JP3758505B2 - Boric acid adsorption resin and method for reducing boric acid ions in boric acid-containing water using the same - Google Patents

Boric acid adsorption resin and method for reducing boric acid ions in boric acid-containing water using the same Download PDF

Info

Publication number
JP3758505B2
JP3758505B2 JP2001025744A JP2001025744A JP3758505B2 JP 3758505 B2 JP3758505 B2 JP 3758505B2 JP 2001025744 A JP2001025744 A JP 2001025744A JP 2001025744 A JP2001025744 A JP 2001025744A JP 3758505 B2 JP3758505 B2 JP 3758505B2
Authority
JP
Japan
Prior art keywords
boric acid
boron
resin
containing water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001025744A
Other languages
Japanese (ja)
Other versions
JP2002226517A (en
Inventor
博之 関口
直子 本多
純二 福田
典生 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001025744A priority Critical patent/JP3758505B2/en
Publication of JP2002226517A publication Critical patent/JP2002226517A/en
Application granted granted Critical
Publication of JP3758505B2 publication Critical patent/JP3758505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硼酸吸着用樹脂及び硼酸含有水中の硼素イオン低減方法に関する。詳しくは、産業排水や海水等の高濃度の硼素を含有する水中、飲料水用途等での微量の硼素を含有する水中、あるいは半導体製造プロセスにおける超純水中の極微量の硼素を含有する水等、水中の硼素低減が求められる用途全般に利用可能な硼素吸着樹脂及びこれを用いた硼酸イオン低減方法に関する。
【0002】
【従来の技術】
硼素は単体では自然界に存在せず、硼砂等の硼素化合物として存在する。環境中においては河川水や地下水、土壌中に含まれている。また、海水中の硼素は比較的高濃度である。硼素化合物は、ガラス原料やほうろう、陶磁器の釉薬等に使用されるほか、硼酸として医薬品、メッキ浴剤、防腐剤、殺虫剤としての用途がある。
【0003】
硼素による人の健康障害としては、高濃度の摂取による嘔吐、腹痛、下痢及び吐き気等の症例が報告されているほか、動物実験で胎児の体重増加抑制が認められている。
硼素の排水基準値は、陸水域について水質基準値の10倍の10mg/l、海域については230mg/lが設定される見込みである。特に海域の設定値に関して現時点での対策技術を勘案した値であり今後対策技術の向上に伴い見直されていくものと考えられる。
【0004】
水中の硼素分離法としては 蒸留法、沈殿法、吸着法、膜分離法、溶媒抽出法、液体膜法、イオン交換法、キレート樹脂法などが知られているが、水処理のように大量の希薄溶液を対象とする場合には、イオン交換樹脂やキレート樹脂などの機能性樹脂による吸着分離法が有利である。通常の陰イオン交換樹脂も硼酸イオンを吸着するが、他の共存陰イオンも吸着するため特に共存陰イオンの少ない系での利用に限定される場合が多い。
【0005】
硼素原子に多価アルコールの酸素原子の電子対が配位し、強酸性の錯体が形成することは良く知られている。弱酸である硼酸の中和滴定の際にpHの変化を鋭くするためマンニトールやソルビトール等の多価アルコールを添加する方法が採られる。
この性質を利用した複数のヒドロキシル基と陰イオン性交換基を有する硼酸の選択性捕捉剤としては、グルカミン形樹脂がある。グルカミン形樹脂は5価の多価アルカノールアミンを官能基とする樹脂で、多価アルコールが硼酸に配位して錯体を形成し、これをイオン交換的に樹脂のアミノ基の部分で捕捉するものである。キレ−ト形成とイオン交換を組み合わせた分子設計的にも巧妙なものであることが知られている。捕捉した硼酸は酸で溶離される。この樹脂は多量に共存する塩類の妨害を受けずに硼酸のみを選択的に捕捉する。
【0006】
グルカミン形樹脂に代表されるヒドロキシル基と陰イオン性交換基を有する硼酸吸着用樹脂は現状工業的に利用されている。通常、硼酸吸着用樹脂は硼酸吸着用樹脂塔に充填し、原水(被処理水)を通水する形態(以下カラム法と略)で使用される。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の使用形態において、硼素吸着用樹脂への通液開始後硼素の漏洩が最大許容値を越えるまでの交換容量(以下貫流交換容量)が、樹脂の総交換容量に対して非常に低いという問題がある。また、上記従来の使用形態においては、硼素の溶離に多量の酸を必要とするという問題もある。即ち、工業的な利用において貫流交換容量が低いため溶離、再生の頻度が高く多量の薬剤が必要となり不経済であるのみならず、大量の廃液が発生する。また、溶離液や、再生中廃液に含まれる濃縮された硼素に関しても処理の負担が大きい(特開平10−249330号公報)という問題も発生している。
【0008】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、硼酸吸着用樹脂の工業的利用において最適な粒径及び粒度分布を見いだし、これに基づく反応速度の改善によりカラム法における処理能力、貫流交換容量、及び溶離性を既存品と比べ飛躍的に改良できることを見いだして本発明を完成するに至った。
【0009】
即ち本発明は、架橋ポリスチレン又は架橋ポリメタクリル酸エステルからなる基体に硼酸イオンと親和性を有する官能基が結合されてなる球状粒子であって、該粒子の体積平均粒子径が100〜450μmであり、且つ前記平均粒子径±10%以内の体積存在率が50%以上であることを特徴とする硼酸吸着用樹脂、及びこれを用いた硼酸含有水中の硼酸イオン低減方法、に存する。
【0010】
【発明の実施の形態】
以下本発明を詳細に説明する。
本発明の硼素吸着用樹脂は、架橋ポリスチレン又は架橋ポリメタクリル酸エステルからなる基体に、硼酸イオンと親和性を有する官能基が結合されてなる球状粒子である。
【0011】
架橋ポリスチレンとは、スチレン、ビニルトルエン、ビニルキシレン、ビニルナフタレンなどのモノビニル芳香族化合物とジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ジビニルナフタレン、トリビニルベンゼン、ビスビニルジフェニル、ビスビニルフェニルエタンなどのポリビニル芳香族化合物との架橋共重合体を主体とするものであり、これらの共重合体にグリセロールメタクリレート、エチレングリコールジメタクリレート、等のメタクリル酸エステルが共重合されていてもよい。架橋ポリメタクリル酸エステルとは、メタクリル酸エステル等と前述したポリビニル芳香族化合物との架橋共重合体を主体とするものである。エチレングリコールジメタクリレートを共重合成分として用いる場合は、重合時のモノマ−全体に対して通常25〜50重量%であることが好ましい。
【0012】
硼酸イオンと親和性を有する官能基としては、N−メチルグルカミン、メチルグルカミン、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール、Dグルコサミン、D−ガラクトサミン、及び酢酸ビニルとN−ビニルホルムアミドとの共重合体鹸化物から選ばれる少なくとも1種を導入させて得られる官能基であり、これらのうち、N−メチルグルカミン、メチルグルカミンを導入させて得られる官能基が好ましい。
【0013】
前述の架橋共重合体からなる基体にこれらの官能基を導入する方法としては、該架橋共重合体に公知の方法でハロアルキル基を導入した後、該ハロアルキル基と官能基とを反応させる方法、あるいは、モノビニル芳香族化合物として、クロロメチルスチレン、クロロエチルスチレン、ブロモメチルスチレン、ブロモブチルスチレンなどのハロアルキルスチレン等を用い、これとポリビニル芳香族化合物とを共重合させて得られる架橋共重合体に官能基を結合させる方法、などが挙げられる。中でも、スチレン−ジビニルベンゼン共重合体に上記いずれかの方法でクロルメチル基を導入したものであることが好ましい。
【0014】
モノビニル芳香族化合物とポリビニル芳香族化合物の重合は、懸濁重合法により公知の方法で行われる。ポリビニル芳香族単量体の含有率が低すぎる場合には、得られる硼素吸着用樹脂は高膨潤性重合体となるため、体積当たりの交換容量が低下する傾向がある。一方、含有率が高すぎる場合にも、硼素選択性を有する構成成分の含有率が低くなるため、重量当たりの交換容量は低下する傾向にある。従って、本発明の硼素吸着用樹脂を製造する際の不飽和炭化水素含有架橋性単量体の含有率は、モノマ−全体に対して通常0.1〜70重量%、より好ましくは4〜55重量%である。
【0015】
これらの単量体の共重合は、過酸化物、あるいはアゾ系重合開始剤を用いる公知の方法で重合を行うことができる。重合開始剤としては、過酸化ベンゾイル(BPO)、過酸化ラウロイル、t−フ゛チルハイト゛ロハ゜ーオキサイト゛等の過酸化物系重合開始剤、アソ゛ヒ゛スイソフ゛チロニトリル(AIBN)、2,2’−アソ゛ヒ゛ス(2,4−シ゛メチルハ゛レロニトリル)等のアゾ系重合開始剤等が用いられる。その使用量は、全単量体に対して、通常0.05〜3重量%である。重合温度は、重合開始剤の半減期温度、使用量、単量体の重合性等により異なるが通常、40〜150℃、好ましくは50〜100℃で使用される。重合時間は通常0.5〜30時間、好ましくは、1〜15時間である。
【0016】
重合方法は、特に限定されるものではなく、公知の種々の方法を、そのままあるいは組み合わせて採用することができる。球状の吸着用樹脂アニオン交換体は、水/油型又は油/水型の懸濁重合により製造される。特に、重合方法は上記で示した単量体成分を用いて重合開始剤の存在下、浴比が1対2から1対6の範囲として懸濁重合法で行うことが好ましい。
【0017】
スチレン−ジビニルベンゼンに代表される架橋共重合体へのハロアルキル基の導入は、公知の方法により行われる。例えば、スチレンジビニルベンゼン共重合体に、クロロメチルメチルエーテルを加え、塩化亜鉛、塩化鉄などのルイス酸触媒の存在下、反応させればよい。クロロメチルメチルエーテルはスチレン/ジビニルベンゼン共重合体を膨潤させ、スラリーを保てる量で有ればよく、反応に不活性な非芳香族系の溶媒を添加してもよい。反応条件は、反応剤の量によるが、通常室温から60℃の温度で、30分から20時間反応させればよい。
【0018】
本発明の硼素吸着用樹脂官能基を導入する工程は、上記の官能基導入の前段階にある架橋共重合体(ハロアルキル基を導入した架橋共重合体)と、硼酸イオンと親和性を持つ官能基となるヒドロキシアミノ化合物、即ち上に例示したような、N−メチルグルカミン、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオ−ル、Dグルコサミン、D−ガラクトサミン、酢酸ビニルとNビニルホルムアミド共重合体の鹸化物から選ばれる少なくとも1種とを接触させることにより容易に反応させることができる。これらの化合物は遊離形でも塩酸塩等の塩の形態でも用いることができる。通常の製造法としては官能基導入の前段階の共重合体とヒドロキシアミノ化合物を溶媒の存在下で加温する方法をとる。溶媒としては、メタノール、エタノール、プロパノール、ブタノール、1,4−ジオキサン、トルエン、塩化メチレン、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロホルム、エチレングリコール、水等が利用でき、それらの混合溶媒も使用できる。反応温度は特に制限されないが、通常0〜150℃、好ましくは30〜100℃が用いられる。硼酸イオンと親和性を持つ官能基となる化合物の使用量は、その反応性により異なるが、通常ハロアルキル基に対して、0.5〜2当量以上あればよい。また、2種の官能基量を制御したいときは、その範囲で適宜量比を変えればよい。官能基導入後、粒状樹脂を濾別し、水もしくは上記の溶媒により洗浄する事により本発明の硼素吸着用樹脂を得ることができる。
【0019】
これらのヒドロキシアミノ化合物由来の官能基ではそのOH基の酸素原子の電子対が硼素原子に配位し、強酸性の錯体を形成するキレート反応を律則に硼素を捕捉する。その反応速度は通常のイオン交換と比較してごく遅いことが知られている。特に本特許で対象とする硼素除去においては動的反応速度の影響が極めて大きいと考えられる。
【0020】
本発明の硼素吸着用樹脂はその体積平均粒子径が100〜450μmである。工業的な利用においてより好ましくは350〜420μm、である。さらに前記平均粒子径±10%以内の体積存在率が50%以上であることが必要であり、60%以上であることがより好ましい。本発明の粒度分布を有する硼素吸着用樹脂を製造するためには、懸濁重合時に適正なサイズの油滴を調製して重合を実施した後、得られる共重合体に官能基を導入することにより、樹脂の製造時に直接上記の粒度分布を有する硼素吸着用樹脂を得る方法、あるいは通常の懸濁重合ポリマーを基体として得られる広範囲の粒度分布を有する硼素吸着用樹脂を分篩して上記の粒度分布を有する硼素吸着用樹脂を得る方法等がある。
【0021】
硼素吸着用樹脂をカラムに充填した際の圧力損失は数々の因子に依存するが、中でも樹脂の粒径と空隙率は、樹脂に依存する重要な因子となることは知られている。一般的に、粒径が小さいものほど圧力損失は大きくなる。また、粒度分布が広いものでは大きな粒子間の隙に粒径の小さな粒子が入り込んでしまうことによって空隙率が小さくなるため圧力損失が大きくなる。本発明の硼素吸着用樹脂は通常使用される500μm以上程度の平均粒径を有し、且つ平均粒子径±10%以内の体積存在率が50%未満の粒度分布を有する市販の硼素吸着用樹脂と比較して小粒子化により上昇する圧力損失を、粒度分布の均一化により工業的な使用に適した範囲に抑制しているのみならず、本発明の粒度分布を有する硼素吸着用樹脂において、従来のイオン交換樹脂等の知見からは予想できない大幅な性能の改善があった。なお、後述するが、水中の硼素除去が必要とされる、諸処の用途については、一般に大量の被処理水から硼素を除去する必要があり、必然的に硼素吸着樹脂への大量の通液が必要となる。工業的な利用とは、実際に処理できる被処理水量を確保しつつ、処理水の水質を保てる範囲での利用をいう。
【0022】
本発明の架橋共重合体は、一般的なゲル型のものも使用できるが、樹脂内に物理的な細孔を有する多孔性の構造のものを用いることが好ましい。ポリマ−に物理的な細孔構造を付与する多孔性共重合体は、重合時に公知の方法により多孔性を付与することにより得られる。例えば重合するモノマー混合液中に非重合性の溶媒を混在させる方法、また重合するのモノマー混合液中に線状のポリマ−と非重合性の溶媒、もしくは線状のポリマ−のみを共存させ重合した後線状のポリマ−を除去する方法などが知られている。細孔構造を有する架橋共重合体を基体として、硼酸イオンと親和性を有する官能基を導入することにより、本発明の物理的細孔構造を有する硼素吸着用樹脂を得ることができる。本発明の硼素吸着用樹脂の硼素除去機構はキレート形成に依るものである。キレート形成反応は通常一般のイオン交換樹脂と比較して交換速度が遅いが、物理的細孔構造を有する硼素吸着用樹脂を用いることにより、反応速度を向上させることができる。
【0023】
官能基導入後の多孔性硼素吸着用樹脂の好ましい細孔容積の範囲は乾燥樹脂の水銀法細孔容積値で0.1ml/g以上であることが好ましく、より好ましくは0.5ml/g以上である。
上述した本発明の硼素吸着用樹脂は、硼酸含有水と接触させて、水中の硼酸イオンを該樹脂に吸着させることにより水中の硼酸イオンを低減させることができる。
【0024】
この硼酸イオン低減方法は、バッチ法、カラム法等何れの方法を用いてもよいが、本発明において好ましい方法はカラム法による硼素低減である。
硼素は単体では自然界に存在せず、硼酸または硼酸塩等の硼素化合物として存在する。環境中においては河川水や地下水、土壌中に含まれている。硼素化合物は、ガラス原料やほうろう、陶磁器の釉薬等に使用されるほか、硼酸として医薬品、メッキ浴剤、防腐剤、殺虫剤としての用途がある。
【0025】
本発明において処理の対象とする硼素含有溶液としては、主として電気メッキ、すずメッキ、はんだメッキ等の排水、ゴミ焼却に伴う排水、鉱山からの排水 石炭火力発電所における排煙脱硫排水、アルミコンデンサ−製造排水、化学医薬製造排水、天然ガスやヨード製造業におけるかん水由来排水、釉薬瓦、釉薬製造業の釉薬の洗浄排水等の産業排水や、海水、地表滲出水、海水淡水化におけるRO処理水、飲料水、半導体製造プロセスにおける超純水を対象にする。
【0026】
溶液中の硼素濃度はその溶液種によって相違するが、例えば電気メッキ工程におけるpH調製のための緩衝剤として使用されるとともに、すずメッキやはんだメッキ等ではメッキ等ではメッキ液自体に硼酸等が含まれている。廃水量は比較的少量であるが、廃水中の硼素濃度は10mg/Lを越えるものが多く、100mg/Lを越えるものもある。鉱山からの排水量は1000m3/日を越える規模であり、排水中の硼素濃度は平均10〜25mg/L、最大30〜150mg/L程度である。石炭火力発電所で使用される石炭には硼素が含まれており、排煙脱硫施設での湿式処理により排水に硼素が移行する。冷却水を除く排水量は500〜5000m3/日であり、硼素濃度は変動が大きく2〜330mg/L程度である。天然ガス、ヨード製造業では原料を含むかん水中に硼素が含まれる場合があり、その排水量は6000〜15000m3/日、排水中の硼素濃度は10〜44mg/L程度である。釉薬瓦、釉薬製造業では釉薬の洗浄排水に高濃度の硼素が含まれ、排水量は10〜20m3/日程度、硼素濃度は100mg/Lを越える場合が多く、200mg/Lに達する場合もある。海水には3〜6mg/L程度の硼素が含まれている。
【0027】
また、これらの溶液中には通常硼素以外の共存塩が含まれている。例えば硫酸ナトリウム、硫酸マグネシウム、塩化ナトリウム、塩化マグネシウム等のアルカリ金属、アルカリ土類金属の硫酸塩、塩化物、銅、クロム、ニッケル等の重金属塩が含まれている。共存塩の量は溶液の由来により大きく異なり多岐にわたるが、例えば排煙脱硫排水中ではF:100〜1300mg/L、SO4 2-:3000〜10000mg/L, Cl-:400〜5000mg/L, Ca:200〜1000mg/L, Mg 400〜1500mg/L, Al: 100〜800mg/L,という報告がある。海水中の塩類組成は、例えばNaCl:26.3g/Kg, CaSO4:1.38g/Kg, MgSO4:2.10g/Kg MgBr2:0.08g/Kg,MgCl2:3.28g/Kgという報告がある。本発明で処理した水中の硼素の最大許容値は、その用途によって異なり目的に応じて設定されるものであるが、例えば硼素の排水基準値は、陸水域について水質基準値の10倍の10mg/l、海域については現時点での対策技術を勘案した値として230mg/Lが設定される見込みであるが、特に海域の設定値に関しては今後対策技術の向上に伴い見直されていくものと考えられる。また、飲料水については水道水質基準において平成5年に水道水質の監視項目とされ指針値は0.2mg/L以下とされたが、その後平成11年に指針値は1mg/L以下とされた。水質環境基準においては平成5年に要監視項目とされ指針値は0.2mg/L以下でとされたが、その後平成11年2月に水質環境基準健康項目とされ、指針値は1mg/L以下とされた。
【0028】
本発明においては、接触処理前の硼酸含有水の硼素イオン濃度が1〜10ppmであるものは、接触処理後の水の硼酸イオン濃度が0.5ppm以下となるのが好ましく、また、接触処理前の硼酸含有水の硼素イオン濃度が10〜1000ppmでありものは、接触処理後の水の硼酸イオン濃度が5ppm以下となるのが好ましい。さらに、硼酸含有水を前述の硼素吸着用樹脂と接触処理させた後の水中の硼酸濃度が接触処理前の硼酸含有水中の1%以下となるように用いるのが好適である。
【0029】
本発明の硼素吸着用樹脂は、硼酸イオンと親和性をもつ官能基、特にキレート形成とイオン交換を組み合わせた形態で硼素を吸着する官能基を有する樹脂に関するものである即ち本発明の硼素吸着用樹脂は硼素に対して高い選択性を有し、低濃度からも良好な捕捉性を示し、且つ共存塩濃度に依らず効果的に硼素を除去することができる。つまり、高い硼素濃度及び高濃度の共存塩を含む産業排水、海水、飲料水用途等での微量の硼素低減、半導体製造プロセスにおける超純水、等、極広い組成を有する硼素含有水から水中の硼素低減が求められる用途全般に効果的に利用可能である。
【0030】
【実施例】
以下に実施例により本発明の具体的態様を更に詳細に説明するが、本発明の要旨はその要旨を越えない限り、以下の実施例によって限定されるものではない。実施例1
架橋ポリスチレンからなる基体に、硼酸イオンと親和性を有する官能基としてN−メチルグルカミンを結合された市販の球状硼酸吸着用樹脂であるダイヤイオンCRB02(三菱化学(株)製)を定法にて再生した後、水篩法により分級し、本発明の粒度分布を有する硼酸吸着用樹脂を得た。定法に従って、樹脂の水分を測定した。(ダイヤイオンI基礎編:三菱化学(株)発行 135〜147頁)、また顕微鏡観察写真により粒度分布の確認を実施した。さらに水銀法により細孔容積を測定した。
【0031】
比較例1
実施例1で用いたダイヤイオンCRB02(三菱化学社製)を、実施例1と同じく定法に従って、樹脂の水分を測定した。また顕微鏡観察写真により粒度分布の確認を実施した。
表−1に実施例1と比較例1の結果を示す。
【0032】
【表1】

Figure 0003758505
【0033】
実施例2
実施例1の樹脂60mLをメスシリンダーにて計量し、内径10mm、長さ1000mmのジャケット付き塩化ビニル製カラムに充填した。被処理水としては、脱塩水に試薬を溶解し、硼素:5.0ppm(=硼酸28.6ppm)、NaCl:3%,CaSO4:1000ppm, MgSO4:2000ppm, MgBr2:2000ppm、の組成水を調製した後、NaOH試薬によりpH8.5に調製した。ジャケットカラム温度を15℃に調製し、カラム上方から下方に向けて1.2L/hの流速で硼酸吸着用樹脂に被処理水を通液した。カラム出口において処理水を約1時間ごとにサンプリングし、処理水中の硼素濃度をICP-AESにより硼素の定量分析を実施した。硼素最大許容値を0.2ppm(検出下限値0.1ppm)とした場合の貫流交換容量と、最大許容値を0.5ppmとした場合の貫流交換容量を算出した。また、硼素吸着用樹脂への通液開始後硼素0.2ppmとなるまでの硼素漏洩濃度平均値を定常リークとした。
【0034】
比較例2
比較例1の樹脂60mLをメスシリンダーにて計量し、実施例2と同じ方法でカラム通液試験を実施した。
表−2に実施例2と比較例2の結果を示す。
【0035】
【表2】
Figure 0003758505
【0036】
実施例3
実施例1の樹脂50mLをメスシリンダーにて計量し、内径16mm、長さ700mmの塩化ビニル製カラムに充填した。被処理水としては、脱塩水に試薬を溶解し、硼素:100ppm(=硼酸0.57g/L)、NaCl:3.0g/L,MgSO4:4.8g/L, CaCl2:0.06g/L, NaF:0.6g/L, NH4Cl;0.02g/L、NaNO3:0.6g/L,NH4Cl;0.01g/Lの組成水を調製した後、NaOH試薬によりpH7.2に調製した。室温温度を25℃にて、カラム上方から下方に向けて250mL/hの流速で硼酸吸着用樹脂に被処理水を通液した。カラム出口において処理水を約1時間ごとにサンプリングし、処理水中の硼素濃度をICP-AESにより硼素の定量分析を実施した。硼素最大許容値を5ppmとなる通液量(BV:樹脂量に対する通水量)を算出した。また、硼素吸着用樹脂への通液開始後硼素5 ppmとなるまでの硼素漏洩濃度平均値を定常リークとした。
【0037】
比較例3
比較例1の樹脂50mLをメスシリンダーにて計量し実施例3と同じ方法でカラム通液試験を実施した。
表−3に実施例3と比較例3の結果を示す。
【0038】
【表3】
Figure 0003758505
【0039】
【発明の効果】
本発明の硼酸吸着用樹脂を硼酸含有水中の硼酸イオンの吸着に用いることにより、カラム法における処理能力、貫流交換容量、及び溶離性が既存品と比較して飛躍的に向上し、水中の硼酸イオンを工業的有利に低減させることができる。
【図面の簡単な説明】
【図1】実施例3と比較例3の硼素含有水通液の結果を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin for boric acid adsorption and a method for reducing boron ions in boric acid-containing water. Specifically, water containing high concentrations of boron, such as industrial wastewater and seawater, water containing trace amounts of boron for drinking water applications, or water containing trace amounts of boron in ultrapure water in semiconductor manufacturing processes The present invention relates to a boron-adsorbing resin that can be used in general applications that require reduction of boron in water and a borate ion reduction method using the same.
[0002]
[Prior art]
Boron alone does not exist in nature but exists as a boron compound such as borax. In the environment, it is contained in river water, groundwater, and soil. Moreover, boron in seawater has a relatively high concentration. Boron compounds are used for glass raw materials, enamels, ceramic glazes, etc., and as boric acid, they are used as pharmaceuticals, plating baths, preservatives, and insecticides.
[0003]
Human health problems caused by boron have been reported to include vomiting, abdominal pain, diarrhea, and nausea caused by ingestion of high concentrations. In addition, animal experiments have shown that fetal body weight gain is suppressed.
Boron drainage standards are expected to be 10 mg / l, 10 times the water quality standards for land waters, and 230 mg / l for seas. In particular, the value set for the sea area is a value that takes into account current countermeasure technology, and will be reviewed in the future as the countermeasure technology improves.
[0004]
Known methods for separating boron in water include distillation, precipitation, adsorption, membrane separation, solvent extraction, liquid membrane, ion exchange, and chelate resin methods. When a dilute solution is a target, an adsorption separation method using a functional resin such as an ion exchange resin or a chelate resin is advantageous. Ordinary anion exchange resins also adsorb borate ions, but other coexisting anions are also adsorbed, so that they are often limited to use in systems with few coexisting anions.
[0005]
It is well known that electron pairs of oxygen atoms of polyhydric alcohols coordinate to boron atoms to form strongly acidic complexes. A method of adding a polyhydric alcohol such as mannitol or sorbitol to sharpen the pH change during neutralization titration of boric acid, which is a weak acid, is employed.
As a selective scavenger of boric acid having a plurality of hydroxyl groups and anionic exchange groups utilizing this property, there is a glucamine type resin. Glucamine-type resin is a resin with pentavalent polyvalent alkanolamine as a functional group. Polyhydric alcohol coordinates with boric acid to form a complex, which is ion-exchanged and captured at the amino group of the resin. It is. It is known to be clever in terms of molecular design combining chelate formation and ion exchange. The captured boric acid is eluted with acid. This resin selectively captures only boric acid without being disturbed by a large amount of coexisting salts.
[0006]
Resins for adsorbing boric acid having a hydroxyl group and an anion exchange group typified by a glucamine type resin are currently used industrially. Usually, the boric acid adsorption resin is used in a form (hereinafter abbreviated as a column method) in which a boric acid adsorption resin tower is packed and raw water (treated water) is passed.
[0007]
[Problems to be solved by the invention]
However, in the above conventional usage mode, the exchange capacity (hereinafter referred to as the once-through exchange capacity) until the leakage of boron exceeds the maximum permissible value after the start of passing through the resin for adsorbing boron is very large relative to the total exchange capacity of the resin. There is a problem that it is low. In addition, the conventional usage form has a problem that a large amount of acid is required for elution of boron. That is, since the flow-through exchange capacity is low in industrial use, the frequency of elution and regeneration is high and a large amount of chemicals is required, which is not economical, and a large amount of waste liquid is generated. In addition, there is a problem that the burden of processing is large for the eluent and the concentrated boron contained in the waste liquid during regeneration (Japanese Patent Laid-Open No. 10-249330).
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found an optimum particle size and particle size distribution for industrial use of a resin for adsorbing boric acid, and in the column method by improving the reaction rate based on this. The present invention has been completed by finding that the processing capacity, the flow-through exchange capacity, and the elution property can be dramatically improved as compared with the existing products.
[0009]
That is, the present invention is a spherical particle in which a functional group having affinity for borate ions is bonded to a substrate composed of crosslinked polystyrene or crosslinked polymethacrylate, and the volume average particle diameter of the particle is 100 to 450 μm. Further, the present invention resides in a boric acid adsorbing resin characterized in that the volume abundance ratio within the above average particle size ± 10% is 50% or more, and a boric acid ion reducing method in boric acid-containing water using the same.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
The boron adsorption resin of the present invention is a spherical particle formed by bonding a functional group having an affinity for borate ions to a substrate made of crosslinked polystyrene or crosslinked polymethacrylate.
[0011]
Cross-linked polystyrene refers to monovinyl aromatic compounds such as styrene, vinyltoluene, vinylxylene, vinylnaphthalene and polyvinylaromatic compounds such as divinylbenzene, divinyltoluene, divinylxylene, divinylnaphthalene, trivinylbenzene, bisvinyldiphenyl, and bisvinylphenylethane. The main component is a cross-linked copolymer with a group compound, and a methacrylic acid ester such as glycerol methacrylate or ethylene glycol dimethacrylate may be copolymerized with these copolymers. The cross-linked polymethacrylic acid ester is mainly composed of a cross-linked copolymer of a methacrylic acid ester or the like and the aforementioned polyvinyl aromatic compound. When ethylene glycol dimethacrylate is used as a copolymerization component, it is usually preferably 25 to 50% by weight based on the whole monomer during polymerization.
[0012]
Examples of functional groups having affinity for borate ions include N-methylglucamine, methylglucamine, 2-amino-2-hydroxymethyl-1,3-propanediol, D-glucosamine, D-galactosamine, and vinyl acetate and N - a copolymer saponified product from by introducing at least one by functional groups derived selected with vinyl formamide, among these, N- methylglucamine, functional groups obtained by introducing methylglucamine preferred .
[0013]
As a method for introducing these functional groups into the substrate composed of the above-mentioned crosslinked copolymer, a method of introducing a haloalkyl group into the crosslinked copolymer by a known method and then reacting the haloalkyl group with the functional group, Alternatively, as a monovinyl aromatic compound, a haloalkyl styrene such as chloromethyl styrene, chloroethyl styrene, bromomethyl styrene, bromobutyl styrene or the like is used, and a crosslinked copolymer obtained by copolymerizing this with a polyvinyl aromatic compound is used. And a method of bonding a functional group. Of these, a styrene-divinylbenzene copolymer having a chloromethyl group introduced by any one of the above methods is preferred.
[0014]
The polymerization of the monovinyl aromatic compound and the polyvinyl aromatic compound is performed by a known method by suspension polymerization. When the content of the polyvinyl aromatic monomer is too low, the obtained boron adsorption resin becomes a highly swellable polymer, so that the exchange capacity per volume tends to decrease. On the other hand, when the content is too high, the content of the component having boron selectivity is low, so that the exchange capacity per weight tends to decrease. Therefore, the content of the unsaturated hydrocarbon-containing crosslinkable monomer in producing the boron adsorption resin of the present invention is usually 0.1 to 70% by weight, more preferably 4 to 55, based on the whole monomer. % By weight.
[0015]
The copolymerization of these monomers can be carried out by a known method using a peroxide or an azo polymerization initiator. Examples of the polymerization initiator include peroxide-based polymerization initiators such as benzoyl peroxide (BPO), lauroyl peroxide, and t-butyl hydroxide oxide, aisoisobutyronitrile (AIBN), 2,2′-azobis ( An azo polymerization initiator such as 2,4-dimethylmethylonitrile is used. The amount used is usually 0.05 to 3% by weight based on the total monomers. The polymerization temperature varies depending on the half-life temperature of the polymerization initiator, the amount used, the polymerizability of the monomer, and the like, but is usually 40 to 150 ° C, preferably 50 to 100 ° C. The polymerization time is usually 0.5 to 30 hours, preferably 1 to 15 hours.
[0016]
The polymerization method is not particularly limited, and various known methods can be employed as they are or in combination. The spherical adsorption resin anion exchanger is produced by water / oil type or oil / water type suspension polymerization. In particular, the polymerization method is preferably carried out by a suspension polymerization method using the monomer components described above in the presence of a polymerization initiator and a bath ratio in the range of 1: 2 to 1: 6.
[0017]
Introduction of a haloalkyl group into a crosslinked copolymer represented by styrene-divinylbenzene is carried out by a known method. For example, chloromethyl methyl ether may be added to a styrene divinylbenzene copolymer and reacted in the presence of a Lewis acid catalyst such as zinc chloride or iron chloride. The chloromethyl methyl ether is sufficient if it can swell the styrene / divinylbenzene copolymer and keep the slurry, and a non-aromatic solvent inert to the reaction may be added. The reaction conditions depend on the amount of the reactants, but the reaction may usually be performed at room temperature to 60 ° C. for 30 minutes to 20 hours.
[0018]
The step of introducing the resin functional group for adsorbing boron according to the present invention includes the cross-linking copolymer (cross-linked copolymer having a haloalkyl group introduced) in the previous stage of the functional group introduction and a functional group having affinity for borate ions. Base hydroxyamino compounds, ie N-methylglucamine, 2-amino-2-hydroxymethyl-1,3-propanediol, D-glucosamine, D-galactosamine, vinyl acetate and N, as exemplified above It can be made to react easily by making it contact with at least 1 sort (s) chosen from the saponification thing of a vinylformamide copolymer. These compounds can be used in free form or in the form of a salt such as hydrochloride. As a normal production method, a method is used in which the copolymer and the hydroxyamino compound at the previous stage of introduction of the functional group are heated in the presence of a solvent. As the solvent, methanol, ethanol, propanol, butanol, 1,4-dioxane, toluene, methylene chloride, dichloroethane, trichloroethane, trichloroethylene, chloroform, ethylene glycol, water and the like can be used, and a mixed solvent thereof can also be used. Although reaction temperature in particular is not restrict | limited, 0-150 degreeC is used normally, Preferably 30-100 degreeC is used. The amount of the compound to be a functional group having an affinity for borate ions varies depending on the reactivity, but usually 0.5 to 2 equivalents or more with respect to the haloalkyl group. Moreover, when it is desired to control the amounts of the two types of functional groups, the amount ratio may be appropriately changed within the range. After introduction of the functional group, the particulate resin is filtered off and washed with water or the above solvent to obtain the boron adsorption resin of the present invention.
[0019]
In the functional group derived from these hydroxyamino compounds, the electron pair of the oxygen atom of the OH group is coordinated to the boron atom, and boron is trapped according to the chelation reaction that forms a strongly acidic complex. It is known that the reaction rate is very slow compared to ordinary ion exchange. In particular, in the removal of boron, which is the subject of this patent, the influence of the dynamic reaction rate is considered to be extremely large.
[0020]
The boron adsorption resin of the present invention has a volume average particle diameter of 100 to 450 μm. In industrial use, it is more preferably 350 to 420 μm. Furthermore, it is necessary that the volume existence ratio within the average particle size ± 10% is 50% or more, and more preferably 60% or more. In order to produce a boron adsorbing resin having a particle size distribution according to the present invention, an oil droplet of an appropriate size is prepared during suspension polymerization, polymerization is performed, and then a functional group is introduced into the resulting copolymer. The method for obtaining a boron adsorbing resin having the above particle size distribution directly during the production of the resin, or by separating the boron adsorbing resin having a wide particle size distribution obtained from an ordinary suspension polymerized polymer as a base There is a method for obtaining a boron adsorption resin having a particle size distribution.
[0021]
The pressure loss when the column is filled with boron adsorbing resin depends on a number of factors, and it is known that the particle size and porosity of the resin are important factors depending on the resin. In general, the smaller the particle size, the greater the pressure loss. In addition, when the particle size distribution is wide, the pressure loss increases because the porosity decreases because particles having a small particle size enter the gaps between large particles. The boron adsorption resin of the present invention is a commercially available boron adsorption resin having an average particle size of about 500 μm or more and a particle size distribution with an average particle size within ± 10% and a volume fraction of less than 50%. In addition to the pressure loss that rises due to the smaller particle size compared to the range suitable for industrial use by homogenizing the particle size distribution, in the boron adsorption resin having the particle size distribution of the present invention, There were significant performance improvements that could not be expected from the knowledge of conventional ion exchange resins and the like. As will be described later, for various applications that require removal of boron in water, it is generally necessary to remove boron from a large amount of water to be treated. Necessary. Industrial use refers to use in a range where the quality of treated water can be maintained while securing the amount of treated water that can actually be treated.
[0022]
The crosslinked copolymer of the present invention may be a general gel type, but it is preferable to use a porous structure having physical pores in the resin. A porous copolymer that imparts a physical pore structure to a polymer can be obtained by imparting porosity by a known method during polymerization. For example, a method in which a non-polymerizable solvent is mixed in a monomer mixture to be polymerized, and a polymerization is performed by coexisting only a linear polymer and a non-polymerizable solvent or a linear polymer in the monomer mixture to be polymerized. For example, a method of removing a linear polymer is known. By introducing a functional group having an affinity for borate ions using a crosslinked copolymer having a pore structure as a substrate, the boron adsorption resin having a physical pore structure of the present invention can be obtained. The boron removing mechanism of the resin for adsorbing boron according to the present invention depends on chelate formation. The chelate-forming reaction usually has a slower exchange rate than a general ion exchange resin, but the reaction rate can be improved by using a boron adsorption resin having a physical pore structure.
[0023]
The preferred pore volume range of the porous boron adsorption resin after the introduction of the functional group is preferably 0.1 ml / g or more, more preferably 0.5 ml / g or more in terms of the pore volume value of the mercury method of the dry resin. It is.
The boron adsorption resin of the present invention described above can reduce borate ions in water by contacting with boric acid-containing water and adsorbing borate ions in water to the resin.
[0024]
As the borate ion reduction method, any method such as a batch method and a column method may be used. However, a preferable method in the present invention is boron reduction by the column method.
Boron alone does not exist in nature, but exists as a boron compound such as boric acid or borate. In the environment, it is contained in river water, groundwater, and soil. Boron compounds are used for glass raw materials, enamels, ceramic glazes, etc., and as boric acid, they are used as pharmaceuticals, plating baths, preservatives, and insecticides.
[0025]
The boron-containing solution to be treated in the present invention mainly includes wastewater such as electroplating, tin plating, solder plating, wastewater from incineration of waste, wastewater from mines, flue gas desulfurization wastewater in coal-fired power plants, aluminum capacitors Industrial wastewater such as manufacturing wastewater, chemical pharmaceutical wastewater, brine drainage from natural gas and iodine manufacturing industry, glaze roof tile, glaze washing wastewater from glaze manufacturing industry, seawater, surface exudate water, RO treated water in seawater desalination, Targeting drinking water and ultrapure water in semiconductor manufacturing processes.
[0026]
The boron concentration in the solution varies depending on the type of solution, but it is used as a buffer for adjusting the pH in the electroplating process, for example, and tin plating, solder plating, etc. include boric acid in the plating solution itself. It is. Although the amount of wastewater is relatively small, the boron concentration in wastewater is often over 10 mg / L, and there are also over 100 mg / L. The amount of wastewater from the mine is over 1000 m 3 / day, and the boron concentration in the wastewater is about 10 to 25 mg / L on average and about 30 to 150 mg / L at maximum. Coal used in coal-fired power plants contains boron, and boron is transferred to wastewater by wet treatment at the flue gas desulfurization facility. The drainage amount excluding the cooling water is 500 to 5000 m 3 / day, and the boron concentration varies greatly and is about 2 to 330 mg / L. In natural gas and iodine manufacturing industries, boron may be contained in brine containing raw materials, the amount of drainage is 6000 to 15000 m 3 / day, and the boron concentration in the wastewater is about 10 to 44 mg / L. In the glaze tile and glaze manufacturing industry, high concentration of boron is contained in the washing wastewater of glaze, the amount of drainage is about 10-20m 3 / day, the boron concentration often exceeds 100mg / L, and may reach 200mg / L . Seawater contains about 3 to 6 mg / L of boron.
[0027]
These solutions usually contain a coexisting salt other than boron. For example, alkali metal such as sodium sulfate, magnesium sulfate, sodium chloride and magnesium chloride, sulfate of alkaline earth metal, heavy metal salts such as chloride, copper, chromium and nickel are included. The amount of the coexisting salt varies greatly depending on the origin of the solution and varies widely. For example, in flue gas desulfurization wastewater, F: 100 to 1300 mg / L, SO 4 2− : 3000 to 10000 mg / L, Cl : 400 to 5000 mg / L, There are reports of Ca: 200 to 1000 mg / L, Mg 400 to 1500 mg / L, Al: 100 to 800 mg / L. The salt composition in seawater is, for example, NaCl: 26.3 g / Kg, CaSO 4 : 1.38 g / Kg, MgSO 4 : 2.10 g / Kg MgBr 2 : 0.08 g / Kg, MgCl 2 : 3.28 g / Kg There is a report. The maximum permissible value of boron in the water treated in the present invention varies depending on its use and is set according to the purpose. For example, the drainage standard value of boron is 10 mg / 10 times the water quality standard value for terrestrial waters. 1) For sea areas, 230 mg / L is expected to be set in consideration of the current countermeasure technology, but the sea area set value is expected to be revised as the countermeasure technology is improved in the future. In addition, for drinking water, the water quality standard was set as a monitoring item for tap water quality in 1993, and the guideline value was set at 0.2 mg / L or less, but in 1999, the guideline value was set at 1 mg / L or less. . In 1993, the water quality environmental standards were set as items requiring monitoring in 1993, and the guideline value was set at 0.2 mg / L or less. However, in February 1999, the water quality environmental standards were set as health items, and the guideline value was 1 mg / L. It was as follows.
[0028]
In the present invention, when the boron ion concentration of boric acid-containing water before contact treatment is 1 to 10 ppm, the borate ion concentration of water after contact treatment is preferably 0.5 ppm or less. When the boron ion concentration of boric acid-containing water is 10 to 1000 ppm, the boric acid ion concentration of water after the contact treatment is preferably 5 ppm or less. Further, it is preferable to use the boric acid-containing water so that the boric acid concentration in the water after the contact treatment with the above-described boron adsorption resin is 1% or less of the boric acid-containing water before the contact treatment.
[0029]
The resin for adsorbing boron according to the present invention relates to a resin having a functional group having an affinity for borate ions, particularly a functional group that adsorbs boron in a form combining chelate formation and ion exchange . That is, the boron adsorption resin of the present invention has high selectivity for boron, exhibits good scavenging properties even from a low concentration, and can effectively remove boron regardless of the coexisting salt concentration. In other words, boron-containing water having an extremely wide composition, such as industrial wastewater containing high boron concentration and high-concentration coexisting salt, seawater, trace amount boron reduction in drinking water use, ultrapure water in semiconductor manufacturing process, etc. boron reduction is effectively available Applications General for that sought.
[0030]
【Example】
EXAMPLES Specific embodiments of the present invention will be described in more detail below with reference to examples, but the gist of the present invention is not limited by the following examples unless it exceeds the gist. Example 1
Diaion CRB02 (manufactured by Mitsubishi Chemical Corporation), which is a commercially available resin for adsorbing spherical boric acid in which N-methylglucamine is bonded as a functional group having affinity for borate ions to a substrate made of cross-linked polystyrene, is used in a conventional manner. After regeneration, classification was carried out by a water sieving method to obtain a boric acid adsorption resin having a particle size distribution of the present invention. The water content of the resin was measured according to a conventional method. (Diaion I Basics: Mitsubishi Chemical Co., Ltd., pages 135 to 147), and the particle size distribution was confirmed by microscopic observation photographs. Furthermore, the pore volume was measured by the mercury method.
[0031]
Comparative Example 1
The water content of the resin was measured in the same manner as in Example 1 using Diaion CRB02 (manufactured by Mitsubishi Chemical Corporation) used in Example 1. Moreover, the particle size distribution was confirmed by a microscopic observation photograph.
Table 1 shows the results of Example 1 and Comparative Example 1.
[0032]
[Table 1]
Figure 0003758505
[0033]
Example 2
60 mL of the resin of Example 1 was weighed with a graduated cylinder and packed into a jacketed vinyl chloride column having an inner diameter of 10 mm and a length of 1000 mm. As water to be treated, a reagent is dissolved in demineralized water, and boron: 5.0 ppm (= 28.6 ppm boric acid), NaCl: 3%, CaSO 4 : 1000 ppm, MgSO 4 : 2000 ppm, MgBr 2 : 2000 ppm. Was adjusted to pH 8.5 with NaOH reagent. The jacket column temperature was adjusted to 15 ° C., and water to be treated was passed through the boric acid adsorption resin at a flow rate of 1.2 L / h from the top to the bottom of the column. The treated water was sampled about every hour at the column outlet, and the boron concentration in the treated water was quantitatively analyzed by ICP-AES. The through-flow exchange capacity when the maximum boron allowable value was 0.2 ppm (detection lower limit value 0.1 ppm) and the through-flow exchange capacity when the maximum allowable value was 0.5 ppm were calculated. Further, the average value of the boron leakage concentration until the boron concentration reached 0.2 ppm after the start of passing through the resin for adsorbing boron was defined as a steady leak.
[0034]
Comparative Example 2
60 mL of the resin of Comparative Example 1 was weighed with a graduated cylinder, and a column flow test was performed in the same manner as in Example 2.
Table 2 shows the results of Example 2 and Comparative Example 2.
[0035]
[Table 2]
Figure 0003758505
[0036]
Example 3
50 mL of the resin of Example 1 was weighed with a graduated cylinder and packed into a vinyl chloride column having an inner diameter of 16 mm and a length of 700 mm. As water to be treated, a reagent is dissolved in demineralized water, boron: 100 ppm (= boric acid 0.57 g / L), NaCl: 3.0 g / L, MgSO 4 : 4.8 g / L, CaCl 2 : 0.06 g / L, NaF: 0.6 g / L, NH 4 Cl; 0.02 g / L, NaNO 3 : 0.6 g / L, NH 4 Cl; 0.01 g / L The pH was adjusted to 7.2. At room temperature of 25 ° C., water to be treated was passed through the boric acid adsorption resin at a flow rate of 250 mL / h from the top to the bottom of the column. The treated water was sampled about every hour at the column outlet, and the boron concentration in the treated water was quantitatively analyzed by ICP-AES. The liquid flow rate (BV: water flow rate with respect to the resin volume) was calculated so that the maximum allowable boron value was 5 ppm. In addition, the average value of boron leakage concentration until the boron concentration reached 5 ppm after the start of liquid passing through the resin for adsorbing boron was defined as a steady leak.
[0037]
Comparative Example 3
50 mL of the resin of Comparative Example 1 was weighed with a graduated cylinder, and a column flow test was performed in the same manner as in Example 3.
Table 3 shows the results of Example 3 and Comparative Example 3.
[0038]
[Table 3]
Figure 0003758505
[0039]
【The invention's effect】
By using the boric acid adsorption resin of the present invention for the adsorption of borate ions in boric acid-containing water, the throughput, the flow-through exchange capacity, and the elution performance in the column method are dramatically improved compared to existing products, and boric acid in water Ions can be reduced industrially advantageously.
[Brief description of the drawings]
1 is a graph showing the results of boron-containing water passage of Example 3 and Comparative Example 3. FIG.

Claims (8)

架橋ポリスチレン又は架橋ポリメタクリル酸エステルからなる基体に硼酸イオンと親和性を有する官能基が結合されてなる球状粒子であって、該粒子の体積平均粒子径が100〜450μmであり、且つ前記平均粒子径±10%以内の体積存在率が50%以上であることを特徴とする硼酸吸着用樹脂。Spherical particles in which a functional group having an affinity for borate ions is bonded to a substrate made of crosslinked polystyrene or crosslinked polymethacrylic acid ester, the volume average particle diameter of which is 100 to 450 μm, and the average particles A boric acid adsorbing resin characterized by having a volume abundance ratio within a diameter of ± 10% of 50% or more. 硼酸イオンと親和性を有する官能基が、N−メチルグルカミン、メチルグルカミン、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール、Dグルコサミン、D−ガラクトサミン、及び酢酸ビニルとN−ビニルホルムアミドとの共重合体鹸化物から選ばれる少なくとも1種を導入させて得られる官能基である請求項1に記載の硼酸吸着用樹脂。Functional groups having affinity for borate ions are N-methylglucamine, methylglucamine, 2-amino-2-hydroxymethyl-1,3-propanediol, D-glucosamine, D-galactosamine, and vinyl acetate and N- The resin for boric acid adsorption according to claim 1, which is a functional group obtained by introducing at least one selected from a copolymer saponified product with vinylformamide. 球状粒子が多孔性を有するものである請求項1又は2に記載の硼酸吸着用樹脂。The boric acid adsorption resin according to claim 1 or 2, wherein the spherical particles are porous. 球状粒子の細孔容積が0.1mL/g−乾燥樹脂以上である請求項3に記載の硼酸吸着用樹脂。The resin for boric acid adsorption according to claim 3, wherein the pore volume of the spherical particles is 0.1 mL / g-dry resin or more. 請求項1〜4のいずれかに記載の硼酸吸着用樹脂に硼酸含有水を接触させ、該硼酸含有水中の硼酸イオンを吸着させることを特徴とする硼酸含有水中の硼酸イオン低減方法。A method for reducing borate ions in boric acid-containing water, wherein boric acid-containing water is brought into contact with the boric acid-adsorbing resin according to claim 1 to adsorb boric acid ions in the boric acid-containing water. 接触処理前の硼酸含有水の硼素イオン濃度が1〜10ppmであり、接触処理後の水の硼酸イオン濃度が0.5ppm以下である請求項5に記載の硼酸含有水中の硼酸イオン低減方法。The method for reducing borate ions in boric acid-containing water according to claim 5, wherein the boron ion concentration of the boric acid-containing water before the contact treatment is 1 to 10 ppm, and the borate ion concentration of the water after the contact treatment is 0.5 ppm or less. 接触処理前の硼酸含有水の硼素イオン濃度が10〜1000ppmであり、接触処理後の水の硼酸イオン濃度が5ppm以下である請求項5に記載の硼酸含有水中の硼酸イオン低減方法。 Contact boron ion concentration of boric acid containing water pretreatment is 10-1000 ppm, borate ions reduce how borate-containing water according to claim 5 borate ion concentration of water after contact treatment is 5ppm or less. 接触処理後の水中の硼酸濃度が接触処理前の硼酸含有水中の1%以下である請求項5に記載の硼酸含有水中の硼酸イオン低減方法。The method for reducing boric acid ions in boric acid-containing water according to claim 5, wherein the boric acid concentration in the water after the contact treatment is 1% or less of the boric acid-containing water before the contact treatment.
JP2001025744A 2001-02-01 2001-02-01 Boric acid adsorption resin and method for reducing boric acid ions in boric acid-containing water using the same Expired - Lifetime JP3758505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001025744A JP3758505B2 (en) 2001-02-01 2001-02-01 Boric acid adsorption resin and method for reducing boric acid ions in boric acid-containing water using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001025744A JP3758505B2 (en) 2001-02-01 2001-02-01 Boric acid adsorption resin and method for reducing boric acid ions in boric acid-containing water using the same

Publications (2)

Publication Number Publication Date
JP2002226517A JP2002226517A (en) 2002-08-14
JP3758505B2 true JP3758505B2 (en) 2006-03-22

Family

ID=18890678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001025744A Expired - Lifetime JP3758505B2 (en) 2001-02-01 2001-02-01 Boric acid adsorption resin and method for reducing boric acid ions in boric acid-containing water using the same

Country Status (1)

Country Link
JP (1) JP3758505B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846339B2 (en) 2005-06-30 2010-12-07 Kowa Company, Ltd. Method for removing boron
WO2008093628A1 (en) * 2007-01-30 2008-08-07 Kowa Company, Ltd. Boron-removing agent utilizing xerogel, and boron removal method
DE102007040764A1 (en) 2007-08-29 2009-03-05 Lanxess Deutschland Gmbh Monodisperse boron-selective resins

Also Published As

Publication number Publication date
JP2002226517A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
Kawamura et al. Adsorption of metal ions on polyaminated highly porous chitosan chelating resin
Zhang et al. Sorption enhancement of lead ions from water by surface charged polystyrene-supported nano-zirconium oxide composites
JP3852926B2 (en) Organic porous body having selective boron adsorption capacity, boron removal module and ultrapure water production apparatus using the same
Uğuzdoğan et al. The use of polyethyleneglycolmethacrylate-co-vinylimidazole (PEGMA-co-VI) microspheres for the removal of nickel (II) and chromium (VI) ions
US4083782A (en) Water conditioning process
CN107922216B (en) Method for regenerating acrylic resin
JP4948404B2 (en) Boron remover and boron removal method
Graillot et al. Removal of metal ions from aqueous effluents involving new thermosensitive polymeric sorbent
CN103285829A (en) Method for removing trace phosphorus in wastewater through applying zirconium-based phosphate hybridization functional adsorbing agent
JP3758505B2 (en) Boric acid adsorption resin and method for reducing boric acid ions in boric acid-containing water using the same
AU2017405734B2 (en) Matrices containing lithium aluminates
Ali et al. Study on the synthesis of a macroporous ethylacrylate‐divinylbenzene copolymer, its conversion into a bi‐functional cation exchange resin and applications for extraction of toxic heavy metals from wastewater
JP2008049241A (en) Phosphorus adsorbent desorption and recycle method in treatment for wastewater
Zhu et al. Effects of co-ion initial concentration ratio on removal of Pb 2+ from aqueous solution by modified sugarcane bagasse
US20120107215A1 (en) Method of removing and recovering silica using modified ion exchange materials
WO2010095222A1 (en) Zirconium-loaded particulate adsorbent and method for producing the same
CN107922217B (en) Method for purifying water
Anirudhan et al. A highly efficient carboxyl-terminated hybrid adsorbent composite matrix for the adsorption of uranium (VI) and thorium (IV) from aqueous solutions and nuclear industry effluents
JPH0521123B2 (en)
JP2022055387A (en) Adsorption separation method of metalloid ion
CN106279548A (en) A kind of for polyvinyl alcohol hydrogel processing heavy metal ion-containing waste water and preparation method thereof
JP7442844B2 (en) How to use adsorbent and adsorbent set
JP4511500B2 (en) Hydrogen ion type strongly acidic cation exchange resin
JP2008200651A (en) Method for recovering harmful ion
Alcazar et al. Sulfonation of microcapsules containing selective extractant agents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3758505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term