JP3758466B2 - Method for producing exhaust gas purifying catalyst - Google Patents

Method for producing exhaust gas purifying catalyst Download PDF

Info

Publication number
JP3758466B2
JP3758466B2 JP2000147504A JP2000147504A JP3758466B2 JP 3758466 B2 JP3758466 B2 JP 3758466B2 JP 2000147504 A JP2000147504 A JP 2000147504A JP 2000147504 A JP2000147504 A JP 2000147504A JP 3758466 B2 JP3758466 B2 JP 3758466B2
Authority
JP
Japan
Prior art keywords
catalyst
storage agent
tartaric acid
tartrate
catalyst component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000147504A
Other languages
Japanese (ja)
Other versions
JP2001321680A (en
Inventor
雄作 稲冨
義次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000147504A priority Critical patent/JP3758466B2/en
Publication of JP2001321680A publication Critical patent/JP2001321680A/en
Application granted granted Critical
Publication of JP3758466B2 publication Critical patent/JP3758466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車などの内燃機関から排出される排気ガスを浄化するための排気ガス浄化触媒の製造方法に関し、より詳しくは、ウォッシュコートによるNOX 吸蔵還元型触媒の製造方法に関する。
【0002】
【従来の技術】
自動車の排気ガス規制及び燃費規制の対応策として、従来の三元触媒にNOX を吸蔵する機能を付加させたNOX 吸蔵還元型触媒が有効であることが実証されている。
【0003】
このNOX 吸蔵還元型触媒は、リーンの酸化性雰囲気下でNOX を吸蔵し、それを一時的なストイキ〜リッチの還元性雰囲気下で放出し、その還元性雰囲気と触媒成分の作用によりNOX を還元浄化する。
NOX 吸蔵剤には、アルカリ金属もしくはアルカリ土類金属、又はこれら金属の双方が使用される。触媒成分としては、白金、金、ルテニウム、ロジウム、パラジウム等の貴金属が使用される。
ここで、NOX 吸蔵剤と触媒成分がミクロで混在すると、NOX 吸蔵剤が、触媒成分の酸化還元能力を低下させ、触媒成分のシンタリングを促進し、それにより、触媒の浄化性能を低下させることが見出されている。
【0004】
このため、本出願人は、改良されたNOX 吸蔵還元型触媒として、特開平10−258232号において、NOX 吸蔵剤を含むコア部と、このコア部の表面上に形成された触媒担持層からなるミクロ構造を有する触媒を提案している。
かかるNOX 吸蔵剤と触媒成分がミクロ的に分離した構造を有する排気ガス浄化用触媒は、NOX 吸蔵剤が触媒成分の近隣に存在するため、NOX 吸蔵剤から放出されたNOX が触媒成分によって効果的に還元される一方で、NOX 吸蔵剤の作用による上記のような触媒性能の低下が抑制できる。
【0005】
従来、このようなミクロ構造を有するNOX 吸蔵還元型触媒の製造は、例えば、特開平7−171399号に記載のように、炭酸塩のNOX 吸蔵剤が担持された担体の上に、触媒成分とバインダーを含む、水を媒体にした水系スラリーをウォッシュコートし、次いで乾燥・焼成することによって行われていた。
【0006】
【発明が解決しようとする課題】
しかしながら、このウォッシュコートする際に、炭酸塩の状態ではNOX 吸蔵剤の一部が媒体の水の中に溶出するため、NOX 吸蔵剤が原子レベルで触媒成分に付着し、NOX 吸蔵剤が触媒の浄化性能を低下させることが判明した。
従って、本発明は、かかるウォッシュコート時のNOX 吸蔵剤の溶出を防ぎ、NOX 吸蔵剤と触媒成分が近隣に存在しながらも、双方がミクロ的に分離したNOX 吸蔵還元型触媒の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、アルカリ金属とアルカリ土類金属の少なくとも1種をNOX 吸蔵剤として含有する排気ガス浄化用触媒の製造方法であって、前記NOX 吸蔵剤を酒石酸に接触させて酒石酸塩とした後、前記酒石酸塩をモノリス基材に水を媒体としてウォッシュコートすることを特徴とする排気ガス浄化用触媒の製造方法が提供される。
【0008】
本発明では、水に可溶性のNOX 吸蔵剤を酒石酸に接触させて酒石酸塩とした後、この酒石酸塩をモノリス基材にウォッシュコートする。
アルカリ金属又はアルカリ土類金属の水溶性の炭酸塩や酢酸塩は、酒石酸と接触すると、常温で容易に酒石酸塩に変化し、この酒石酸塩は、水に難溶性であるため、ウォッシュコート時にNOX 吸蔵剤の水媒体への溶出が生じない。したがって、NOX 吸蔵剤が溶出して触媒成分に付着することが防止できる。
【0009】
また、酒石酸塩を約180℃以上に加熱すればその有機基が飛散し、NOX 吸蔵能力を発揮することができる酸化物、水酸化物等の状態になる。排気ガス浄化用触媒の製造工程は、一般に500℃以上の焼成工程を含むため、酒石酸塩の有機基を飛散させる工程は、特に設ける必要はない。
【0010】
【発明の実施の形態】
本発明では、NOX 吸蔵剤としてアルカリ金属とアルカリ土類金属の少なくとも1種を使用する。かかるNOX 吸蔵剤には、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが例示される。
これらのNOX 吸蔵剤は、酢酸塩、炭酸塩、硝酸塩等の形態では水溶性であり、これらの水溶液を用いれば、担体に含浸させる操作が容易であり、担体に均一に担持することができる。
【0011】
本発明では、これらの水溶性のNOX 吸蔵剤を酒石酸に接触させて水難溶性の酒石酸塩とした後、その酒石酸塩を、コージェライト製のハニカム形担体基材のようなモノリス基材にウォッシュコートする。この酒石酸にNOX 吸蔵剤を接触させるのは、例えば、担体に担持されたNOX 吸蔵剤の酢酸塩等を単に酒石酸水溶液に接触させることにより行うことができる。
【0012】
本発明の方法によって製造される排気ガス浄化用触媒には、白金、金、ルテニウム、ロジウム、パラジウム等の触媒成分が含まれ、これらの触媒成分とNOX 吸蔵剤は、いくつかの態様でモノリス基材に担持されることができる。
【0013】
以下、これらの態様について、添付の図面を参照しながら説明する。
図1〜5は、本発明の方法を用いて実施可能な各種の態様を例示したものである。
図1は、NOX 吸蔵剤1が触媒成分2の外層に囲まれた態様を示す。
この態様は、内側にNOX 吸蔵剤の酒石酸塩が形成され、その外側に触媒成分層が存在する粒子からなる粉末を、水を媒体にした水系スラリーにし、必要によりバインダーを加え、モノリス基材にそれをウォッシュコートする。そして、乾燥・焼成することで、触媒成分とNOX 吸蔵剤がモノリス基材に固定されると同時に、NOX 吸蔵剤の酒石酸塩の有機基が飛散し、NOX 吸蔵還元型触媒が得られる。
【0014】
内側のNOX 吸蔵剤は、NOX 吸蔵剤のみで存在することができるが、好ましくは、担体に担持する。NOX 吸蔵剤と外側の触媒成分の直接接触がより効果的に防止できるためである。適切な担体としては、アルミナ、チタニア、ジルコニア、シリカ等の微粉末が挙げられ、例えば、NOX 吸蔵剤の酢酸塩、炭酸塩、硝酸塩等の水溶液を上記の微粉末に含浸させて担持する。
ここで、極めて均一かつ微細にNOX 吸蔵剤を担持させる方法の例として、NOX 吸蔵剤の酢酸塩、炭酸塩、硝酸塩等の水溶液をアルミナゾルと混合し、アルミナゾルを加水分解によってゲル化させ、次いで乾燥させる方法が挙げられる。
【0015】
触媒成分は、好ましくは、アルミナ、チタニア、ジルコニア、シリカ等の微粉末からなる担体に担持された状態で存在する。触媒成分とNOX 吸蔵剤の直接の接触を防ぐことができ、また、触媒成分の表面積が高くなって触媒性能がより向上するためである。
この外側の担体に担持された触媒成分層は、例えば、触媒成分の水溶液を上記の担体微粉末と混合してスラリーにし、このスラリーを上記のNOX 吸蔵剤の上に被覆し、乾燥させることで形成することができる。
ここで、極めて均一かつ微細に触媒成分を担体に担持させる方法の例として、NOX 吸蔵剤の場合と同様に、触媒成分の水溶液をアルミナゾルと混合し、これを上記のNOX 吸蔵剤の上に被覆し、アルミナを加水分解によってゲル化させ、次いで乾燥させる方法が挙げられる。
【0016】
水溶性の酢酸塩等の形態で担持されたNOX 吸蔵剤を、水難溶性の酒石酸塩にするには、酢酸塩等を単に酒石酸水溶液に接触させることで行うことができる。この工程は、NOX 吸蔵剤の上に触媒成分層を形成する前と後のいずれの段階でも行うことができ、いずれの場合も、常温で酒石酸水溶液に浸漬や含浸等することにより行うことができる。
【0017】
図2は、NOX 吸蔵剤1と触媒成分2が別個な粒子を形成した態様を示す。
この態様は、例えば、図1の態様について説明したのと同様な仕方で、NOX 吸蔵剤粒子と触媒成分粒子をそれぞれ作成し、これらの粒子を混合した粉末を、酒石酸水溶液に接触させ、NOX 吸蔵剤を酒石酸塩に変化させる。
次いで、その粉末を水系スラリーにし、モノリス基材3にウォッシュコートする。そして、乾燥・焼成する。
【0018】
図3は、NOX 吸蔵剤1と触媒成分2がモノリス基材3の上で2層構造を形成した態様を示す。
この態様は、例えば、図1の態様について説明したのと同様な仕方で、NOX 吸蔵剤粒子と触媒成分粒子をそれぞれ作成する。次いで、NOX 吸蔵剤粒子を酒石酸水溶液に接触させ、NOX 吸蔵剤を酒石酸塩に変化させて、モノリス基材上にウォッシュコートし、そして、水系スラリーにした触媒成分粒子を、NOX 吸蔵剤の上に重ねてウォッシュコートする。そして、乾燥・焼成する。
【0019】
図4は、触媒成分とNOX 吸蔵剤が1つの粒子4の中に共存する態様を示す。
この態様は、例えば、図1の態様について説明したのと同様な仕方で、NOX 吸蔵剤粒子と触媒成分粒子をそれぞれ作成する。次いで、それらを混合した後、適当な大きさの混合粒子4にし、その状態で酒石酸水溶液に接触させる。
次いで、水系スラリーにし、モノリス基材にウォッシュコートする。そして、乾燥・焼成する。
【0020】
図5は、図1〜4の態様によってモノリス基材3の上に担持されたNOX 吸蔵剤と触媒成分の上に、さらに別な触媒成分を水溶液を用いて付加するのに好ましい態様である。
図1〜4の状態のものを焼成せずに水溶液に曝すと、NOX 吸蔵剤と触媒成分の粒子が水溶液の中に分散されることがあり、このため、一旦焼成してNOX 吸蔵剤等をモノリスに固定することが有効であるが、焼成後に直ちに水溶液に曝すと、NOX 吸蔵剤は酒石酸塩から酸化物に変化しているため、水溶液中に溶出する。
【0021】
しかし、焼成後に再度NOX 吸蔵剤を酒石酸塩に変化させれば、水溶液に曝しても、NOX 吸蔵剤の溶出を防止することができる。
かかる付加的触媒成分としては、ロジウム、イリジウム等が挙げられ、NOX 吸蔵剤を再度酒石酸塩にした後に、これらの硝酸塩等の水溶液の状態で、NOX 吸蔵剤と触媒成分の上にさらに担持することができる。
【0022】
なお、上記の説明における各粒子の大きさは、本発明の目的を達成するためには特に限定する必要はないが、図1に示した態様では、最大径と最小径の平均として(以下「粒子径」と称する。)、内側粒子の大きさは、0.1〜20μmが一応の目安であり、触媒成分層3の厚さは0.01〜1μmが一応の目安である。
図2〜5に示した各粒子は、いずれも粒子径は0.1〜20μmが一応の目安であり、図5に示した付加的な触媒成分層の厚さは、0.01〜1μmが一応の目安である。
また、図1〜5はあくまで発明の理解を容易にするためのモデル図であり、特に、図示した粒子の形状、相対的サイズ、位置関係に限定されるものではない。
【0023】
また、本発明には、上記の態様の一部を変更するものとして、NOX 吸蔵剤に酒石酸水溶液を接触させることに代えて、既に酒石酸塩の状態であるNOX 吸蔵剤を用いること、例えば、図1の態様においては、NOX 吸蔵剤の酢酸塩等に代えてNOX 吸蔵剤の酒石酸塩そのものの周りに触媒成分層を形成すること、図2〜4の態様においては、NOX 吸蔵剤の酢酸塩等の粒子に代えて酒石酸塩粒子を用いることが含まれる。
【0024】
また、本発明には、NOX 吸蔵剤を酢酸塩、炭酸塩、硝酸塩等の水溶液の形態でモノリス基材表面にコーティングし、乾燥させることによりこれらの酢酸塩等でモノリス基材の表面を被覆し、次いで酒石酸水溶液を接触させることにより酢酸塩等を酒石酸塩に変化させ、そして、触媒成分をウォッシュコートすることも含まれる。
これらの方法によっても、ウォッシュコートの段階でNOX 吸蔵剤の溶出を防ぐといった本発明の目的を達成することができる。
【0025】
【実施例】
実施例1
アルミニウムイソプロポキシド(Al(OC3 7 3 )と酢酸カリウム(KCH3 CO2 )を溶解したイソプロピルアルコール溶液を攪拌しながらその溶液に水を滴下させ、アルミニウムイソプロポキシドを加水分解し、カリウムを含むアルミナゲルを生成させた。このアルミナゲルを120℃で2時間乾燥し、次いで空気中の800℃で5時間加熱することで、カリウムを10.5質量%で含有する平均粒子径が約2.7μmの、アルミナに担持されたNOX 吸蔵剤を得た。
【0026】
次いで、アルミニウムイソプロポキシドを溶解したイソプロピルアルコール溶液にこのNOX 吸蔵剤を分散させ、そのスラリーを攪拌しながらジニトロジアンミン白金硝酸水溶液を滴下させ、同時に加水分解に必要な水を添加することで、アルミニウムイソプロポキシドを加水分解し、白金を含むアルミナゲルをNOX 吸蔵剤の上に被覆した。
次いで、このスラリーを120℃で2時間乾燥し、空気中の480℃で5時間加熱することで、NOX 吸蔵剤の周りに触媒成分層が存在する触媒粉末を得た(以下、NOX 吸蔵剤、触媒成分、及び担体を含んでなる粉末を「触媒粉末」と称する。)。
【0027】
この触媒粉末の平均粒子径は約2.9μmであり、カリウムを8.7質量%、白金を2.0質量%で含んだ(残余はアルミナ)。
この触媒粉末130.0gを、予め43.46gの酒石酸を溶解した500ccのH2 Oの中に投入し、15分間攪拌した。この攪拌の後、遠心分離し、上澄みを捨てて得られた粉末を120℃で2時間乾燥し、酒石酸水素カリウム(KHC4 4 6 )を生成させた。ここで、触媒粉末に含まれるカリウム(K)と投入した酒石酸の比率は、K/酒石酸のモル比で1:1とした。
【0028】
実施例2
実施例1と同様にして得たカリウム、白金、及びアルミナ担体を含んでなる触媒粉末の130.0gを、予め86.92gの酒石酸を溶解した500ccのH2 Oの中に投入し、15分間攪拌した。この攪拌の後、遠心分離して上澄みを捨て、得られた粉末を120℃で2時間乾燥し、酒石酸水素カリウム(KHC4 4 6 )を生成させた。ここで、触媒粉末に含まれるカリウムと投入した酒石酸の比率は、K/酒石酸のモル比で1:2とした。
【0029】
実施例3
実施例1と同様にして得たカリウム、白金、及びアルミナ担体を含んでなる触媒粉末の130.0gを、予め130.39gの酒石酸を溶解した500ccのH2 Oの中に投入し、15分間攪拌した。この攪拌の後、遠心分離して上澄みを捨て、得られた粉末を120℃で2時間乾燥し、酒石酸水素カリウム(KHC4 4 6 )を生成させた。ここで、触媒粉末に含まれるカリウムと投入した酒石酸の比率は、K/酒石酸のモル比で1:3とした。
【0030】
実施例4
実施例1と同様にして得たカリウム、白金、及びアルミナ担体を含んでなる触媒粉末の130.0gを、予め178.85gの酒石酸を溶解した500ccのH2 Oの中に投入し、15分間攪拌した。この攪拌の後、遠心分離して上澄みを捨て、得られた粉末を120℃で2時間乾燥し、酒石酸水素カリウム(KHC4 4 6 )を生成させた。ここで、触媒粉末に含まれるカリウムと投入した酒石酸の比率は、K/酒石酸のモル比で1:4とした。
【0031】
実施例5
実施例1と同様にして得たカリウム、白金、及びアルミナ担体を含んでなる触媒粉末の130.0gを、予め217.31gの酒石酸を溶解した500ccのH2 Oの中に投入し、15分間攪拌した。この攪拌の後、遠心分離して上澄みを捨て、得られた粉末を120℃で2時間乾燥し、酒石酸水素カリウム(KHC4 4 6 )を生成させた。ここで、触媒粉末に含まれるカリウムと投入した酒石酸の比率は、K/酒石酸のモル比で1:5とした。
なお、実施例1〜5は、図1の態様に相当する。
【0032】
実施例6
アルミニウムイソプロポキシドを溶解したイソプロピルアルコール溶液を攪拌しながらジニトロジアンミン白金硝酸水溶液を滴下させ、同時に加水分解に必要な水を添加することで、アルミニウムイソプロポキシドを加水分解し、白金を含むアルミナゲルを生成させた。
次いで、このスラリーを120℃で2時間乾燥し、次いで空気中の480℃で5時間加熱することで、1.5gの白金をアルミナ上に担持した130gの粉末を得た。
【0033】
この粉末に、15.0gの炭酸カリウム(K2 CO3 )を混合し、予め97.68gの酒石酸を溶解した500ccのH2 Oの中に投入し、15分間攪拌した。この攪拌の後、遠心分離して上澄みを捨て、得られた粉末を120℃で2時間乾燥し、酒石酸水素カリウム(KHC4 4 6 )を生成させ、触媒成分とNOX 吸蔵剤を含む触媒粉末を得た。ここで、触媒粉末に含まれるカリウムと投入した酒石酸の比率は、K/酒石酸のモル比で1:3とした。
この実施例において得られた触媒粉末は、白金を取り込んだ平均粒子径が約2.5μmの多孔質アルミナ粒子と、平均粒子径が約3.0μmの酒石酸水素カリウム粒子の、別個な粒子からなることが観察された。
【0034】
実施例7
実施例6と同様にして得た1.5gの白金をアルミナ上に担持した130gの粉末に、56.6gの硝酸バリウム(Ba(NO2 3 )を混合し、予め97.46gの酒石酸を溶解した500ccのH2 Oの中に投入し、15分間攪拌した。この攪拌の後、遠心分離して上澄みを捨て、得られた粉末を120℃で2時間乾燥し、酒石酸水素バリウム(BaC4 4 6 )を生成させた。ここで、得られた触媒粉末に含まれるカリウムと投入した酒石酸の比率は、Ba/酒石酸のモル比で1:3とした。
この実施例において得られた触媒粉末は、白金を取り込んだ平均粒子径が約2.5μmの多孔質アルミナ粒子と、平均粒子径が約1.9μmの酒石酸バリウム粒子の、別個な粒子からなることが観察された。
【0035】
実施例8
実施例6と同様にして得た1.5gの白金をアルミナ上に担持した130gの粉末に、28.3gの硝酸バリウム(Ba(NO2 3 )と10.6gの酢酸カリウム(CH3 COOK)を混合し、予め93.22gの酒石酸を溶解した500ccのH2 Oの中に投入し、15分間攪拌した。この攪拌の後、遠心分離して上澄みを捨て、得られた粉末を120℃で2時間乾燥し、酒石酸水素バリウム(BaC4 4 6 )と酒石酸水素カリウム(BaC4 4 6 )を生成させた。ここで、触媒粉末に含まれるカリウムと投入した酒石酸の比率は、(Ba+K)/酒石酸のモル比で1:3とした。
この実施例において得られた触媒粉末は、白金を取り込んだ平均粒子径が約2.5μmの多孔質アルミナ粒子と、平均粒子径が約1.9μmの酒石酸バリウム粒子、及び平均粒子径が約3.2μmの酒石酸水素カリウム粒子の、別個な粒子からなることが観察された。
なお、実施例6〜8は、図2の態様に相当する。
【0036】
比較的1
実施例1の途中工程における平均径が約2.9μmで、カリウムを8.7質量%、白金を2.0質量%で含む(残余はアルミナ)触媒粒子を、酒石酸処理をせずにそのまま使用した。
【0037】
比較的2
実施例6の途中工程における、白金を担持したアルミナ上と炭酸カリウムを混合したものを、酒石酸処理をせずにそのまま使用した。
【0038】
比較的3
実施例7の途中工程における、白金を担持したアルミナと硝酸バリウムを混合したものを、酒石酸処理をせずにそのまま使用した。
【0039】
比較的4
実施例8の途中工程における、白金を担持したアルミナと硝酸バリウム及び酢酸カリウムを混合したものを、酒石酸処理をせずにそのまま使用した。
【0040】
−評価法−
実施例1〜8、及び比較例1〜3の触媒粉末を、バインダーを含むイオン交換水に分散させてウォッシュコート用スラリーを調製し、直径30mm×長さ50mmのモノリステストピースに各触媒をコーティングした。
これらを表1に示すモデルガス中でNOX 浄化率について評価した。詳しくは、500℃で10分間にわたってリッチガスを流して前処理を行い、リッチガスとリーンガスを2分間ずつ交互に流通させながら降温させ、350℃でのリーンガスについてNOX 浄化率を測定した。また、ウォッシュコート時に、スラリーの水に溶出したカリウムの量を測定した。これらの結果を表2に示す。
【0041】
【表1】

Figure 0003758466
【0042】
【表2】
Figure 0003758466
【0043】
表2に示した結果より、酒石酸塩の状態でウォッシュコートした実施例1〜8は、酢酸カリウム、炭酸カリウム、又は硝酸バリウムの状態でウォッシュコートした比較例1〜4よりも、明らかにNOX 浄化率が向上し、スラリーに溶出したNOX 吸蔵剤が明らかに少ないことが分かる。
また、酒石酸/吸蔵元素のモル比を3以上にすれば、NOX 溶出は、実質的に完全に抑えられることが分かる。
【0044】
【発明の効果】
ウォッシュコート時にNOX 吸蔵剤の溶出を防ぐことができ、NOX 吸蔵剤が原子レベルで触媒成分に付着することによる触媒性能の低下が解消できる。
【図面の簡単な説明】
【図1】本発明の方法によって得られる排気ガス浄化用触媒のモデル図である。
【図2】本発明の方法によって得られる排気ガス浄化用触媒のモデル図である。
【図3】本発明の方法によって得られる排気ガス浄化用触媒のモデル図である。
【図4】本発明の方法によって得られる排気ガス浄化用触媒のモデル図である。
【図5】本発明の方法によって得られる排気ガス浄化用触媒のモデル図である。
【符号の説明】
1…NOX 吸蔵剤
2…触媒成分
3…モノリス基材
4…NOX 吸蔵剤と触媒成分の混合粒子
5…付加的触媒成分[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an exhaust gas purification catalyst for purifying exhaust gas discharged from an internal combustion engine such as an automobile, and more particularly to a method for producing a NO x storage reduction catalyst by washcoat.
[0002]
[Prior art]
As countermeasures for automobile exhaust gas regulations and fuel consumption regulations, it has been proved that a NO x storage reduction catalyst in which a function of storing NO x is added to a conventional three-way catalyst is effective.
[0003]
This the NO X storage reduction catalyst occludes NO X under lean oxidizing atmosphere, it was released under a reducing atmosphere temporary stoichiometric-rich, NO by the action of the reducing atmosphere and the catalyst component Reduce and purify X.
As the NO x storage agent, an alkali metal, an alkaline earth metal, or both of these metals are used. As the catalyst component, noble metals such as platinum, gold, ruthenium, rhodium and palladium are used.
Here, if the NO X storage agent and catalyst components are mixed in the micro, the NO X storage agent reduces the redox capability of the catalyst components, it promotes the sintering of the catalyst components, thereby reducing the purification performance of the catalyst It has been found that
[0004]
For this reason, the present applicant, as an improved NO x storage reduction catalyst, disclosed in Japanese Patent Application Laid-Open No. 10-258232, is a core portion containing a NO x storage agent and a catalyst support layer formed on the surface of the core portion. The catalyst which has the microstructure which consists of is proposed.
Exhaust gas purifying catalyst, since the NO X storage agent is present near the catalyst component, NO X catalyst released from the NO X storage agent according the NO X storage agent and a catalyst component having a microphase separated structure While being effectively reduced by the components, it is possible to suppress a decrease in the catalyst performance as described above due to the action of the NO x storage agent.
[0005]
Conventionally, the production of a NO x storage-reduction catalyst having such a microstructure has been carried out, for example, as described in JP-A-7-171399 on a carrier on which a carbonate NO x storage agent is supported. It has been carried out by wash-coating an aqueous slurry containing components and a binder in a water medium, followed by drying and firing.
[0006]
[Problems to be solved by the invention]
However, during this wash coating, in the carbonate state, a part of the NO x storage agent elutes in the medium water, so the NO x storage agent adheres to the catalyst component at the atomic level, and the NO x storage agent. Has been found to reduce the purification performance of the catalyst.
Therefore, the present invention prevents the elution of the NO X storage agent during such wash coating, and manufactures a NO X storage reduction catalyst in which both the NO X storage agent and the catalyst component are present in the vicinity, but both are separated microscopically. It aims to provide a method.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, there is provided a method for producing an exhaust gas purifying catalyst containing at least one of an alkali metal and an alkaline earth metal as a NO x storage agent, wherein the NO x storage agent is brought into contact with tartaric acid to produce tartaric acid. There is provided a method for producing an exhaust gas purifying catalyst, characterized in that after the salt is formed, the tartrate salt is washed on a monolith substrate using water as a medium .
[0008]
In the present invention, a water-soluble NO x storage agent is brought into contact with tartaric acid to form a tartrate salt, and then this tartaric acid salt is wash-coated on a monolith substrate.
Alkali metal or alkaline earth metal water-soluble carbonates and acetates, when contacted with tartaric acid, are easily converted to tartrate at room temperature, and this tartaric acid salt is hardly soluble in water. X Occlusion agent does not elute into aqueous media. Therefore, it is possible to prevent the NO X storage agent adheres to the catalyst component eluted.
[0009]
Further, when the tartrate salt is heated to about 180 ° C. or higher, the organic group is scattered, and the oxide, hydroxide, or the like that can exhibit the NO X storage ability is obtained. Since the manufacturing process of the exhaust gas purifying catalyst generally includes a calcination process of 500 ° C. or higher, it is not necessary to provide the process of scattering the organic group of the tartrate salt.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, at least one of an alkali metal and an alkaline earth metal is used as the NO x storage agent. Examples of the NO X storage agent include lithium, sodium, potassium, rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, and barium.
These NO X storage agents are water-soluble in the form of acetates, carbonates, nitrates, and the like, and if these aqueous solutions are used, the operation of impregnating the carrier is easy and can be uniformly supported on the carrier. .
[0011]
In the present invention, these water-soluble NO x storage agents are brought into contact with tartaric acid to form a poorly water-soluble tartrate salt, and then the tartaric acid salt is washed to a monolith substrate such as a cordierite honeycomb carrier substrate. Coat. The NO x storage agent can be brought into contact with this tartaric acid, for example, by simply bringing the NO x storage agent supported on the carrier into contact with the tartaric acid aqueous solution.
[0012]
The exhaust gas purifying catalyst produced by the method of the present invention contains catalyst components such as platinum, gold, ruthenium, rhodium, palladium, etc., and these catalyst components and NO x storage agent are monolithic in some embodiments. It can be supported on a substrate.
[0013]
Hereinafter, these aspects will be described with reference to the accompanying drawings.
1-5 illustrate various aspects that can be implemented using the method of the present invention.
FIG. 1 shows an embodiment in which the NO x storage agent 1 is surrounded by the outer layer of the catalyst component 2.
In this embodiment, a powder composed of particles in which the tartrate salt of the NO x storage agent is formed on the inside and the catalyst component layer is present on the outside is made into an aqueous slurry using water as a medium, and a binder is added if necessary. Wash it with a coat. By drying and firing, the catalyst component and the NO x storage agent are fixed to the monolith substrate, and at the same time, the organic group of the tartrate salt of the NO x storage agent is scattered to obtain the NO x storage reduction catalyst. .
[0014]
Inside of the NO X occluding agent can be present only in the NO X storage agent, preferably supported on a carrier. This is because the direct contact between the NO X storage agent and the outside catalyst component can be more effectively prevented. Suitable carriers include alumina, titania, zirconia, include fine powders such as silica, for example, acetates of the NO X absorbent, impregnated carbonate, an aqueous solution of nitrate into a fine powder of the bearing.
Here, as an example of a method for carrying the NO X storage agent extremely uniformly and finely, an aqueous solution of NO X storage agent such as acetate, carbonate, nitrate, etc. is mixed with alumina sol, and the alumina sol is gelled by hydrolysis. Next, the method of drying is mentioned.
[0015]
The catalyst component is preferably present in a state where it is supported on a carrier made of a fine powder of alumina, titania, zirconia, silica or the like. It is possible to prevent direct contact between the catalyst component and the NO X storage agent, it is also because catalytic performance surface area of the catalyst component is high is further improved.
The catalyst component layer supported on the outer carrier is, for example, prepared by mixing an aqueous solution of the catalyst component with the carrier fine powder to form a slurry, and coating the slurry on the NO X storage agent and drying the slurry. Can be formed.
Here, as an example of a method for supporting the catalyst component on the carrier extremely uniformly and finely, an aqueous solution of the catalyst component is mixed with an alumina sol in the same manner as in the case of the NO X storage agent, and this is mixed with the above NO X storage agent. And alumina is gelled by hydrolysis and then dried.
[0016]
In order to convert the NO x storage agent supported in the form of a water-soluble acetate or the like into a water-insoluble tartrate salt, the acetate salt or the like can be simply brought into contact with a tartaric acid aqueous solution. This step can be performed at any stage before and after the formation of the catalyst component layer on the NO x storage agent. In either case, the step can be performed by dipping or impregnating in an aqueous tartaric acid solution at room temperature. it can.
[0017]
FIG. 2 shows an embodiment in which the NO x storage agent 1 and the catalyst component 2 form separate particles.
In this embodiment, for example, NO X storage agent particles and catalyst component particles are respectively prepared in the same manner as described in the embodiment of FIG. 1, and the powder obtained by mixing these particles is brought into contact with an aqueous tartaric acid solution. Change X storage to tartrate.
Next, the powder is made into an aqueous slurry, and the monolith substrate 3 is wash-coated. Then, it is dried and fired.
[0018]
FIG. 3 shows an embodiment in which the NO x storage agent 1 and the catalyst component 2 form a two-layer structure on the monolith substrate 3.
In this embodiment, for example, NO X storage agent particles and catalyst component particles are produced in the same manner as described in the embodiment of FIG. Next, the NO x storage agent particles are brought into contact with an aqueous tartaric acid solution, the NO x storage agent is changed to a tartrate salt, washed on the monolith substrate, and the catalyst component particles made into an aqueous slurry are converted into the NO x storage agent. Washcoat over the top. Then, it is dried and fired.
[0019]
FIG. 4 shows a mode in which the catalyst component and the NO x storage agent coexist in one particle 4.
In this embodiment, for example, NO X storage agent particles and catalyst component particles are produced in the same manner as described in the embodiment of FIG. Next, after mixing them, the mixed particles 4 having an appropriate size are brought into contact with an aqueous tartaric acid solution in that state.
Subsequently, it is made an aqueous slurry and wash-coated on a monolith substrate. Then, it is dried and fired.
[0020]
Figure 5 is a preferred embodiment to be added by using on of the NO X absorbent and the catalyst component carried on the monolith substrate 3, an aqueous solution a further catalyst components by embodiments of FIGS. 1-4 .
Exposure to an aqueous solution without firing those states of FIGS. 1-4, may the NO X storage agent and the catalyst component particles are dispersed in an aqueous solution, Therefore, once fired to the NO X storage agent It is effective to fix them to a monolith. However, when exposed to an aqueous solution immediately after calcination, the NO x storage agent changes from tartrate to oxide, so that it elutes into the aqueous solution.
[0021]
However, if the NO x storage agent is changed to the tartrate again after firing, the elution of the NO x storage agent can be prevented even when exposed to an aqueous solution.
Examples of such additional catalyst components include rhodium, iridium, etc., and after further converting the NO X storage agent to a tartrate salt, these are further supported on the NO X storage agent and the catalyst component in the form of an aqueous solution of these nitrates. can do.
[0022]
The size of each particle in the above description is not particularly limited in order to achieve the object of the present invention. However, in the embodiment shown in FIG. 1, the average of the maximum diameter and the minimum diameter (hereinafter “ The particle diameter is referred to as “particle diameter”.), And the size of the inner particle is 0.1 to 20 μm, and the thickness of the catalyst component layer 3 is 0.01 to 1 μm.
As for each particle | grain shown in FIGS. 2-5, as for the particle diameter, 0.1-20 micrometers is a standard for all, and the thickness of the additional catalyst component layer shown in FIG. 5 is 0.01-1 micrometers. This is a rough guide.
1 to 5 are model diagrams for facilitating understanding of the invention, and are not particularly limited to the shape, relative size, and positional relationship of the illustrated particles.
[0023]
Further, the present invention is, as to change some of the above embodiments, instead of contacting the aqueous solution of tartaric acid in the NO X absorbent, already the use of the NO X storage agent in the state of tartrate, e.g. in is to form the catalyst component layer around the tartrate salt itself of the NO X absorbent in place of the acetate salt of the NO X absorbent, the embodiment of FIG. 2-4 embodiment of FIG. 1, the NO X storage It includes using tartrate particles instead of particles such as acetate of the agent.
[0024]
In the present invention, the surface of the monolith substrate is coated with these acetates by coating the surface of the monolith substrate with an NO x storage agent in the form of an aqueous solution of acetate, carbonate, nitrate, and the like. Then, contacting with an aqueous tartaric acid solution converts acetates or the like into tartaric acid salts, and wash-coating the catalyst components.
Also by these methods, the object of the present invention, such as preventing the elution of the NO x storage agent at the wash coat stage, can be achieved.
[0025]
【Example】
Example 1
While stirring an isopropyl alcohol solution in which aluminum isopropoxide (Al (OC 3 H 7 ) 3 ) and potassium acetate (KCH 3 CO 2 ) are stirred, water is dropped into the solution to hydrolyze the aluminum isopropoxide, An alumina gel containing potassium was produced. This alumina gel was dried at 120 ° C. for 2 hours, and then heated at 800 ° C. in air for 5 hours, so that it was supported on alumina having an average particle diameter of about 2.7 μm containing 10.5% by mass of potassium. It was to obtain a the NO X storage agent.
[0026]
Next, the NO x storage agent is dispersed in an isopropyl alcohol solution in which aluminum isopropoxide is dissolved, and a dinitrodiammine platinum nitric acid aqueous solution is dropped while stirring the slurry, and at the same time, water necessary for hydrolysis is added, Aluminum isopropoxide was hydrolyzed and an alumina gel containing platinum was coated on the NO x storage agent.
Next, this slurry was dried at 120 ° C. for 2 hours and heated in air at 480 ° C. for 5 hours to obtain a catalyst powder having a catalyst component layer around the NO X storage agent (hereinafter referred to as NO X storage). The powder comprising the agent, the catalyst component, and the carrier is referred to as “catalyst powder”).
[0027]
This catalyst powder had an average particle size of about 2.9 μm and contained 8.7% by mass of potassium and 2.0% by mass of platinum (the balance being alumina).
130.0 g of this catalyst powder was put into 500 cc H 2 O in which 43.46 g of tartaric acid had been previously dissolved, and stirred for 15 minutes. After stirring, the mixture was centrifuged and the supernatant was discarded. The powder obtained was dried at 120 ° C. for 2 hours to produce potassium hydrogen tartrate (KHC 4 H 4 O 6 ). Here, the ratio of potassium (K) contained in the catalyst powder to the tartaric acid added was 1: 1 as the molar ratio of K / tartaric acid.
[0028]
Example 2
130.0 g of the catalyst powder containing potassium, platinum, and alumina support obtained in the same manner as in Example 1 was put into 500 cc of H 2 O in which 86.92 g of tartaric acid had been dissolved in advance, and then for 15 minutes. Stir. After this stirring, the supernatant was discarded by centrifugation, and the resulting powder was dried at 120 ° C. for 2 hours to produce potassium hydrogen tartrate (KHC 4 H 4 O 6 ). Here, the ratio of potassium contained in the catalyst powder to the tartaric acid added was 1: 2 in molar ratio of K / tartaric acid.
[0029]
Example 3
130.0 g of the catalyst powder containing potassium, platinum, and alumina support obtained in the same manner as in Example 1 was put into 500 cc of H 2 O in which 130.39 g of tartaric acid had been dissolved in advance, and then for 15 minutes. Stir. After this stirring, the supernatant was discarded by centrifugation, and the resulting powder was dried at 120 ° C. for 2 hours to produce potassium hydrogen tartrate (KHC 4 H 4 O 6 ). Here, the ratio of potassium contained in the catalyst powder to the tartaric acid added was 1: 3 in terms of a molar ratio of K / tartaric acid.
[0030]
Example 4
130.0 g of the catalyst powder containing potassium, platinum, and alumina support obtained in the same manner as in Example 1 was put into 500 cc H 2 O in which 178.85 g of tartaric acid had been dissolved in advance, and the mixture was stirred for 15 minutes. Stir. After this stirring, the supernatant was discarded by centrifugation, and the resulting powder was dried at 120 ° C. for 2 hours to produce potassium hydrogen tartrate (KHC 4 H 4 O 6 ). Here, the ratio of potassium contained in the catalyst powder to the tartaric acid added was 1: 4 as the molar ratio of K / tartaric acid.
[0031]
Example 5
130.0 g of the catalyst powder containing potassium, platinum, and alumina support obtained in the same manner as in Example 1 was put into 500 cc of H 2 O in which 217.31 g of tartaric acid had been dissolved in advance, and then for 15 minutes. Stir. After this stirring, the supernatant was discarded by centrifugation, and the resulting powder was dried at 120 ° C. for 2 hours to produce potassium hydrogen tartrate (KHC 4 H 4 O 6 ). Here, the ratio of potassium contained in the catalyst powder to the tartaric acid added was 1: 5 in the molar ratio of K / tartaric acid.
Examples 1 to 5 correspond to the embodiment of FIG.
[0032]
Example 6
Alumina gel containing platinum by hydrolyzing aluminum isopropoxide by adding dropwise the dinitrodiammine platinum nitric acid aqueous solution while stirring the isopropyl alcohol solution in which aluminum isopropoxide is dissolved, and simultaneously adding water necessary for hydrolysis. Was generated.
Next, this slurry was dried at 120 ° C. for 2 hours, and then heated at 480 ° C. in air for 5 hours to obtain 130 g of powder carrying 1.5 g of platinum on alumina.
[0033]
To this powder, 15.0 g of potassium carbonate (K 2 CO 3 ) was mixed, put into 500 cc of H 2 O in which 97.68 g of tartaric acid had been dissolved in advance, and stirred for 15 minutes. After this stirring, the supernatant is discarded by centrifugation, and the resulting powder is dried at 120 ° C. for 2 hours to produce potassium hydrogen tartrate (KHC 4 H 4 O 6 ), which contains the catalyst component and NO X storage agent. A catalyst powder was obtained. Here, the ratio of potassium contained in the catalyst powder to the tartaric acid added was 1: 3 in terms of a molar ratio of K / tartaric acid.
The catalyst powder obtained in this example consists of separate particles of porous alumina particles with an average particle size of about 2.5 μm incorporating platinum and potassium hydrogen tartrate particles with an average particle size of about 3.0 μm. It was observed.
[0034]
Example 7
56.6 g of barium nitrate (Ba (NO 2 ) 3 ) was mixed with 130 g of powder obtained by supporting 1.5 g of platinum obtained in the same manner as in Example 6 on alumina, and 97.46 g of tartaric acid was previously added. The solution was put into 500 cc of dissolved H 2 O and stirred for 15 minutes. After this stirring, the supernatant was discarded by centrifugation, and the obtained powder was dried at 120 ° C. for 2 hours to produce barium hydrogen tartrate (BaC 4 H 4 O 6 ). Here, the ratio of potassium contained in the obtained catalyst powder to the tartaric acid added was 1: 3 in terms of a Ba / tartaric acid molar ratio.
The catalyst powder obtained in this example is composed of separate particles of porous alumina particles having an average particle diameter of about 2.5 μm incorporating platinum and barium tartrate particles having an average particle diameter of about 1.9 μm. Was observed.
[0035]
Example 8
To 130 g of powder obtained by supporting 1.5 g of platinum obtained in the same manner as in Example 6 on alumina, 28.3 g of barium nitrate (Ba (NO 2 ) 3 ) and 10.6 g of potassium acetate (CH 3 COOK) were obtained. ) Was added to 500 cc H 2 O in which 93.22 g of tartaric acid had been dissolved in advance, and stirred for 15 minutes. After this stirring, the supernatant is discarded by centrifugation, and the resulting powder is dried at 120 ° C. for 2 hours, and barium hydrogen tartrate (BaC 4 H 4 O 6 ) and potassium hydrogen tartrate (BaC 4 H 4 O 6 ) are added. Generated. Here, the ratio of potassium contained in the catalyst powder to the tartaric acid added was 1: 3 in terms of a molar ratio of (Ba + K) / tartaric acid.
The catalyst powder obtained in this example was composed of porous alumina particles having an average particle diameter of about 2.5 μm incorporating platinum, barium tartrate particles having an average particle diameter of about 1.9 μm, and an average particle diameter of about 3 It was observed to consist of discrete particles of 2 μm potassium hydrogen tartrate particles.
Examples 6 to 8 correspond to the embodiment of FIG.
[0036]
Relatively 1
In the middle step of Example 1, the average diameter is about 2.9 μm, and the catalyst particles containing 8.7% by mass of potassium and 2.0% by mass of platinum (the balance is alumina) are used as they are without being treated with tartaric acid. did.
[0037]
Relatively 2
The mixture on the alumina carrying platinum and potassium carbonate in the intermediate step of Example 6 was used as it was without being treated with tartaric acid.
[0038]
Relatively 3
A mixture of alumina supporting platinum and barium nitrate in the intermediate step of Example 7 was used as it was without being treated with tartaric acid.
[0039]
Relatively 4
The mixture of alumina supporting platinum, barium nitrate and potassium acetate in the intermediate step of Example 8 was used as it was without being treated with tartaric acid.
[0040]
-Evaluation method-
The catalyst powders of Examples 1 to 8 and Comparative Examples 1 to 3 are dispersed in ion-exchanged water containing a binder to prepare a slurry for wash coat, and each catalyst is coated on a monolith test piece having a diameter of 30 mm and a length of 50 mm. did.
These were evaluated for NO x purification rates in the model gas shown in Table 1. Specifically, pretreatment was performed by flowing a rich gas at 500 ° C. for 10 minutes, the temperature was lowered while alternately flowing the rich gas and the lean gas for 2 minutes, and the NO x purification rate was measured for the lean gas at 350 ° C. Further, the amount of potassium eluted in the water of the slurry was measured during the wash coating. These results are shown in Table 2.
[0041]
[Table 1]
Figure 0003758466
[0042]
[Table 2]
Figure 0003758466
[0043]
From the results shown in Table 2, Examples 1-8, which were wash-coated in the tartrate state, were clearly more NO x than Comparative Examples 1-4, which were wash-coated in the state of potassium acetate, potassium carbonate, or barium nitrate. It can be seen that the purification rate is improved and the NO x storage agent eluted in the slurry is clearly less.
Further, it can be seen that if the tartaric acid / occlusion element molar ratio is 3 or more, the NO x elution can be suppressed substantially completely.
[0044]
【The invention's effect】
It is possible to prevent elution of the NO X absorbent during washcoat decrease in catalytic performance due to the NO X storage agent adheres to the catalyst components at the atomic level can be solved.
[Brief description of the drawings]
FIG. 1 is a model diagram of an exhaust gas purification catalyst obtained by the method of the present invention.
FIG. 2 is a model diagram of an exhaust gas purification catalyst obtained by the method of the present invention.
FIG. 3 is a model diagram of an exhaust gas purifying catalyst obtained by the method of the present invention.
FIG. 4 is a model diagram of an exhaust gas purifying catalyst obtained by the method of the present invention.
FIG. 5 is a model diagram of an exhaust gas purifying catalyst obtained by the method of the present invention.
[Explanation of symbols]
1 ... NO X absorbent 2 ... catalyst components 3 ... monolith substrate 4 ... NO X occluding agent and mixing particles 5 ... additional catalyst component of the catalyst component

Claims (9)

アルカリ金属とアルカリ土類金属の少なくとも1種をNOX吸蔵剤として含有する排気ガス浄化用触媒の製造方法であって、前記NOX 吸蔵剤を酒石酸に接触させて酒石酸塩とした後、前記酒石酸塩をモノリス基材に水を媒体としてウォッシュコートすることを特徴とする排気ガス浄化用触媒の製造方法。A method of manufacturing a catalyst for purifying exhaust gases containing at least one alkali metal and alkaline earth metal as the NO X storage agent, after the tartrate said the NO X storage agent in contact with tartaric acid, the tartaric acid A method for producing an exhaust gas purifying catalyst, characterized in that a salt is coated on a monolith substrate using water as a medium . 触媒成分の外層に囲まれたNOX 吸蔵剤を酒石酸に接触させて酒石酸塩とした後、前記触媒成分と前記酒石酸塩をモノリス基材に水を媒体としてウォッシュコートする請求項1に記載の排気ガス浄化用触媒の製造方法。The exhaust gas according to claim 1, wherein the NO x storage agent surrounded by the outer layer of the catalyst component is brought into contact with tartaric acid to form tartrate, and then the catalyst component and the tartrate are washcoated with water as a medium on a monolith substrate. A method for producing a gas purification catalyst. 触媒成分粒子と混合されたNOX 吸蔵剤粒子を酒石酸に接触させて酒石酸塩とした後、前記触媒成分と前記酒石酸塩をモノリス基材に水を媒体としてウォッシュコートする請求項1に記載の排気ガス浄化用触媒の製造方法。The exhaust gas according to claim 1, wherein the NO x storage agent particles mixed with the catalyst component particles are brought into contact with tartaric acid to form tartrate, and then the catalyst component and the tartrate are washed on a monolith substrate using water as a medium. A method for producing a gas purification catalyst. 触媒成分と1つの粒子の中に共存するNOX 吸蔵剤を酒石酸に接触させて酒石酸塩とした後、前記触媒成分と前記酒石酸塩をモノリス基材に水を媒体としてウォッシュコートする請求項1に記載の排気ガス浄化用触媒の製造方法。The NO x storage agent coexisting in the catalyst component and one particle is brought into contact with tartaric acid to form tartrate, and then the catalyst component and the tartrate are washed on a monolith substrate using water as a medium. The manufacturing method of the catalyst for exhaust-gas purification | cleaning of description. 前記NOX 吸蔵剤を水を媒体としてウォッシュコートした後、触媒成分を水を媒体としてウォッシュコートする請求項1に記載の排気ガス浄化用触媒の製造方法。The NO After the X absorbent wash-coated with water as a medium, a method of producing an exhaust gas purifying catalyst according to the catalyst components to claim 1 washcoat water as a medium. 請求項1〜5のいずれか1項の方法によって水を媒体としてウォッシュコートされたモノリス基材上のNOX 吸蔵剤と触媒成分を焼成した後、前記NOX 吸蔵剤に酒石酸を接触させ、さらに付加的触媒成分を水を媒体としてウォッシュコートすることを特徴とする排気ガス浄化用触媒の製造方法。The NO x storage agent and the catalyst component on the monolith substrate that is wash-coated with water as a medium by the method according to any one of claims 1 to 5 are calcined, and then the NO x storage agent is contacted with tartaric acid, A method for producing an exhaust gas purifying catalyst, wherein the additional catalyst component is wash-coated using water as a medium . 請求項1〜5のいずれか1項の方法において、前記NOX 吸蔵剤を酒石酸に接触させることに代えて、NOX 吸蔵剤の酒石酸塩を用いることを特徴とする排気ガス浄化用触媒の製造方法。In any one of the methods of claims 1 to 5, wherein the NO X storage agent instead be brought into contact with the tartaric acid, the preparation of the catalyst for purifying exhaust gases, which comprises using a tartrate salt of the NO X absorbent Method. アルカリ金属とアルカリ土類金属の少なくとも1種をNOX吸蔵剤として含有する排気ガス浄化用触媒の製造方法であって、モノリス基材に担持された前記NOX 吸蔵剤を酒石酸塩に変化させた後、触媒成分を水を媒体としてウォッシュコートによって担持することを特徴とする排気ガス浄化用触媒の製造方法。A method of manufacturing a catalyst for purifying exhaust gases containing at least one alkali metal and alkaline earth metal as the NO X storage agent was the the NO X storage agent carried on the monolith substrate is changed to tartrate Thereafter, a method for producing an exhaust gas purifying catalyst, wherein the catalyst component is supported by a wash coat using water as a medium . NONO xx 吸蔵剤に対する酒石酸のモル比が3以上であることを特徴とする請求項1〜6のいずれか1項に記載の排気ガス浄化用触媒の製造方法。The method for producing an exhaust gas purifying catalyst according to any one of claims 1 to 6, wherein the molar ratio of tartaric acid to the storage agent is 3 or more.
JP2000147504A 2000-05-15 2000-05-15 Method for producing exhaust gas purifying catalyst Expired - Fee Related JP3758466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000147504A JP3758466B2 (en) 2000-05-15 2000-05-15 Method for producing exhaust gas purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000147504A JP3758466B2 (en) 2000-05-15 2000-05-15 Method for producing exhaust gas purifying catalyst

Publications (2)

Publication Number Publication Date
JP2001321680A JP2001321680A (en) 2001-11-20
JP3758466B2 true JP3758466B2 (en) 2006-03-22

Family

ID=18653684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000147504A Expired - Fee Related JP3758466B2 (en) 2000-05-15 2000-05-15 Method for producing exhaust gas purifying catalyst

Country Status (1)

Country Link
JP (1) JP3758466B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595644B2 (en) * 2005-04-18 2010-12-08 トヨタ自動車株式会社 Method for producing catalyst having NOx storage material

Also Published As

Publication number Publication date
JP2001321680A (en) 2001-11-20

Similar Documents

Publication Publication Date Title
JP2858945B2 (en) Exhaust gas purification catalyst excellent in heat resistance and method for producing the same
EP0931590B1 (en) Catalyst for purifying exhaust gas and manufacturing method thereof
JP3826357B2 (en) Hydrogen production catalyst and exhaust gas purification catalyst
JP3363564B2 (en) Exhaust gas purification catalyst
JP4012320B2 (en) Exhaust gas purification catalyst for lean combustion engine
KR20010053142A (en) Exhaust gas catalyst comprising rhodium, zirconia and rare earth oxide
JP5876436B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3640130B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH08117600A (en) Catalyst for purifying exhaust gas and preparation of catalyst
JP3388255B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3522957B2 (en) Exhaust gas purification catalyst
JP2004114014A (en) Catalyst for cleaning exhaust gas and method of producing the same
JP3758466B2 (en) Method for producing exhaust gas purifying catalyst
JPH10216514A (en) Catalyst for exhaust gas purification
JP4303799B2 (en) Method for producing lean NOx purification catalyst
JP2004181430A (en) Exhaust gas purification catalyst and production method for the same
JP2000070717A (en) Exhaust gas purification catalyst and catalyst carrier
JP2002177788A (en) Exhaust gas cleaning catalyst and its manufacturing method
JPH10174868A (en) Catalyst for cleaning of exhaust gas
JP3878766B2 (en) Catalyst carrier and exhaust gas purification catalyst
JP2005169280A (en) Catalyst for cleaning exhaust gas
JP2008215359A (en) Purification method of lean-burn engine exhaust gas
JP3743600B2 (en) Method for producing exhaust gas purification catalyst
JP2008104928A (en) Catalyst carrier, its manufacturing method and exhaust gas purifying catalyst
JP2001058131A (en) Catalyst for exhaust gas treatment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees