JP3759074B2 - Seismic isolation system - Google Patents

Seismic isolation system

Info

Publication number
JP3759074B2
JP3759074B2 JP2002178694A JP2002178694A JP3759074B2 JP 3759074 B2 JP3759074 B2 JP 3759074B2 JP 2002178694 A JP2002178694 A JP 2002178694A JP 2002178694 A JP2002178694 A JP 2002178694A JP 3759074 B2 JP3759074 B2 JP 3759074B2
Authority
JP
Japan
Prior art keywords
sliding
seismic isolation
isolation system
plate
sliding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002178694A
Other languages
Japanese (ja)
Other versions
JP2004019356A (en
Inventor
耕市 川田
勉 摺木
直樹 加藤
Original Assignee
昭和電線電纜株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線電纜株式会社 filed Critical 昭和電線電纜株式会社
Priority to JP2002178694A priority Critical patent/JP3759074B2/en
Publication of JP2004019356A publication Critical patent/JP2004019356A/en
Application granted granted Critical
Publication of JP3759074B2 publication Critical patent/JP3759074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、戸建て住宅等の軽量構造物に使用される免震システムに関する。
【0002】
【従来の技術】
軽量構造物用免震システムには、地盤、床面等の基礎部と戸建て住宅等の軽量構造物との間に、同軽量構造物の剛性に比べて遙かに低い水平剛性を有する免震部材が使用されている。この種の免震部材としては、すべり始めてからの剛性がほぼゼロのすべり支承と、積層ゴム又は防振ゴムからなり、すべり支承を原点復元させる機能を有する復元ゴムとを組み合わせて設置した免震システムがある。当該免震システムには、戸建て住宅等の軽量構造物のほぼ全荷重をすべり支承で支承するようにして復元ゴムには殆ど荷重をかけないようにするものと、すべり支承と復元ゴムの両方に荷重支承機能を持たせるようにするものがある。
【0003】
すべり支承には、すべり材の一面に、ゴム状弾性体と金属板を交互に積層した積層ゴムを直列に配してなる弾性すべり支承と、すべり材のみ又は薄いゴム状弾性体を直列に配してなる剛すべり支承がある。いずれのすべり支承も、地盤等の基礎部と戸建て住宅等の軽量構造物とに、互いに摺動可能に設けられたすべり板及びすべり材を備えている。特殊な用途でない戸建て住宅等の軽量構造物には、積層ゴム部のない剛すべり支承の方が経済的にも適している。
【0004】
なお、すべり材としては古くから四フッ化エチレン樹脂(PTFE)が用いられているが、近年、PTFEよりも高強度で摩耗性に優れ、経済的なナイロン等のポリアミド系樹脂が用いられるようになった。すべり板はステンレス鋼板やフッ素樹脂等がコーティングされたステンレス鋼板が用いられている。
【0005】
免震システムは、通常時にはすべり材が戸建て住宅等の軽量構造物の荷重を支え、地震時にはすべり材がすべり板上を摺動し、動摩擦係数により発生した水平力(鉛直荷重×動摩擦係数)により地震エネルギーを熱エネルギーとして吸収する。地震時に水平移動した同軽量構造物は復元ゴムによってほぼ原点(通常時の構造物位置)に復帰される。
【0006】
すべり材は静止摩擦係数を超えた水平力が加わるとすべり板上を摺動する。すべり始めてからのすべり支承の剛性は、ほぼゼロになるため、復元ゴムの剛性を任意に設定することで免震層の長周期化が可能となる。
【0007】
【発明が解決しようとする課題】
ところで、上記のような従来の技術には、次のような解決すべき課題があった。
規模の小さい軽量構造物では、敷地も狭く免震構造物の地震動に対する応答変位及び余裕空間を確保するのが難しい。
【0008】
例えば、すべり板が基礎部に設置され、すべり材が支柱(束材)を介して軽量構造物の最下層に固設された通常タイプのすべり支承の場合は、余裕空間が確保できずに同すべり支承の近傍に不作為に、基礎立上り部分のような突出物体が配置されていると、軽量構造物が地震動に対する応答変位をしたときにすべり支承が当該突出物体に衝突するおそれがあり、軽量構造物の水平移動の妨げになることがある。
【0009】
上記通常タイプのすべり支承は、すべり板の滑り面が常時上向きで、しかもすべり板が基礎面と殆ど同じレベルに設置されていることから、すべり板のメンテナンスとして、日射等による損傷劣化と、暴風雨、漏水等の浸水及び動物の巣、糞尿、塵埃等による性能低下とを防止する措置を講ずる必要があった。
【0010】
また、すべり支承を用いた免震構造は、従来、すべり板とすべり材とをそれぞれ基礎部及び構造物の最下層に別々に取り付けるようにしているが、この取り付けには、高度の精度が要求され、作業が困難である。
【0011】
免震構造を用いた木造戸建て住宅等は、最下層の横架材(土台)と免震部材の間に、鉄筋コンクリート造等の床板を用いて、その床板及び基礎部間にそれぞれ免震部材が取り付けられていたが、木造在来工法による戸建住宅と比較して、鉄筋コンクリート造り等の床板工事が加わり工事期間が長くなり、工事コストも増加する。
一方、免震構造を用いた木造戸建て住宅であって、鉄筋コンクリート造等の床板を用いない場合は、横架材のたわみが、1/250程度発生するが、このたわみに、従来のすべり支承では対応できないという課題があった。
【0012】
本発明は、かかる点に着目してなされたもので、設置スペースを縮小化することができ、施工精度の向上、工事費の低減を行い得、しかも長期間安定した免震性能を維持し得る免震システムを提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は以上の目的を達成するため、次の構成を採用する。
<構成1>
基礎部に立設される支柱の上端にすべり材を配設してなるすべり支承本体と、上記基礎部の上方に設置される木造軽量構造物の最下層に固設され、上記すべり材に摺動自在に当接されるすべり板とを備えた免震システムにおいて、上記すべり板の上面に、矩形の枠体の中にリブを立設した補強体を固設し、上記補強体に、上記軽量構造物の最下層の木製横架材を上記枠体の外側に接するように直接取付けられるようにしたことを特徴とする免震システム。
【0014】
<構成2>
構成1記載の免震システムにおいて、上記補強体は、複数枚の板部材が矩形に組立てられて上記すべり板の上面に固着された上記枠体と、上記枠体の内側に交差して設けられた上記リブとを備えたことを特徴とする免震システム。
【0015】
〈構成3〉
構成1又は2に記載の免震システムにおいて、上記支柱の上部と上記すべり材との間に、中心部にボールベアリングを介して重ねられた少なくとも2枚の板部材を配設したことを特徴とする免震システム。
【0017】
以下、本発明の免震システムにおける実施の形態例について図面を参照して説明する。
図1は本発明の一実施例の概要を示す図であり、図2は同実施例で使用する剛すべり支承を示し、図3は図1に示した構成部品の一部を分解して示す斜視図である。
【0018】
これらの図において、符号1は地盤上に鉄筋コンクリートにより構成された基礎部、2は基礎部1の上方に建設される木造戸建て住宅等の軽量構造物をそれぞれ示している。基礎部1の外縁部に、上方に突出する基礎立上り部分3が設けられている。
本発明の免震システムは、基礎部1に設置されるすべり支承本体10と、軽量構造物2の最下層に固設されるすべり板11とを備えている。
【0019】
図2にすべり支承本体10の要部を示している。すべり支承本体10は、上、下端にフランジ12、13を有する支柱(束材)14と、板状のホルダ15に固設されたすべり材16と、支柱14の上フランジ12の上に配置された中間板部材18と、上フランジ12と中間板部材18との各対向面の中心部にそれぞれ設けられた半球状の凹部間に配設されたボールベアリング(鋼球)19と、中間板部材18及びホルダ15との間に配設された傾き吸収材、緩衝材としてのゴム弾性シート20とから構成されている。
【0020】
支柱14は、すべり材16の取付位置(高さ)を基礎立上り部分3より高くなるように調整するもので、2枚の板部材を横断面十字形に交差させてなるものである。
支柱14の上フランジ12とホルダ15とは中間板部材18を介装した状態で4本のボルト21によりスプリングワッシャ17を介して連結されている。この連結状態を維持できる範囲内で、中間板部材18は上フランジに対してボールベアリング19を介して傾動可能であり、またホルダ15は中間板部材18に対してゴム弾性シート20を介して上下動可能であるようにされている。
【0021】
すべり材16は四フッ化エチレン樹脂(PTFE)、ナイロン等のポリアミド系樹脂等を主剤として円柱形に成型されている。すべり板11はステンレス鋼板やフッ素樹脂等がコーティングされたステンレス鋼板が用いられている。
ホルダ15及び支柱14の上フランジ12等は、すべり支承の性能を変えない適度な機械的強度を有する寸法とされる。
【0022】
なお、支柱14の上フランジ12と中間板部材18との間には、ボールベアリング19に代えて、図4に示すように、適宜厚さのゴム弾性シート22を介在させるようにしてもよい。なお、図4に示したものは、図2に示した構成とボールベアリング19を設けた箇所を除けば同じであるので、図2と同一符号を付して他の構成の説明を省略する。
【0023】
図3に軽量構造物2の最下層に固設されるすべり板11を示している。すべり板11の上面には、複数のリブ24を立設した補強体25が固設されている。補強体25は、4枚の板部材を、すべり板11の外縁の内側に収まる大きさの四辺形に組立てた枠体と、この枠体の内側に、複数の板部材を放射状に交差して設けたリブ24とから構成され、すべり板11の上面に、溶接等により一体に固着されている。
【0024】
基礎部1と戸建て住宅等の軽量構造物2との間に、すべり支承本体10とすべり板11を設置する際、すべり支承本体10と補強体25付きすべり板11とは、所定の組立て状態でロープ等の仮止め材27により仮止めされて工場から現場まで運搬され、そのまま基礎部1の所定位置に配置され、その後、仮止め材27が除去される。次に、補強体25の枠体に、軽量構造物2の最下層の横架材28を直接、取付ボルト29により取付けるようにする。横架材28は木製の集積材で構成されてもよい。
【0025】
こうして固定された横架材28の上に、軽量構造物2の構造用合板及び仕上げ材等30等が設けられる。構造用合板及び仕上げ材等30の下部には必要に応じて既存の断熱材31が配設される。
上記実施例は上述したように構成され、通常時は軽量構造物2の荷重を支承し、地震時にはすべり材16がすべり板11の滑り面を摺動する。
【0026】
本発明は、戸建て木造住宅だけでなく同様の軽量構造物に適用することができ、以下の効果をもたらす。
本発明は、すべり支承のすべり板11を軽量構造物2の最下層に取り付けることにより、すべり板11の滑り面が常時下向きとなることから、すべり支承の日射等による損傷劣化、暴風雨、漏水等の浸水及び動物の巣、糞尿、塵等による性能低下等が解消され、すべり板11のメンテナンスの措置を講ずる必要がなく、耐久性が向上する。
【0027】
すべり材16とすべり板11との滑り面を、軽量構造物2の基礎に用いられている基礎立上り部分3より上位に位置させたことにより、図1に示すように、基礎立上り部分3とすべり板11をラップさせることができ、少なくともこのラップ部分だけ、上記した従来の免震構造に比べて免震システムの設置スペースを小さくすることが可能である。しかも地震時にすべり支承と基礎立上り部分3との衝突を回避することができる。
【0028】
すべり板11は、補強体25によりリブ補強された構造としたことにより、上部荷重を受けるのに十分な剛性を有しており、軽量構造物2の最下層との間に鉄筋コンクリート製の床板を設けずに、木製の横架材28を直接ボルト29等で取り付けることが可能である。
【0029】
また、軽量構造物2の最下層にコンクリート製の床板を用いないことから、上部構造の撤去、取付が容易であり、軸力の変動に対しても余裕がある。よって、将来、建替え等の改造工事が発生した場合でも再利用が可能である。
【0030】
すべり支承本体10とすべり板11とが工場にて仮止め材27により一体として組立て製作されて運搬され、工事現場で基礎部1分に取り付けられることにより、作業者の質にかかわず施工精度が著しく向上し、また、その後、構造物の建設時に仮止め材27を取り外すことにより、工事中、構造物が安定し、工事中の安全性が向上する。
【0031】
すべり支承本体10は、図2に示すように2枚の板部材(支柱14の上フランジ12と中間板部材18)間にボールベアリング19を挿置したことで、軽量構造物2の最下層の木材の種類、乾燥状態、使用される箇所等により、ねじれ、亀裂等の変形、あるいは長期間におけるクリープ、たわみ等の変形が発生しても、このような変形等に対して追従することができる。また傾き吸収用のゴム弾性シート20が配されているため、地震時のすべり板11に発生する不規則な回転に対しても追従することができる。
【0032】
【発明の効果】
以上、本発明によれば、すべり支承が横架材のたわみに追従可能であり、すべり板上面にリブ補強を設けたことにより、直接、すべり板に横架材を取り付けことができる。また、工場においてすべり板とすべり支承本体とを仮止め材を用いて一時的に一体化し、この一体化の状態で運搬及び現場での据付を行うことにより、施工の合理化、施工精度の向上、工事コストの低減をもたらし、しかも長期間にわたって安定した免震性能を発揮するという効果を奏する。
【図面の簡単な説明】
【図1】本発明に係わる免震システムの一実施例を示す概略図である。
【図2】同実施例において使用するすべり支承本体の主要部を示す図で、(a)は一部縦断正面図、(b)は底面図である。
【図3】図1に示した構成部品の一部を展開して示す斜視図である。
【図4】本発明の他の実施例を示す一部縦断正面図である。
【符号の説明】
1 基礎部
2 軽量構造物
3 基礎立上り部分
10 すべり支承本体
11 すべり板
12、13 フランジ
14 支柱(束材)
15 ホルダ 16 すべり材
18 中間板部材
19 ボールベアリング
20、22 ゴム弾性シート
24 リブ
25 補強体
27 仮止め材
28 横架材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic isolation system used for a lightweight structure such as a detached house.
[0002]
[Prior art]
The seismic isolation system for lightweight structures is a seismic isolation system that has horizontal rigidity that is much lower than the rigidity of the lightweight structure between the foundations such as the ground and floor and the lightweight structure such as a detached house. Members are used. This type of seismic isolation member is a seismic isolation system that is a combination of a sliding bearing that has almost zero rigidity after the start of sliding and a restoration rubber that is made of laminated rubber or vibration-proof rubber and has the function of restoring the sliding bearing to its origin. There is a system. In the seismic isolation system, almost all loads of lightweight structures such as detached houses are supported by sliding bearings and almost no load is applied to restoring rubber, and both sliding bearings and restoring rubber are used. Some have a load bearing function.
[0003]
In the sliding bearing, an elastic sliding bearing, in which laminated rubber consisting of alternately laminated rubber-like elastic bodies and metal plates is arranged in series on one side of the sliding material, and only the sliding material or thin rubber-like elastic bodies are arranged in series. There is a rigid sliding support. Each of the sliding supports includes a sliding plate and a sliding material that are slidably provided on a foundation such as the ground and a lightweight structure such as a detached house. For lightweight structures such as detached houses that are not specially used, a rigid sliding bearing without a laminated rubber part is more economically suitable.
[0004]
As a sliding material, tetrafluoroethylene resin (PTFE) has been used for a long time. However, recently, polyamide-based resins such as nylon, which are higher in strength and wearability than PTFE, are economical. became. As the sliding plate, a stainless steel plate coated with a stainless steel plate or a fluororesin is used.
[0005]
In the seismic isolation system, the sliding material normally supports the load of a light-weight structure such as a detached house, and the sliding material slides on the sliding plate during an earthquake. Absorbs seismic energy as thermal energy. The lightweight structure moved horizontally during the earthquake is restored to its origin (normal structure position) by restoring rubber.
[0006]
The sliding material slides on the sliding plate when a horizontal force exceeding the coefficient of static friction is applied. Since the rigidity of the sliding bearing after the start of sliding becomes almost zero, the seismic isolation layer can be lengthened by arbitrarily setting the rigidity of the restoring rubber.
[0007]
[Problems to be solved by the invention]
By the way, the conventional techniques as described above have the following problems to be solved.
In a light-weight structure with a small scale, it is difficult to secure a response displacement and a margin space with respect to the ground motion of the seismic isolation structure because the site is small.
[0008]
For example, in the case of a normal type sliding bearing in which a sliding plate is installed on the foundation and the sliding material is fixed to the bottom layer of a lightweight structure via a support (bundle), the same space is not secured. If a protruding object, such as a foundation rising part, is randomly placed near the sliding bearing, the sliding bearing may collide with the protruding object when the lightweight structure undergoes a response displacement against earthquake motion. It may hinder horizontal movement of objects.
[0009]
The above-mentioned normal type sliding bearings have the sliding surface of the sliding plate facing upward at all times, and the sliding plate is installed at almost the same level as the foundation surface. In addition, it was necessary to take measures to prevent infiltration such as water leakage and performance degradation due to animal nests, excrement, dust, and the like.
[0010]
In addition, seismic isolation structures using sliding bearings have traditionally been designed to attach the sliding plate and sliding material separately to the foundation and the bottom layer of the structure, but this installation requires a high degree of accuracy. Work is difficult.
[0011]
Wooden detached houses with seismic isolation structures use a reinforced concrete structure flooring between the bottom horizontal member (base) and the base isolation member, and the base isolation part has a base isolation member. Although it was installed, compared with a detached house by the wooden conventional construction method, the floor plan work such as reinforced concrete construction is added and the construction period becomes longer, and the construction cost also increases.
On the other hand, if it is a wooden detached house using a seismic isolation structure and does not use reinforced concrete or other floorboards, the horizontal member will bend about 1/250. There was a problem that we could not respond.
[0012]
The present invention has been made paying attention to such a point, can reduce the installation space, can improve the construction accuracy, reduce the construction cost, and can maintain a stable seismic isolation performance for a long period of time. The purpose is to provide a seismic isolation system.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention adopts the following configuration.
<Configuration 1>
The sliding support body is formed by arranging a sliding material on the upper end of the support column that is erected on the foundation part, and is fixed to the lowermost layer of the light wooden structure installed above the foundation part, and is slid onto the sliding material. In a seismic isolation system including a sliding plate that is movably contacted, a reinforcing body in which a rib is erected in a rectangular frame is fixed on the upper surface of the sliding board, and the reinforcing body A seismic isolation system characterized in that the lowermost wooden horizontal member of a lightweight structure can be directly attached so as to be in contact with the outside of the frame .
[0014]
<Configuration 2>
In seismic isolation system configuration 1, wherein the reinforcing body, and the frame member is secured to the upper surface of the plurality of plate members are assembled in a rectangular said sliding plate, is provided so as to intersect the inner side of the frame A seismic isolation system comprising the above ribs.
[0015]
<Configuration 3>
In the seismic isolation system according to Configuration 1 or 2, at least two plate members stacked at the center via a ball bearing are disposed between the upper portion of the support column and the sliding material. Seismic isolation system.
[0017]
Embodiments of the seismic isolation system of the present invention will be described below with reference to the drawings.
FIG. 1 is a view showing an outline of an embodiment of the present invention, FIG. 2 shows a rigid sliding bearing used in the embodiment, and FIG. 3 is an exploded view of a part of the components shown in FIG. It is a perspective view.
[0018]
In these drawings, reference numeral 1 denotes a base part made of reinforced concrete on the ground, and 2 denotes a lightweight structure such as a wooden detached house constructed above the base part 1. A base rising portion 3 protruding upward is provided on the outer edge of the base portion 1.
The seismic isolation system of the present invention includes a sliding bearing body 10 installed on the foundation 1 and a sliding plate 11 fixed on the lowermost layer of the lightweight structure 2.
[0019]
FIG. 2 shows a main part of the sliding support main body 10. The sliding support body 10 is disposed on a support (bundle) 14 having flanges 12 and 13 at the upper and lower ends, a slide 16 fixed to a plate-like holder 15, and the upper flange 12 of the support 14. Intermediate plate member 18, ball bearing (steel ball) 19 disposed between hemispherical recesses provided at the center of each of the opposing surfaces of upper flange 12 and intermediate plate member 18, and intermediate plate member 18 and an inclination absorbing material disposed between the holder 15 and a rubber elastic sheet 20 as a cushioning material.
[0020]
The support column 14 adjusts the mounting position (height) of the sliding member 16 so as to be higher than the basic rising portion 3, and is formed by intersecting two plate members in a cross-shaped cross shape.
The upper flange 12 of the support column 14 and the holder 15 are connected via the spring washer 17 by the four bolts 21 with the intermediate plate member 18 interposed. The intermediate plate member 18 can be tilted with respect to the upper flange via a ball bearing 19 within a range in which this connected state can be maintained, and the holder 15 is vertically moved with respect to the intermediate plate member 18 via a rubber elastic sheet 20. It is supposed to be movable.
[0021]
The sliding member 16 is molded into a cylindrical shape using a main component of a polyamide-based resin such as tetrafluoroethylene resin (PTFE) or nylon. The sliding plate 11 is a stainless steel plate coated with a stainless steel plate or a fluororesin.
The upper flange 12 and the like of the holder 15 and the support column 14 have dimensions that have an appropriate mechanical strength that does not change the performance of the sliding bearing.
[0022]
In addition, instead of the ball bearing 19, a rubber elastic sheet 22 having an appropriate thickness may be interposed between the upper flange 12 of the support column 14 and the intermediate plate member 18, as shown in FIG. 4 is the same as the configuration shown in FIG. 2 except for the place where the ball bearing 19 is provided, and therefore, the same reference numerals as those in FIG.
[0023]
FIG. 3 shows a sliding plate 11 fixed to the lowermost layer of the lightweight structure 2. On the upper surface of the sliding plate 11, a reinforcing body 25 having a plurality of ribs 24 standing is fixed. The reinforcing body 25 includes a frame body in which four plate members are assembled into a quadrilateral size that fits inside the outer edge of the sliding plate 11, and a plurality of plate members are radially intersected inside the frame body. The rib 24 is provided, and is integrally fixed to the upper surface of the sliding plate 11 by welding or the like.
[0024]
When installing the sliding support body 10 and the sliding plate 11 between the foundation 1 and the lightweight structure 2 such as a detached house, the sliding support body 10 and the sliding plate 11 with the reinforcing body 25 are in a predetermined assembled state. It is temporarily fixed by a temporary fixing material 27 such as a rope and is transported from the factory to the site, and is arranged as it is at a predetermined position of the base portion 1, and then the temporary fixing material 27 is removed. Next, the lowermost horizontal member 28 of the lightweight structure 2 is directly attached to the frame of the reinforcing body 25 by the attachment bolts 29. The horizontal member 28 may be formed of a wooden accumulation material.
[0025]
On the horizontal member 28 thus fixed, the structural plywood and the finishing material 30 of the lightweight structure 2 are provided. An existing heat insulating material 31 is disposed below the structural plywood and finishing material 30 as necessary.
The above embodiment is configured as described above, and normally supports the load of the lightweight structure 2, and the sliding material 16 slides on the sliding surface of the sliding plate 11 during an earthquake.
[0026]
The present invention can be applied not only to a detached wooden house but also to a similar lightweight structure, and provides the following effects.
In the present invention, since the sliding surface of the sliding plate 11 is always directed downward by attaching the sliding plate 11 of the sliding support to the lowermost layer of the lightweight structure 2, damage deterioration due to solar radiation of the sliding support, storm, water leakage, etc. As a result, it is not necessary to take measures for maintenance of the sliding plate 11, and durability is improved.
[0027]
Since the sliding surface between the sliding member 16 and the sliding plate 11 is positioned higher than the foundation rising portion 3 used for the foundation of the lightweight structure 2, as shown in FIG. The plate 11 can be wrapped, and at least this wrap portion can reduce the installation space of the seismic isolation system as compared with the conventional seismic isolation structure described above. Moreover, it is possible to avoid a collision between the sliding bearing and the foundation rising portion 3 at the time of an earthquake.
[0028]
The sliding plate 11 has a structure in which ribs are reinforced by the reinforcing body 25, so that the sliding plate 11 has sufficient rigidity to receive an upper load, and a floor plate made of reinforced concrete is interposed between the lightest structure 2 and the lowermost layer. Without being provided, the wooden horizontal member 28 can be directly attached with a bolt 29 or the like.
[0029]
Further, since a concrete floor board is not used for the lowermost layer of the lightweight structure 2, the upper structure can be easily removed and attached, and there is room for fluctuations in the axial force. Therefore, it can be reused even if remodeling work such as rebuilding occurs in the future.
[0030]
The sliding support body 10 and the sliding plate 11 are assembled and manufactured as a unit by the temporary fixing material 27 at the factory, transported, and attached to the base part 1 minute at the construction site, so that the construction accuracy can be achieved regardless of the quality of the operator. After that, the temporary fixing material 27 is removed at the time of constructing the structure, so that the structure is stabilized during the construction, and the safety during the construction is improved.
[0031]
As shown in FIG. 2, the sliding bearing body 10 has a ball bearing 19 inserted between two plate members (the upper flange 12 and the intermediate plate member 18 of the column 14). Even if deformation such as twisting, cracking, or creeping or bending occurs over a long period of time, depending on the type of wood, dry state, location used, etc., it is possible to follow such deformation. . Further, since the rubber elastic sheet 20 for absorbing inclination is arranged, it is possible to follow irregular rotation generated in the slip plate 11 at the time of an earthquake.
[0032]
【The invention's effect】
As described above, according to the present invention, the sliding support can follow the deflection of the horizontal member, and the rib member is provided on the upper surface of the sliding plate, so that the horizontal member can be directly attached to the sliding plate. Also, in the factory, the sliding plate and the sliding support body are temporarily integrated using temporary fixing materials, and transportation and installation on site are performed in this integrated state, thereby streamlining construction and improving construction accuracy. It brings about the effect of reducing the construction cost and demonstrating stable seismic isolation performance over a long period of time.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a seismic isolation system according to the present invention.
FIGS. 2A and 2B are diagrams showing a main part of a sliding support body used in the embodiment, in which FIG. 2A is a partially longitudinal front view, and FIG. 2B is a bottom view;
FIG. 3 is a perspective view showing a part of the components shown in FIG.
FIG. 4 is a partially longitudinal front view showing another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Foundation part 2 Lightweight structure 3 Foundation rising part 10 Sliding support body 11 Sliding plate 12, 13 Flange 14 Post (bundle material)
15 Holder 16 Sliding material 18 Intermediate plate member 19 Ball bearings 20 and 22 Rubber elastic sheet 24 Rib 25 Reinforcing body 27 Temporary fixing material 28 Horizontal material

Claims (3)

基礎部に立設される支柱の上端にすべり材を配設してなるすべり支承本体と、前記基礎部の上方に設置される木造軽量構造物の最下層に固設され、前記すべり材に摺動自在に当接されるすべり板とを備えた免震システムにおいて、
前記すべり板の上面に、矩形の枠体の中にリブを立設した補強体を固設し、前記補強体に、前記軽量構造物の最下層の木製横架材を前記枠体の外側に接するように直接取付けられるようにしたことを特徴とする免震システム。
The sliding support body is formed by disposing a sliding material on the upper end of a column that is erected on the foundation, and the lowermost layer of a light wooden structure installed above the foundation is fixed to the sliding material. In a seismic isolation system with a sliding plate that can be moved freely,
On the upper surface of the sliding plate, a reinforcing body in which a rib is erected in a rectangular frame is fixed, and a wooden horizontal member at the lowest layer of the lightweight structure is attached to the outer side of the frame. A seismic isolation system characterized in that it can be installed directly in contact .
請求項1記載の免震システムにおいて、
前記補強体は、複数枚の板部材が矩形に組立てられて前記すべり板の上面に固着された前記枠体と、前記枠体の内側に交差して設けられた前記リブとを備えたことを特徴とする免震システム。
In the seismic isolation system according to claim 1,
The reinforcing body, the frame and body, which is fixed to the upper surface of the sliding plate a plurality of plate members are assembled in a rectangular, in that a said rib provided so as to intersect the inner side of the frame A seismically isolated system.
請求項1又は2に記載の免震システムにおいて、
前記支柱の上部と前記すべり材との間に、中心部にボールベアリングを介して重ねられた少なくとも2枚の板部材を配設したことを特徴とする免震システム。
In the seismic isolation system according to claim 1 or 2,
A seismic isolation system, wherein at least two plate members overlapped with a ball bearing at a central portion are disposed between an upper portion of the support column and the sliding member.
JP2002178694A 2002-06-19 2002-06-19 Seismic isolation system Expired - Fee Related JP3759074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178694A JP3759074B2 (en) 2002-06-19 2002-06-19 Seismic isolation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178694A JP3759074B2 (en) 2002-06-19 2002-06-19 Seismic isolation system

Publications (2)

Publication Number Publication Date
JP2004019356A JP2004019356A (en) 2004-01-22
JP3759074B2 true JP3759074B2 (en) 2006-03-22

Family

ID=31176344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178694A Expired - Fee Related JP3759074B2 (en) 2002-06-19 2002-06-19 Seismic isolation system

Country Status (1)

Country Link
JP (1) JP3759074B2 (en)

Also Published As

Publication number Publication date
JP2004019356A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
CA2866081C (en) Modular isolation systems
US9399865B2 (en) Seismic isolation systems
JP3156990U (en) Seismic isolation device for lightweight building and seismic isolation structure for lightweight building
JP2014214513A (en) Outdoor installation type building aseismatic device and construction method thereof
JP2017166735A (en) Precast concrete vibration-proof base plate
US20150128510A1 (en) Polygonal seismic isolation systems
JP3759074B2 (en) Seismic isolation system
JP4899210B2 (en) Sliding bearing and its mounting method and seismic isolation structure
JP2002070943A (en) Slip support device for base isolation
JP3825081B2 (en) Seismic isolation system and lift prevention device in the seismic isolation system
JP2006241729A (en) Base isolating foundation structure of structure, and construction method
JP3749818B2 (en) Seismic isolation devices, buildings with seismic isolation devices
JP2013217122A (en) Foundation block for earthquake-proof shelter room
JPH1035786A (en) Water tank with improved vibration-resistance
US10041267B1 (en) Seismic damping systems and methods
JP5042067B2 (en) Anti-vibration floor structure
JP2007009450A (en) Base isolation device and base isolation structure of building of panel construction method
JP2007321437A (en) Base isolated building
JP2003097086A (en) Base isolation building and construction method therefor
WO2019158823A1 (en) An arrangement and method for preventing shaking damages
KR102490855B1 (en) reinforceing device for seismic
JP3187006U (en) Outdoor installation type earthquake proofing equipment
JPS6250631B2 (en)
JP7286904B2 (en) building
JP2007284969A (en) Base isolation structure of building and its construction method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051012

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees