the porcelain 5 of the insulator 2 supporting the overhead wire 1a is soiled due to salt damage or the like, when the arm 3 is grounded via a ground wire (not shown), from the overhead wire 1a, When a leakage current flows through the surface of the porcelain 5, the pin 6, the arm metal 3 and the ground wire, and the support 4 is a steel tower, the surface of the porcelain 5, the pin 6, the arm metal 3 and the support 4 from the overhead wire 1a. Leakage current will flow through. Further, when the support 4 is made of an insulating material such as concrete and the armrest 3 is not grounded, it depends on the degree of contamination of the insulator 2 on the overhead wire 1b side, but between the overhead wires 1a and 1b. Then, a leakage current flows through the surface of the porcelain 5 of each insulator 2, the pin 6 and the brace 3.
[0013]
In this embodiment, as described above, the leakage current flowing through the surface of the porcelain 5 and the pin 6 of the insulator 2 is measured by the current transformer 8 and stored in the data recording device 10 attached to the support 4 via the signal line 9. To do. For example, the data recording device 10 is provided with an A / D converter, a microprocessor, and a memory, and the voltage signal output from the current transformer 8 corresponding to the magnitude of the leakage current is converted into a digital signal by the A / D converter. Convert and store in memory.
[0014]
As described above, by recording the leakage current in the data recording device 10, for example, when a storage medium such as an IC memory card or a floppy disk is used as the memory, after storing for a certain period, only the recording medium is recovered. Then, it becomes possible to analyze with an analysis device such as an office. When a memory with a backup battery is used, the data recording device 10 can be collected and analyzed together with the main body. Alternatively, when the data recording device 10 is provided with a communication function, it is possible to observe information at a remote location one by one at a management office or the like.
[0015]
As described above, in this embodiment, since the pin 6 of the insulator 2 is formed of SUS304, which is a nonmagnetic metal, the overhead electric wire supported by the insulator 2 is compared with the case where it is formed of magnetic metal. The leakage current can be accurately measured without being affected by the magnetic field generated by the flowing current.
[0016]
Here, in the embodiment shown in FIG. 1, the present inventor conducted an experiment in which a current of 2000 [A] was passed through the overhead wires 1a and 1b to measure the leakage current, and as a lever, the pin was formed of iron. Using the conventional insulator shown in FIG. 3 incorporating a current transformer, an experiment for measuring the leakage current was performed in the same manner. In each experiment, an insulator that was not soiled was used.
[0017]
As a result, in the former experiment shown in FIG. 1, no leakage current was observed below the noise of the measurement system. On the other hand, in the latter experiment in which a current transformer was incorporated in the conventional insulator, an apparent leakage current of about 200 [mA] was observed. In other words, if the insulator pin is made of magnetic metal, the magnetic field generated by the current flowing through the overhead wire is amplified, and the output of the current transformer becomes larger than the leakage current, making accurate measurement impossible.
[0018]
In the above-described embodiment, the current transformer 8 is covered with the shield case 7 made of a high permeability magnetic material. Thus, if the current transformer 8 is magnetically shielded, the noise of the magnetic field generated by the current flowing through the overhead wire supported by the insulator 2 can be greatly reduced. According to an experiment by the present inventor, it was confirmed that when the shield case 7 is provided, the noise level can be lowered by about 10 times compared to the case where the shield case 7 is not provided.
[0019]
Moreover, as described above, the shield case 7 is fixed to the pin 6 on the side far from the support portion 5a of the electric wire of the porcelain 5, and is electrically and spatially connected to the pin 6 on the side close to the support portion 5a. Therefore, the leakage current can be effectively passed through the pin 6 at the center of the current transformer 8, and the pin 6 and the shield case 7 can be electrically connected to a common ground. Accordingly, since the noise level can be greatly reduced, it is resistant to noise and accurate measurement is possible. That is, when the shield case 7 is fixed to the pins 6 on both sides near the porcelain 5 and on the far side, leakage current easily flows on the surface of the shield case 7, and the pin 6 at the center of the current transformer 8 Since it becomes difficult to flow, accurate measurement cannot be performed. Further, if both sides are electrically floated and supported from the pin 6, since the ground is not common, the potential of the shield case 7 rises and noise due to the electric field increases.
[0020]
In addition, this invention is not limited only to embodiment mentioned above, Many deformation | transformation or a change is possible. For example, in the above-described embodiment, the pin insulator is shown. However, the present invention is effectively applied to other insulators having pins for fixing to a support, for example, a line post insulator or a solid insulator. Can do. In the above-described embodiment, the pin 6 is formed of a stainless steel-based nonmagnetic metal. However, the pin 6 can be formed of a nonmagnetic metal other than the stainless steel, and the same effect can be obtained. Furthermore, the shield case 7 can be omitted when the influence of the magnetic field from the supporting electric wire is small.
[0021]
【The invention's effect】
According to the present invention, since the leakage current in the power overhead transmission / distribution line can be monitored, it is possible to easily and accurately know the degree of contamination of the insulator, and thereby the insulator can be efficiently cleaned. Therefore, it is possible to effectively reduce the power loss due to the leakage current and to prevent the occurrence of a large-scale ground fault.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 is an external view showing the insulator shown in FIG. 1 in a partial cross section.
FIG. 3 is an external view showing a conventional insulator in partial cross section.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a Overhead electric wire 1b Overhead electric wire 2 Insulator 3 Arm metal 4 Support object 5 Porcelain 5a Support part 6 Pin 7 Shield case 8 Current transformer 9 Signal line 10 Data recording device

Claims (3)

支持物に固定するためのピンを有し、電線を絶縁して支持する碍子において、
前記ピンを非磁性金属をもって構成すると共に、該ピンの周囲に漏洩電流を測定するための変流器を設けたことを特徴とする碍子。
In an insulator that has a pin for fixing to a support and insulates and supports an electric wire,
An insulator comprising a non-magnetic metal for the pin and a current transformer for measuring leakage current around the pin.
請求項1記載の碍子において、
前記変流器を覆うように、高透磁率磁性材料からなるシールドケースを設けたことを特徴とする碍子。
In the insulator according to claim 1,
An insulator provided with a shield case made of a high permeability magnetic material so as to cover the current transformer.
請求項2記載の碍子において、
前記シールドケースを、前記電線の支持部分から遠い側において前記ピンに固定し、前記支持部分に近い側においては、前記ピンに電気的にも、空間的にも接触しないよう構成したことを特徴とする碍子。
In the insulator according to claim 2,
The shield case is fixed to the pin on the side far from the support portion of the electric wire, and is configured not to contact the pin electrically or spatially on the side close to the support portion. Reiko to do.
JP02088996A 1996-02-07 1996-02-07 insulator Expired - Fee Related JP3759219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02088996A JP3759219B2 (en) 1996-02-07 1996-02-07 insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02088996A JP3759219B2 (en) 1996-02-07 1996-02-07 insulator

Publications (2)

Publication Number Publication Date
JPH09213148A JPH09213148A (en) 1997-08-15
JP3759219B2 true JP3759219B2 (en) 2006-03-22

Family

ID=12039792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02088996A Expired - Fee Related JP3759219B2 (en) 1996-02-07 1996-02-07 insulator

Country Status (1)

Country Link
JP (1) JP3759219B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3203249A4 (en) * 2014-09-29 2018-05-30 Mitsubishi Electric Corporation Insulation deterioration monitor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769989B1 (en) * 1997-10-22 1999-12-10 Electricite De France DEVICE FOR DETECTING ISOLATION FAULTS OF A CONDUCTOR OF AN ELECTRIC POWER TRANSPORT LINE
FR3057697B1 (en) * 2016-10-18 2020-02-14 Sediver Sa ISOLATOR FOR OVERHEAD POWER LINES WITH A PROTECTED LEAKAGE CURRENT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3203249A4 (en) * 2014-09-29 2018-05-30 Mitsubishi Electric Corporation Insulation deterioration monitor device
US10161987B2 (en) 2014-09-29 2018-12-25 Mitsubishi Electric Corporation Insulation degradation monitoring device

Also Published As

Publication number Publication date
JPH09213148A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
Molinski Why utilities respect geomagnetically induced currents
US6429661B1 (en) Fault indicator for three-phase sheathed cable
US20040021455A1 (en) Apparatus and method for monitoring power and current flow
KR100402062B1 (en) Apparatus for measuring ground resistance of transmission tower posts
JPH0357976A (en) Method and apparatus for detecting partial discharge
CN109000716B (en) Transmission line galloping monitoring method based on OPGW ground wire induction current
JP3759219B2 (en) insulator
US5347212A (en) System and method of use for conducting a neutral corrosion survey
Pakonen Detection of incipient tree faults on high voltage covered conductor lines
CN201233275Y (en) Detection device for precision measuring throw amplitude value and frequency of high voltage line
KR200169790Y1 (en) An instrument for measuring earth resistance of concrete electric-pole
Annestrand et al. Bonneville Power Administration's prototype 1100/1200 kV transmission line project
Trueman et al. Comparison of computed RF current flow on a power line with full scale measurements
CN114062757A (en) Wide-area synchronous measurement method, device and system for stray current distribution in power grid
US5821749A (en) Reluctance change apparatus and method of detecting loss of cross-sectional area of magnetic metallic strength members used in conductors such as aluminum conductor steel reinforced ("ACSR") conductors
JPH0769368B2 (en) Ground resistance measurement method
CN219930256U (en) Anti-interference probe
Perry The measurement of lightning voltages and currents in South Africa and Nigeria—1935 to 1937
KR100361201B1 (en) Concrete electric pole having inner or outer type earth electrode
RU204789U1 (en) DEVICE FOR MEASURING THE RESISTANCE OF THE EARTHER SUPPORT INSTALLED ON A FOUR-PIECE FOUNDATION WITHOUT DISCONNECTING THE LIGHTNING PROTECTION CABLE
JPH0529988A (en) System for locating submarine cable broken location
Adyatma S et al. LPS and Grounding System for Light Rail Transit in Tropical Area with High Lightning Density
Perry Fault Location in Gas Insultated Conductors Using Magnetic Sensors
Kumar et al. Investigations on voltages and currents in lightning protection schemes involving single tower
Wang et al. Optimal Phase Sequence of 750 kV Four-Circuit Transmission Lines Considering Electromagnetic Environment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees